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Scaling and vortex-string dynamics in a three-dimensional system with a continuous symmetry
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We study the dynamics of a three-dimensional system with a nonconserved complex order parameter
%(r, t ), following a quench below the ordering transition temperature. For a critical quench
[('P(r, O)) =0] we observe dynamical scaling and an effective value of the dynamical exponent of
/=0. 45+0.01. For an off-critical quench [(%(r,O) )%0] there is a breakdown of dynamical scaling and

the vortex-string length l(t) varies with time t as l(t) —t 'exp( —yt' ), in good agreement with a
theoretical calculation by Toyoki and Honda. The predicted relation y~ ~(%(r,O))i' is found to
represent only a lower bound. We indicate the possible relevance of these results for liquid-crystal sys-

tems and cosmological pattern formation.

PACS number(s): 64.60.Ht, 67.40.Vs, 64.60.Cn, 98.80.Cq

I. INTRODUCTION

Scaling phenomena are often observed during the ap-
proach to equilibrium [1]. The classic example is spino-
dal decomposition of a binary alloy, where the system
proceeds to its final state of two-phase coexistence
through the development of a pattern characterized by a
single time-dependent length scale A, . It has been found
that A, varies with time t according to A(t} t~, , w-here the
dynamical exponent (b= —,

' for the case of a conserved or-
der parameter and P= —,

' for the case of a nonconserved
order parameter [2,3]. These results do not seem to de-
pend upon the dimension D of the system, above its lower
critical dimension. Furthermore, the order-parameter
dynamical scattering function is found to obey a scaling
law

S(k, t) = [1((t)]D4(kA(t}},
where 4(x) is referred to as a scaling function. Consider-
able analytical and numerical work has recently been de-
voted to the study of the relaxation dynamics in systems
with a continuous symmetry [4—8]. In a previous paper
[5] we investigated the relaxation dynamics of a two-
dimensional system with a nonconserved complex order
parameter, in order to address the issue of the efFect of
the continuous symmetry of the order parameter and the
associated topological defects (vortices) on the relaxation
process. We found that at late times / =0.50+0.02, and
we observed dynamical scaling not only for the order-
parameter scattering function but also for the real-space
vortex-vortex correlation functions. We have since ex-
tended our investigation, introducing a vector gauge field
in our model to consider the case of the ordering dynam-
ics of a charged system (superconductor) [6].

The purpose of the present paper is to study a three-
dimensional neutral system with complex order parame-
ter, where a vortex-string network of total length 1(t) de-
velops after the quench. This system has been investigat-
ed theoretically by Toyoki and Honda [9], using the

defect-dynamics picture of the relaxation process pro-
posed by Kawasaki [10]. In this picture the relaxation is
driven by the long-range current-current interaction
among the strings, analogous to the Biot-Savart law of
classical electromagnetisrn. In their study, Toyoki and
Honda made the further simplifying assumption that the
strings are driven only by the tension associated with
their local curvature and that string crossing and recon-
nection may be ignored. This corresponds to a mean-field
level description of the system. Technically the strings
are described in terms of the intersection of two surfaces
representing the zeros of two auxiliary scalar fields,
which obey simple diffusive dynamics [11].

In our simulations we identify the two auxiliary scalar
fields with the two components of the complex order pa-
rarneter. With this identification, the predictions of
Toyoki and Honda [9] are such that in the case of a criti-
cal quench [spatial average (%(r,O)) =0], there will be
dynamical scaling in the intermediate asymptotic behav-
ior of the system (after possible transients and before
finite-size effects set in), and an effective exponent of /= —,

'

is predicted for the time dependence of the characteristic
length scale k of the system. For a system of linear di-
mension L, we can choose A, (t) to be average intervortex
spacing +L /1 (t) (see Sec. III) so that l (t) —t 4. In the
case of an off-critical quench [(%(r,O) )WO], there is pre-
dicted to be a systematic deviation from scaling and a
much faster decay of the total vortex-string length:

l(t)-t 'exp( yt i ), — (1.2)

where y cc
~
(%(r,O) ) ~, so that we recover the critical-

quench result in the limit i(%(r,O))~0. This exponen-
tial decay is due to an early breakup of the string network
and successive independent shrinking of the remnant
loops. The dynamics of the breakup, of course, cannot be
treated in mean-field theory, but, as we show below (see
Sec. V), the asymptotic time dependence of the vortex-
string decay is controlled by the loop-size distribution
after the breakup, and this distribution is implicitly in-
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corporated in the initial conditions for the auxiliary
fields.

The results of our simulations are in good qualitative
and semiquantitative agreement with these theoretical
predictions and strongly support the physical picture of
the relaxation process on which they are based. In par-
ticular, for a critical quench, we find evidence of dynami-
cal scaling and an effective value of the dynamical ex-
ponent of /=0. 45+0.01, so that 1(t)-t + . This
should be contrasted with a previous numerical study by
Nishimori and Nukii [7], who found that the length of
the defect line decreases with time as 1(t)-t — . It
is likely that their simulations were not in the true
asymptotic regime because of the relatively small size of
the system considered [12]. In the case of an off-critical
quench, we see the emergence of two dynamically gen-
erated length scales: the average size of vortex loops,
which has only a weak time dependence, and the average
interloop spacing, which increases exponentially with
time. This leads to a breakdown of the dynamical scale
invariance and an exponential decay of l(t) consistent
with the predictions of Toyoki and Honda [9]. The rela-
tion y ~

~
( %(r,0) ) ~

is at least qualitatively satisfied, and
appears to represent a lower bound to the observed func-
tional dependence.

An experimental study of the coarsening dynamics of a
bulk nematic liquid crystal has recently been reported by
Chuang, Turok, and Yurke [13]. They find that the evo-
lution of the density of strings with topological charge

—„p,(t), is consistent with simple scaling and agrees
with the mean-field prediction p, —t . One way of test-
ing experimentally the results of our simulations for the
off-critical quench would be to repeat the experiment of
Chuang, Turok, and Yurke [13] performing the tempera-
ture (or pressure) quenches in the presence of a magnetic
field or other appropriately chosen bias. In order to
preserve the conditions of our numerical simulation, the
field should be switched off immediately after the quench,
before late-stage coarsening sets in; it would be interest-
ing to consider also the case of a time-independent exter-
nal field.

For the case of a system whose order parameter is a
scalar (i.e., with a discrete symmetry), there are already
experiments that investigate the role of bias on the coar-
sening dynamics of twisted nematic liquid crystals, fol-
lowing a quench below the clearing-point temperature
[14,15]. In these experiments the bias is introduced by
certain boundary conditions (anchoring at rubbed walls)
that control the twisting of the order parameter across
the system, with two degenerate states (below the transi-
tion temperature) and —,-disclination lines [16] separating
the corresponding domains, while the nonorthogonal
twisting is equivalent to the introduction of an external
field favoring one state with respect to the other. Ordi-
nary dynamical scaling with a dynamical exponent /= —,

'

was found in the unbiased case [14],but the introduction
of nonorthogonal twisting led to a breakdown of simple
(single-length) scaling and much faster relaxation [15],
which the authors did not try to quantify. Again, a
closer experimental realization of the conditions of our
simulations and of earlier simulations of Toyoki and

Honda [17], which directly apply to the scalar case,
would require a rearrangement of the boundary condi-
tions (from nonorthogonal to orthogonal) immediately
following the quench. In any case, we believe that the
more significant effect of the "external field" is on the ini-
tial conditions rather than on the coarsening process it-
self [18]. We expect, therefore, that the principal features
of the ordering dynamics in the presence of biased initial
conditions will occur, at least qualitatively, even when
the bias is provided by a time-independent external field.

In Sec. II we introduce our model and describe some of
the qualitative features of the dynamics. Section III is
devoted to a quantitative analysis of the relaxation dy-
namics in terms of a typical time-dependent length scale.
In this section we compare five possible choices for the
characteristic length scale and discuss the results for the
power-law exponent P. In Sec. IV we consider the
dynamical scaling behavior of real-space and
momentum-space correlation functions following a criti-
cal quench. The off-critical-quench case is discussed in
Sec. V. We summarize our conclusions and make a few
final remarks in Sec. VI.

During the drafting of this paper we learned of related
work by Toyoki [8]. He also reports the results of a nu-
merical study of the relaxation dynamics of a complex
nonconserved order parameter on a 64 lattice, using a
discretization scheme similar to ours. For the critical-
quench case, the only case considered in his paper, he
also finds a dynamical exponent /=0. 45+0.01. The fact
that his result does not show any statistically significant
difference with ours, obtained using a larger (128 ) lat-
tice, seems to indicate that systematic finite-size correc-
tions are not dominant [19],which of course does not ex-
clude the possibility that, in the time range considered,
we are observing a transient state of our system.

II. MODEL

We consider a complex nonconserved order-parameter
field on a L XL XL lattice in three dimensions. This may
be considered to be a caricature of the superQuid transi-
tion or of the ferromagnetic transition of a planar fer-
romagnet in three dimensions. The evolution of the
order-parameter field %(r, t) =X(r, t)+ i Y (r, t—) is
governed by a phenomenological equation similar to that
of a system with a discrete symmetry:

(2.1)

where M is a kinetic coefficient, assumed to be indepen-
dent of %' and

F(+(r, t)}=f d r [V+(r, t)( a(+(r,t)(—
(2.2)

The coefficients a and b are positive after the quench. We

performed our simulations using a cell-dynamics scheme,
a computationally efficient coarse grained description of
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((y(.,r)»—= y, ' + y
(NN) (NNN)

l((m, t)
36

(2.4)

Here n and m represent the lattice sites, A gives a mea-

the ordering dynamics [20]. The evolution of the system
is controlled, in our case, by the local (on-site) nonlinear
relaxation process and isotropic Laplacian averaging,
which couples nearest-neighbor (NN) and next-nearest-
neighbor (NNN) sites. The corresponding equations in
terms of the X(r, t) and Y(r, t) fields read

X(n, t +1)=A tanh[R (n, t)][X(n, t)/R (n, t)]
+C[((X(n, t) » —X(n, t)],

(2.3)
Y(n, t +1)= A tanh[R (n, t)][Y(n, t)/R (n, t)]

+C[((Y(n, t) » —Y(n, t)],
where R (n, t) = ~%'(n, t)

~
and

sure of the depth of the quench, and C controls the cou-
pling strength. The unit of time is implicitly defined in
terms of A and C. For our simulations we choose A=1.3
and C=0.5. These parameters describe the system after
the quench (A ) 1), when the initial high-temperature
configuration of the order-parameter field becomes unsta-
ble.

For the critical-quench case, the initial values of the
vector components of 4 are randomly chosen to be be-
tween —0.1 and 0.1 of their final equilibrium length
( —1). Thus, initially (t=O) the relative orientations of
the vectors are random (uncorrelated) and the spatial
average (%(r,O) & =0 [21]. As order develops in our sys-
tem, the order-parameter field 4 grows in modulus, and
sensitive only to its local environment, it reorients itself,
choosing one of its new (infinitely degenerate) equilibrium
configurations. The ensuing mismatch at the boundaries
of gro~ing ordered domains leads to the formation of a
defect network. The topologically stable defects in our
system are vortex strings characterized by an integer
winding number n Stri.ngs with ~n~ ) 1 are (energetically)
unstable towards the formation of strings with

~
n

~

= 1, so
that ~n~=1 vortex strings are the only ones relevant to
the asymptotic dynamics of the system. We can, there-
fore, describe the system relaxation in terms of the gradu-

5
06

FIG. 1. Evolution of the string network after a critical
quench at t=O. Below each "snapshot" of the system we give
the total string length [l(r)] and the number of independent
loops present [n&(t)]. To characterize the loop-size distribution
at early times we give r„=—l„(t)II (t), where 1„(t)is the length of
the nth largest loop. For illustration purposes here we use a 64'
lattice, while all the numerical data used in the statistical aver-
ages were collected on 128' lattices.

FIG. 2. Evolution of the string network after an off-critical
quench ( ~b~ = 0.001). The bias is superimposed to the same ini-

tial condition used in Fig. 1 and the same conventions for the
symbols apply.
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(/=0. 4—0.425). We conclude that the discrepancy with
the mean-field result /=0. 5 is not due to finite-size
effects, but it is still possible that we have not yet reached
the asymptotic regime [25]. In order to check this,
longer simulations on even larger lattices would be neces-
sary.

IV. CRITICAL QUENCH

As shown in Fig. 5, we find good evidence of dynami-
cal scaling for the scattering function
S(k, t)=[A(t}] 4(kA(t)), using A, ,(t) as the rescaling
length. We also find that, for z =—kl, t(t) ) 1, the universal
function decays as 4(z)-zz, with y=5. 5+0.3 (see inset
of Fig. 5). As in the two-dimensional case [5] this power
law reflects the single-vortex field configuration, which
extends around each defect line up to distances compara-
ble with the average interstring spacing d (t) [26]. In Fig.
6 we show the scaling results for the real-space correla-
tion function of the order parameter C(r, t), where we
have used r, zz(t) as the rescaling length. The small
x = r /r»2(t) —behavior of the universal function
C(r, t)=l'(x) is shown in the inset of Fig. 6. We find

I (x}-1—x~, with /=1. 57+0.05. This result coincides,
within numerical uncertainties, with the result obtained
in two dimensions [5] and shows that Porod's law
(asymptotically valid for scalar systems) does not apply to
systems with a continuous symmetry.

As for the vortex-vortex correlation functions in two
dimensions [5] we find simple scaling also for the spheri-
cally averaged string-string correlation function Css(r, t),
as exhibited in Fig. 7. Up to distances comparable with
d (t} (or the average string curvature) the main contribu-
tion to the correlation function comes from points lying
on the same branch of the network as the chosen refer-
ence point. This means that, at distances shorter than
d (t), but still larger than the vortex-core size g, the two-
point correlation function simply reflects the connectivity
of the network, and therefore, for g/d(t) &y =—r/d(t)
«1, [d(t)] Css(r, t)=I ss(y)-y (see inset of Fig. 7)
[27]. On the other hand, for r ))d (t), we find, as expect-
ed, Css(r, t)-[d(t)] =l(t)/L, the average string den-

sity in the system.
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FIG. 5. Demonstration of dynamical scaling for the rescaled
scattering function A, &(t) S(k, t)=4(kA, &(t)). We plot data
taken at 150 (solid line, o ) 300 (dashed line, 4 ), 500 (chain dot-
ted line, +), and 750 (dotted line, X ) time steps (averaged over
40 initial conditions). Inset shows a log-log plot of the universal
function and, for comparison, a solid line with a slope of —5.5.

FIG. 6. Demonstration of dynamical scaling for the real-
space correlation function of the order parameter
C(r, t)=I (r!r&/2(t)), where r&/2(t) is the half-width of C(r, t).
We plot data taken at 100 (solid line, o ), 300 (dashed line, 4 ),
and 750 (dotted line, +) time steps. We averaged over 40 initial
conditions. Inset shows a log-log plot of 1 —I (x) in the limit of
small x and, for comparison, a solid line with a slope of 1.57.
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breakdown of dynamical scale invariance. At this stage,
however, we cannot rule out the possibility that there
may be a complicated crossover scaling involving the bias
strength, which if it exists, would represent an extension
of the usual notion of scaling in these systems. This pos-
sibility will be investigated in future studies.

VI. DISCUSSION

We have presented the results of a numerical study of
the coarsening dynamics of a three-dimensional system
with a nonconserved complex order parameter 'p(r, t).
We have found that the ordering dynamics depends on
the initial value of the spatial average of the order param-
eter [(%(r,O) ) =&2b] after the quench below the order-
ing transition temperature. For the critical quench
(b=O), we observe dynamical scaling and an effective
value of the dynamical exponent of /=0. 45+0.01. For
the off-critical quench ( ~b~ )0), dynamical scaling breaks
down, and the decay of the vortex-string length I(t) be-
comes exponential 1 (t) t-'exp( —yt ~ ). The relation

y ~ ~b~, predicted by Toyoki and Honda [9), appears to
be in fact a lower bound. We stress that the dynamics of
the string is controlled in both cases by the tension corre-
sponding to its local curvature. The sharply different
time dependence in the two regimes is due to the essential
difference in the global connectivity of the network after
the quench.

These results reQect rather general properties of the re-
laxation process for systems with a nonconserved order
parameter. For example, if we repeat the calculation of
Toyoki and Honda [9] in the case of a two-dimensional

system (where the vortex strings reduce to vortex points),
we find that the average number of vortices in the system
N„(r) should decay as N, (t)-t 'exp( yt), with—y~0
(y=0 corresponds to the critical quench) [31]. We can
also extend this approach to a system with a Heisenberg
order parameter X(r, t)=(X(r, t), Y(r, t), Z(r, t)) in three
dimensions. The topologically stable defects in this case

are point defects (hedgehogs). We can describe them as
intersections of three surfaces representing the zeros of
three auxiliary scalar fields. Identifying these fields with
the three components of the order parameter, we again
predict [32] that the number of point defects NpD(t) will

decrease with time as NpD(t)-t ~ exp( —yt ), where

y ~
~
(X(r,O) ) ~

. These considerations might be of
relevance to cosmological pattern formation, since they
indicate that the final distribution of topological defects,
following a phase transition characterized by a noncon-
served order parameter, is extremely sensitive to the ini-
tial conditions.

After the submission of this work for publication,
Toyoki pointed out to us that, in a more recent paper,
Nagaya, Orihara, and Ishibashi [33] also recognized that
their experiment was a realization of the situation dis-
cussed by Toyoki and Honda [17]; furthermore, their
measurements of the decay of the total length of disclina-
tion lines are consistent with theoretical predictions.
Note that these experiments are effectively performed
with a constant external field, rather than simply a bias in
the initial condition. The fact that the results in this situ-
ation agree with the calculation is consistent with our ex-
pectations as explained in the Introduction of this paper.
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