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Slow collisions between identical atoms in a laser field: The spectrum of redistributed light
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The resonance fluorescence from a system of interacting, identical, and cold (trapped) atoms driven by
a laser field is derived. The effects of dressing by the laser field and radiative decay are all included. We
examine in detail the applicability of the binary-collision approximation for this problem, which is a spe-

cial case of resonance broadening. The final result allows a clear physical interpretation and shows in-

teresting features due to the resonant exchange of coherences and excitations. Correspondence with pre-
vious work is also discussed.

PACS number(s): 32.70.Jz, 32.80.Pj, 34.50.Rk

I. INTRODUCTION

The resonance fluorescence from a system of interact-
ing, identical, and cold atoms driven by a laser field is in-
teresting for a number of reasons. It can be an important
probe of the collisions between two cold identical atoms
in a driving laser field. Because the atoms are moving so
slowly (about 1.0 m/s in a typical trap), spontaneous de-
cay during a collision becomes an important process.
Another consequence of this small speed is the interac-
tion range becomes of the order of wavelengths, where
the usual I/r, b form of dipole-dipole interaction is no
longer valid [1]. Emission during a collision can also re-
sult in radiative escape [2], which is one of the mecha-
nisrns for trap loss. For typical densities of trapped
atoms, we will show that we can make the binary-
collision approximation (BCA). This is because two-atom
coherences formed during a collision, which decay on the
time scale of radiative decay, do not survive until a subse-
quent collision. This is in contrast to "normal" reso-
nance broadening, where multiatom coherences can
occur [3]. In spite of the BCA, there are many interest-
ing features in the spectrum that are due to the resonant
nature of the exchange of coherences and excitations. Fi-
nally, this problem is closely related to the understanding
of the effects of collisions on the cooling of the atoms [4].
We believe that the formal techniques established here
will expedite the analysis of this issue.

Section II presents the master equation for a system of
N identical atoms in a laser field [1]. In this section we
identify the single-atom operators and the interactions.
We show that it is possible, in spite of relative motion, to
go to a rotating frame in which all the single-atom opera-
tors are completely independent of time. In Sec. III we
define the proper projection operator for the ensemble
average to be done most eSciently. In Sec. IV, we dis-
cuss the characteristics of cold-atom collisions and make

the binary-collision approximation. We also find the
steady-state density matrix for an atom in the laser field
and under the inQuence of collisions. The spectrum is de-
rived in two different ways in Sec. V: first, using the
more traditional method based on the dipole correlation
function, and then using the approach of Mollow [5]. Fi-
nally, in Sec. VI, the spectrum valid to first order in the
collisional width is presented. We discuss the physical in-
terpretation of all the terms and the connection to previ-
ous approaches.

II. RADIATION DAMPING

In paper I [1) we examined the effects of the elec-
tromagnetic interaction between two identical atoms.
We started with the density matrix for the full system,
which contains both atoms and all modes of the quan-
tized electromagnetic field. As we were interested in the
atomic system only, we reduced the problem to the atorn-
ic degrees of freedom for pairs of interacting atoms by
applying a standard projection-operator technique. We
then showed that under certain conditions (which are
well satisfied for a system of identical slow atoms under-
going mutual collisions), we could introduce the Born
and Markov approximations for radiation relaxation in
the usual manner. After implementing these approxima-
tions, the equation of motion for the reduced density ma-
trix became a first-order ordinary differential equation
[1]. The effect of the contraction of the spontaneous radi-
ation modes was to introduce a modification of the spon-
taneous decay rate (depending on the interatomic dis-
tance) and an effective pairwise-interaction potential be-
tween the atoms in our system.

The reduced-density-matrix equation for a system of X
identical two-level atoms with J =0 and J,= 1 in a laser
field, averaged over spontaneous field modes, is given by
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where we have taken the laser to be linearly polarized along the z axis. The sums g, and gs are taken over all atoms
in our system, g includes degeneracy of the excited state within each atom. coo is already a renormalized atom fre-
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quency (with Lamb shift included). Q(r, (t)} is the Rabi frequency which measures the interaction of the atoms with
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sponds to the spontaneous emission rates as modified by the mutual interactions between the atoms,
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Here we have set x =kor, s(t) and q =mi, —m„jk(x)
and y„(x) are spherical Bessel functions of the first and
second kind, respectively [6], Y„(8,q)) is a spherical har-
monic, 8 and y are the spherical angles of the interatomic
vectors r,b(t) in the laboratory frame defined by the
choice of the quantization axis (the direction of laser po-
larization in this case), and

a b c
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with two-atom operators defined by

Q,s= g Q, "[S,' Si, ', ],

(4)

bmb ~ bmb
are Wigner 3-j symbols. 0, is obtained from I, by

a a

simply substituting j„(x) with yk(x) as indicated in Eq.
(3c).

The properties of this interaction potential and collec-
tive decay rate are discussed in detail elsewhere [1]. It is

bmb bmb
sufticient to note that the 0, and I, operators for

a a

a&b are explicit functions of the interatomic separation
r, ),(t), and that the usual 1/r, ~ type dipole-dipole -in-
teraction is correct only at small distances, i.e., where
x ((1. We have specified Jg =0, J, =1, and the laser to
be linearly polarized, but the generalization to other cases
is straightforward.

In the reduced density matrix Eq. (1) we will now dis-
tinguish between two types of terms. Specifically, we will

separate terms referring to one atom only from those con-
taining two-atom operators, so that Eq. (1) may be writ-
ten as

ma mb

2$~b .S,—' ), (&b)

and one-atom operators L0, and I, defined by

Lo, = i [S;,.], —
2

(5c}

I,=g (S, ' S, ' + S, S, ' —2S, .S, ).
m

(5d)

LL, (t} describes interaction of an atom with the exter-
nal laser field mode. The laser light is assumed to be
monochromatic, and its polarization is collinear with the
quantization axis. In this work we treat only a traveling
laser beam described by
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with Q defined by Q=EO(eL .d,+)IR.
Atomic evolution in the absence of collisions is charac-

terized by the one-atom operators in Eq. (4), in which
only the LL, (t) defined by Eq. (7) has a time dependence.
It is convenient to transform to a rotating frame where
one has removed the time dependence from the free-
evolution operator. We note that due to the motion of
atoms r, (t} is also time dependent. The standard ap-
proach to remove the time-dependent phase from LL, (t)
consists in the unitary transformation to the rotating
frame [7],

p'(t) =R (t)p(t),

where R (t) is defined for a many-atom systems by

R(t)= g R.(t)

= g exp[ i [kL r,—(t) coL t][S;—, ~ ]/2] . (9)

The transformation R, is thus made in each of the atom-
ic subspaces. To make this transformation tractable, we
assume straight-line trajectories so that

r, (t)=r,0+v, t . (10)

By applying this transformation to our density matrix
Eq. (4), we obtain the equation of motion for the density
matrix in the rotating frame:

B,p"(t)= g L.p"(t) ——g [I',",(t)+ iQ.,(t)]p"(t) .R R

a a, b
aAb

Here

L,"=(L",+L, —I, /2), (12)

and the new operators with superscript R are defined by
(I, is not changed by the rotating frame transformation)

Lo, (t) =La, (coo~a),

where A=coo —(co~ —k~ v, ),

Ll, =i [S,++S—o, ],. I

'r.', (t} 'r.,
t

Q,b(t) Q,b

ik& -[rb(t) —r (t)]L

(13a)

(13b)

(13c)

Note that the one-atom operator L," is now completely
independent of time, as a result of making the straight-

i(kI .r —~~t)
EL (r, t)= ,'E—oate +c.c.

The tetradic operator characterizing the atom-laser in-

teraction is already in the rotating-wave approximation
(RWA} and also has the form of a commutator:

pa( t ) y L RpR( t ) + y V~R ( t )pR( t )
a, b
a(b

(15)

The phrase collisional operators is well justified in this
bmb

case because both the collective decay rates I', (r,b(t))
a

bmb
and the interaction potentials Q, (r,&(t)) are oiilyam

effectively nonzero when the atoms are close together,
i.e., during the duration of a collision. A collision in the
sense understood here can occur only when one atom is
excited and the second is in the ground state. Otherwise,
they only interact via weak van der Waals forces, which
have a 1/r b dependence [8]. During a collision, the radi-
ative decay process is disturbed by the presence of the
other atom. As we will see later, for atoms in a typical
trap, the average spontaneous emission time is of the
same order or even less than the duration of a collision.
As a result emission during a collision, and also reexcita-
tion (in the strong laser field}, are all possible.

III. COLLISIONAL AVERAGE

By averaging over the spontaneous electromagnetic-
field modes we have included the stochastic properties of
the radiation field. Our aim is to derive a theory to de-
scribe the behavior of an ensemble of atoms, consequent-
ly we have also to account for the stochastic aspects of
the collisions. We use the same projection-operator tech-
niques that were employed to describe radiation darnp-
ing.

In our system all atoms are alike. Consequently, the
collisions between atoms, which lead for example, to the
redistribution of radiation, may be described as self- or
resonance broadening. The issue of indistinguishability is
worth discussing. In the present approach we assume
(for convenience) that the atoms are moving along
straight-line classical trajectories. With these trajectories
are associated Doppler shifts, and in this picture, we can
in principle follow the motion of each individual atom.
During the collisions of interest for redistribution the
wave functions representing the nuclear motion of the
participating atoms do not overlap significantly; i.e., we
are above the recoil limitt. It follows from this observa-
tion that atoms are no longer indistinguishable in the
quantum-mechanical sense. Therefore, as long as this
classical approximation to the external degrees of free-
dom is used we do not have to worry specifically about
symmetrizing the formulas used in the present calcula-
tions.

After we realize that the identical nature of the atoms

line-trajectory approximation. Note that Doppler effects
show up not only in the definition of 5, but also in the
definitions of I,Rb, Q,b via the e' '" factors.

The last two terms on the right-hand side of Eq. (11)
are two-atom operators. For the rest of the paper, we will

refer to them as "collisional operators. " Setting together
the real and the imaginary parts into

V.', (t)= ,' [—r—'.,(t)+ r',.(t)+ i [Q.'.,(t)+Q"„.(t)]], (14)

Eq. (11)now becomes
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is not essential to our approach, we find that our problem
can be treated by equivalent methods to those used in
foreign gas broadening, although, as in resonance
broadening, exchange of excitation can and will occur.
To account for the stochastic aspects of collisions in our
ensemble we will apply the following procedure: Initially,
we will artificially single out one particle that we will call
the radiator (as a subscript referring to this special atom
we will use r, rather than a or b as we have done so far).
The evaluation of all the atoms in our ensemble is de-
scribed by the same equation of motion, so what we are
doing is equivalent to selecting one atom to represent the
characteristic behavior in our sample. The rest of the
atoms we will call perturbers (using subscript p for them)
and we will treat them in a similar manner to perturbers
in foreign gas broadening. It is important to notice, how-
ever, that the perturbers have internal structure and they
interact with the laser light in exactly the same way as
the radiator. Perturbers form an environment for the ra-
diator and by collisions disturb the process of radiation.
Since we will be interested in the light coming from the
ensemble of identical atoms, we will be able to average
our master equation over all perturber and collisional
variables. By doing so we obtain equations for the popu-
lating density and dipole moment in the radiator sub-
space only. We can then solve these equations formally,
substitute the results into the definition of the spectrum
of scattered light, and finally average over radiator de-
grees of freedom. We focus here on the redistribution of
radiation, but any observable quantity for the system can
be found in this manner.

We have first to define the proper projection operator.
We are interested in the equation of motion for the radia-
tor only, hence we must contract the full Hilbert space to
the proper subspace. Since we are dealing here with pair-
wise interactions which depend on interatomic distances,
we not only have to average the reduced matrix equation
over perturber internal degrees of freedom, but also the
perturber translational degrees of freedom. The evalua-
tion of any observable requires such averages.

To summarize the above comments, we expect that in
order to construct the proper projection operator we will
need to put together the following elements.

(a) A proper initial state of all the perturbers at some
initial time t = —T, with no correlations present.

(b) The trace over all perturbers internal degrees of
freedom. In other words, the final density-matrix equa-
tion after collisional average should be expressed in the
radiator subspace only.

(c) The projection operator should contain the average
over translational degrees of freedom of the perturbers
described by r 0 and v [cf. Eq. (10)], or equivalently, the
average over impact parameters, times of closest ap-
proach, and velocities [9].

According to the above list, we have to start the con-
struction of the projection operator from the initial densi-
ty matrix for perturbers. We assume that at time t = —T
all atoms were uncorrelated, and allow correlations to
build up with time [10]. We notice also that what we call
perturbers are only artificially distinguished from radia-
tors; they all interact with external laser light, which is

present all the time.
At time t = —T, all the atoms are assumed to be un-

correlated. Therefore the initial density matrix for the
system of perturbers is a product of density matrices for
all the uncorrelated perturbers, each of them being a sta-
tionary solution p"' of the equation of motion of an
atom in the external laser field (in the absence of col-
lisions):

LRpst, R —(LR +LR I /2)pst, R —()
p p Op Lp p (16)

P, =

where

p (all perturbers)
P, (17)

P,~( ) =pp' Trp( ), (18)

in which Tr include not only the trace over the internal
states, but also the integration over the translation vari-
ables. More specifically,

Tr ( )=fdr odv Tr t;„„,„,tt( ) .

Since Tr, (p," )=1,we have P, =1 and also P, =1.
Before we can apply the projection operator to the

density-matrix equation, we first introduce the interac-
tion picture in all one-atom operators; for both the per-
turbers and the radiator,

p (t)= exp —gL, t p"(t) .
Q

The master equation in the interaction picture is simply

(19)

Bp ()=g&, ()p (),
a, b

(20)

Since we have ignored the coupling between the
translational and the internal degrees of freedom of the
atoms [4], and have made the classical straight-line-
trajectory approximation, the translational part of free-
dom is simply described by some prescribed distribution
functions which are independent of time. Even though
we could have separated out explicitly the translational
part, it is more convenient to have it included in all densi-
ty matrices. Hence, p"' includes a translational distribu-
tion function given by w(r~o, v~); p(t) [the same with

p (t) and p (t)] includes a translational part given by

ll, w (r,o, v, ). An example of w (r,o, v, ) would be

fM(v, )/V, meaning that the atoms are uniformly distri-
buted over a volume V, and that they obey the Maxwell
velocity distribution.

In Eq. (16) all operators are taken in the rotating
frame, and hence none of them carry any time depen-
dence. Note also that LL" does not depend on the phase
of the field. In this frame then p"', is time independent.
It depends on the velocity v, however. This velocity
dependence comes from the definition of the Lo opera-
tor. Equation (16) is a simple algebraic equation, corn-

plex, with the real part described by the damping I . We
also note that tetradic states which diagonalize L," are
precisely the nonorthogonal complex dressed states (see,
for example, Armstrong and Baker [11]).

We now define our projection operator as
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where V,(, (t) can be defined as

IR( )
(L—

~ +Ly )tVR
( )

(L~ +Ly )
(21)

where Q, =1 P„an—d

VIR(t) y VIR(t)
a, b
a(b

(23}

Q,p (t) can be solved by a Green function in terms of
P,p . With our definition of projection operator, the
statement that the atoms are not correlated at t = —T is
simply transformed to Q,p (

—T)=0. For definiteness,
we take T =0 for the time being (we can do so only if the
results we are looking for are evaluated at t = 00, which
will be the case until Sec. V, where we will have to take
—T to be —ao ). With this initial condition we get

Q,p' (t)= f G' (t, t')Q, V'"(t')P,p'"(t')dt', (24}
0

where the propagator G (t, t') is defined through a
time-ordered exponential,

G (t, t')=Texp Q, f V (r)dr (25}

We therefore obtain a closed equation for P,p "(t),

8 P p (t)=P, V (t)P,p "(t)

+p VIR(t) f GIR(t t )Q VIR(t )

XP,p'"(t')dt' . (26)

This equation is still very complicated, since the operator
contains all possible collisions. The significant
simplification can be obtained when we realize that the
strong collisions between the radiator and the perturbers
in our system are well separated in time and that an atom
in the trap always has enough time to reach its steady
state before it encounters the next strong collision. Thus
we can use the binary-collision approximation. The dis-
tant weak collisions can be treated perturbatively. It
should be noted, however, that, due to the long-range
1/r, b type of interactions, correlations between distant
perturbers can occur, which means that, as in the case of
Stark broadening [12], a self-consistent solution will re-
place these perturbers by shielded quasiparticles.

IV. BINARY-COLLISION APPROXIMATION

In the context of foreign gas broadening, the binary-
collision approximation (BCA) is based on the condition
that strong collisions do not overlap, which requires that

Now the equation of motion for P,p (t), averaged
over colIisions, may be obtained in precisely the same
way that was used to contract over the continuum of the
spontaneous modes [1],

() P p'"(t) =P, V'"(t)P,p' (t)+P, V'"(t)Q,p'"(t),

(22a}

Q p
IR

( t ) Q VIR
( t )Q p

IR
( t ) +Q VIR

( t )p p
IR

( t )

(22b)

r„(( rw/U-~ (2S)

From these two equations we can estimate for our case of
slowly moving atoms that the collision time ~„&& is rough-
ly 10 s; and the Weisskopf radius is roughly —10 A.
A collision will be regarded as strong if two atoms are
within the Weisskopf radius of each other. In subsequent
discussions, the term collision will always be used to refer
to a strong collision in this sense. Consequently, an esti-
mate of collisional cross section is m.r~', and the frequen-
cy of collisions v, &&

is

2
v„&&

=n n.r~v, (29)

which leads to an estimate of the time between collisions
T ((

—1/v„(( of the order of 10 s. Finally, the spon-
taneous emission time 1/y for, e g , 6P3&z(F. '.=5) to
6S(&z(F=4) transition in cesium, may be estimated as
being of the order 10 s.

This procedure gives a crude upper estimate of the
strong collision radius. By using Eq. (28) we have as-
sumed the collision can be completed, whereas the time
scale of importance in Eq. (27) for redistribution is rough-
ly 1/y (or more generally the inverse of the detuning)
which is less than our estimate for 7 g. In addition, the
fact that r~ is of order A, /2m indicates that 1/r and 1/r
terms in V(r) are important. However, our estimate is
quite sufficient to establish the overall time scales. More
detail estimates again indicate that for distances much
greater that A, /2m. the collisions are weak.

We have therefore shown that for the cold atom traps

the time between (strong) collisions be much longer than
the duration of a (strong} collision. However, it will be-
come evident later that such a condition is not sufficient
for BCA in resonance broadening. We have to require in
addition that the time between (strong) collisions is much
longer than the radiative decay time of the excited state
of the atom. In this section, we will show qualitatively
that these two conditions are indeed satisfied for atoms in
a laser trap; we then show how these conditions are used
to make the binary-collision approximation to our equa-
tion of motion. Finally, we will solve for the steady-state
density matrix for an atom under both the influence of
the laser field and the influence of collisions.

For laser traps that exist today [13], a typical density
of trapped atoms, n, is of order of 10' cm . The aver-
age atomic velocity U is roughly 1.0 m/s [13]. For an esti-
mate of the dipole-dipole interaction strength we will
take V(r)=C3/r in which C3 will be taken for the
specific case of cesium atoms: C3 =50 eV A [13].

The data presented above were selected for an estimate
of the order of magnitude of the Weisskopf radius r~.
The concept of the Weisskopf radius [14] is very useful
for a rough estimate of the different time scales charac-
terizing the colliding atoms. It is defined as the radius
corresponding to unit phase shift,

f V(r)dr- V(r(( )r„((-((t, (27)

where v„&& is the duration of the collision. On the other
hand,
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available today, the time between collisions of importance
for redistribution is much greater than both the duration
of the collision and the spontaneous decay time of the
transition. The first of these two inequalities establishes
that strong collisions do not overlap in time. Since it
takes only a few 1/y's for an atom to reach its steady
state in the laser field [15],the second of these inequalities
establishes the loss of memory of atoms which have
suffered collisions before they come into subsequent in-
teractions with other perturbers.

Since the width associated with collisions is roughly
v„&&, we have therefore also established that the collision-
al widths y, are much smaller than the radiative decay
width y. This fact will be used in Sec. VI to treat the
effects of collisions on the redistribution spectrum pertur-
batively.

Before making the BCA we remark on the role of
coherences. Atoms are driven by the external field of the
laser. As long as they do not interact they are affected by
the field independently and one would be dealing with
one-atom field-induced coherences only (at least if we ig-
nore coherent coupling of all atoms which occurs only in
the forward direction). However, suppose now that an

atom A, which is initially excited, collides with another
atom 8, which is initially in its ground state. During the
collision, the atoms exchange information about their ex-
citation and dipole moments, and after the collision a
correlation between their final states arises, so that the
excitation can be shared between the atoms. This sharing
is quantified as a two-atom coherence. Ben-Reuven [3]
has pointed out that if this coherence survives to the col-
lision of atom 8 (or 2) with some third atom C, the in-
formation about the excitation of 3 would reach C and
consequently a three-atom coherence would emerge. In
this way a complicated many-body coherence would be
set up. These many-atom coherences, of course, may
occur in resonance broadening. The crux of our physical
argument for cold collisions will be that the time between
collisions is long compared to 1/y so that the two-atom
coherences which occur after a collision will, since a
steady state is established, die out during the time be-
tween subsequent collisions.

We are now ready to make the binary-collision approx-
imation to the equation of motion for P,p (t) Usin. g the
fact that Tr, Trb V,b

=0 and that all the perturbers
are equivalent, we can rewrite Eq. (26) as

d, Pp (t)=NP, V„(t)P,p "(t)+NP, V„"(t)f G (t, t')Q, V "(t')P,p (t')dt'

=NP, V„',"(t)P,p' (t)+NP, V„',"(t)f G' (t, t')Q, V„', (t')P,p'"(t')dt'

+NP, V„',~(t)f GI~(t, t')Q, V' (t')P,pI~(t')dt',
0

(30)

where

VIR( t )

(a, b)e(r, p)

VIR(

The subscripts r and p refer to the radiator and a particu-
lar perturber, respectively. This equation is still exact.

Using again Tr, Trb V,b
. . =0, we have

P, V,', (t) Q, V„',"(t, )Q, V'",-(t, ) P,p' (t')=0,
(31)

same time interval. Note that the collision represented
in, e.g., Eq. (32) should not be understood as the sequence
in which p interacts with r at t' and then comes back to
interact with r again after r has suffered some other col-
lisions. These types of events occur very rarely and in-
coherently. They are accounted for within the BCA by
the average over (ro~, v ), which determines the frequen-
cy and directions the perturbers come in to interact with
the radiator.

Expanding the Green function G in terms of V,b,
Eqs. (31)—(33) immediately give

where p', p"Ap. Since we have shown that strong col-
lisions do not overlap in time, the following two equa-
tions are valid:

P, V„' (t) . Q, V„' (t, ) . . Q, V„' (t, ) Q, V„' (t, )

X . P,p (t')=0,
P, V„~"( t ) Q, V„~~(t, ) . Q, V~~ ( t, ) Q, V„~ ( t, )

X P,p "(t')=0,

(32)

(33)

where p'Ap in both equations. The physical interpreta-
tion of these two equations is as follows. If the radiator is
interacting strongly with the perturber p during (t', t),
neither the radiator nor the perturber p can be interact-
ing strongly with any other perturbers, say p', in the

P, V„( )G (, ')Q V ( ')P,p ( ')

=P, V,',~(t)G„',~(t, t')Q, V„',~(t')P, p' (t'),

where

G„(t,t')=T exp Q, f V p (r)dr

Expanding G (t, t') according to

GI"(t, t')=G„',~(t, t')+ f G„',~(t, t, )Q, V' (t, )

X GI~(t, , t')dt, ,

and using again Eqs. (31)—(33), we obtain

(34)

(35)
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(37)

where

IR —g Tr PIR
p' (&p)

Since both the radiator r and the perturber p must have been free for a time 5t —
T„&& before coming into interacting

with each other, we have

P, V„',"(t) G'"(t, t')Q, V'"(t')P,p'"(t')dt'=P, VIR(t)Q p' (t)+P, V'R(t) f G„',R(t, t, )Q, V'"(t, )Q,p' (t, )dt, . (36)
0 0"

Here Q,p (t) is given by Eqs. (24) and (25) with V being replaced by V " in both equations, i.e., Q,p (t) is generated
by all collisions prior to the collision (rp). This term is easily shown to be zero for foreign gas broadening. It is general-
ly nonzero, however. We now show that it can be set equal to zero if the time between collisions satisfies T„&&))1/'y.

In Eqs. (34)—(36), we can extract g .& P, from P, (recall P, =P,p ) and commute it freely. As a result, all the Q, 's

can be replaced by Q,p
= 1 P,—. Equation (36) now becomes

P, Vp (t)f G (t, t')Q, V "(t')P,p (t')dt'=P, V„(t)Q, p„"(t)+P,Vp (t)f G„(t,t, )Q, V~ (t, )Qpp„(t, )dtt,
0 0

Since 5t »1/y, both the radiator and perturber have time to reach a steady state [15],i.e.,

r p st, R st, R —st, R st, R(L, R+gR)
pp Pr' Pp' Pr' Pp'

which immediately gives

Q, p (t)=0. (38)

The same argument applies, of course, also to Q,pp„(tt ) We str.ess that physically this is equivalent to the statement
that correlations due to two-atom coherences, via Q,RP„p(t), die out when steady state can be attained between col-
lisions (i.e., when T„t(» I/y).

Combining Eqs. (30), (34), (37), and (38), and taking the thermodynamic limit [12] (Q, = 1 P, = 1), w—e have finally

d, P,p (t)=NP, V„(t)P,p (t)+NP, V„"(t)f U„(t,t')V„(t')P, p "(t')dt',
0

(39)

where

U~(t, t')= T exp f V p (r)dr (40)

This is the master equation in the binary-collision ap-
proximation. It treats all collisions as if they do not over-
lap in time. As indicated earlier, weak distant collisions
do overlap, but in a perturbative treatment of indepen-
dent quasiparticles, to lowest order their efFects are addi-
tive and consequently contribute as if they did not over-
lap in time. We shall now find its steady-state solution.
First, we define

(},X"'(t)=L X"'(t)+NTr, V' (0) " X"'(t)

+NTr V„(0)
X U p 0 t t V p t

ps't RX(0)(I I )dt
LR(t —t')

P (43)

As t~ ac, X' '(t} goes to a steady-state value character-
ized by B,X( '(t)=0. We define

X' '—= lim X' '(t),
g~ oo

and use the following property of Laplace transform:
(0)X' '(t)—=e " +Tr p "(t) .

p

(41)
lim X(t)= limsX(s),

f —+ oo s~0
(44)

Using the stationary property of the collisional average
[12],

where X(s) is the Laplace transform of X(t). This en-
ables us to obtain from Eq. (43) an equation which deter-
mines X( ', i.e.,

P, V'R(t, +t). . . VIR(t~+t)P,
—L Rf=e " P, V "(t, } V (ts }e " P, , (42)

(L„+L,)X' '=0 . (45)

we can easily show from Eq. (39) that X' '(t) satisfies
Here the "damping operator" L, can be written in two
equivalent forms:
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L, =N lim Tr V„O U, 0, —v.
s~O 0

—(s —L„)rXp"' e " dr(s L„—)

—(s —L )r=N lim (s —L„)Tr f e '
U, (r, 0)

s~O

(46a)

photons in a particular mode (k, A, ) is proportional to the
rate at which photons are generated in this mode, i.e.,
dNkz(t)/dt. Nkz(t) is the number of photons in mode
(k, A, ) at time t, and is given formally by

Nkk(t) = (akk(t)akk(t) ) . (47)

X V„"(0)p"' dr . (46b)

Using again the stationary property given by Eq. (42) and
integrating by parts, we can also write the L, in forms
that do not contain any V„:

oo —( —L ~)
L, =N lim (s —L„"'Tr~f e "

[U„~ (r, 0) 1]—
s~O

In the Heisenberg picture akim(t) and akim(t) are related to
the atomic dipole operators. If we assume that at initial
time t = —~ there are no photons at the frequency co

present, this relationship can be written in the form

akk(t)= y f «[gkA'Sa ,

' (&)+(gkk') S '
ps( Rd r( s L 8

) (46c)
a, m

—(s —L~)r=N lim (s —L„")Tr~f [U,z (0, r) 1]e— —
s~O

Xp"'"d7(s L„") .— (46d)

Again, X' ' includes, in our notation, a distribution
function describing the translation degrees of freedom of
the radiator: w(r„o, v„).

V. SPECTRUM OF SCATTERED LIGHT

%'e now calculate the intensity of light scattered into a
given mode of the radiation field. The rate of detection of

I

Xexp[ —ik r, (r)—icokk(t —r)] . (48)

1/2
am, 2m'ck m, +

gkk ~y &k'da (49)

The rate of change of photons in the mode (k, A, ) is then
given by

Here the sum is over all atoms in our system and we have
am

also introduced gk~
' defined by

t icok &(t —r) bmb am~ mb+ m
ttkz(t) = = g g dre "' (gkz' )(gkz' )'( exp[ik rb(r) —ik r, (t)]Sb ' (r)S, ' (t) )+c.c.

dt oo
a, b m, mb

(50)

We have used ( ) to denote the enseinble average, which in our case consists of field, atom (internal degrees of free-
dom), and collisional degrees of freedom. The collisional part, as discussed in Sec. III, represents the translational de-
grees of freedom of the atoms, which can be described either by (r,o, v, ) or by a set of collisional parameters, namely,
time of closest approach, impact parameter, angular configuration, and relative velocity [9]. Notice that to define the
translational variables for a given collision it is convenient to work in terms of relative coordinates.

Defining

8.+(t) = g g„,'s, ' (t),
m

(51)

where S, (t) is the Heisenberg picture, we can write the spectrum in the form

ok&(t)= g f dre " ( exp[ik rb(t —r) —ik r, (t)]8&+(t r)8, (t))+c.c-.
a, b

(52)

If both t —v and v. are times when the system has already reached a stationary state in the presence of the driving field,
the ensemble average in Eq. (52) is independent of t The stationar. y spectrum is therefore given by

a« f" Ck——,(r)dr= lim 2Re f Ckz(r)e "dr,
QO s~O 0

where

Ckk(r)= g e " ( exp[ik rbo ik r, (r)]8—b+8, (r)),
a, b

in which 8b =81, (0) is a dipole operator in the Schrodinger picture and rbo
——r(0). In Eq. (53), it is implied that the

system is in a stationary state from ~- —1/s to r-+ 1/s, which, upon taking s ~0, goes to (
—ao, + ao ).

Writing out explicitly the ensemble average and the time evolution of 8, (r), we have
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C„i(r)= $ e "Tr„[exp[ik rbo
—ik.r, (r)]TrF[P~F{0)~b (0)~~F(r)~ ~~~(&)]j

a, b

= ge " Tra I exp[ik rb'o ik r,.(r)]8, Trb[U~F(r)p„b(0}8b+]]
a, b

= g e " Tr„ I exp[ik. rbo
—ik.r, (r)]8, [U(r)p(0)8b+]]

a, b

= $ e "' Tr„[exp[ik r„o—ik.r, (r)]R(r)8, R '(r)R(r)[U(v)p(. 0)8b ]]
a, b

= ge' 'Try[exp(ik rbo ib—k v, r ib—k r,o)8, [U (r)R(0)p(0)Db ]J
a, b

gR= g e' 'Tr„[ exp(ibk. rbo ibk —v, r ihk —r,o)8, e ' [U (r)p (0)8b ]] .
a, b

(55)

Trz =g,Tr, is the trace over all the atoms (their inter-
nal as well as translational degrees of freedom). TrF
stands for trace over all the field modes. p„F(0) is an ini-

tial density matrix for the complete system of all atoms
plus field modes. 0&F(r) is the Hilbert-space evolution
operator for this closed system, and U„F(r) is the corre-
sponding Liouville-space evolution operator. After trac-
ing over all the field modes, the system of all atoms
evolves according to U(r): a Liouville-space evolution
operator which satisfies Eq. (1) with the initial condition
U(0)=1. U"(r) and U (r) are Liouville-space evolu-
tion operators defined similarly through Eqs. (15) and
(20). After going to the rotating frame by the transfor-
mation R (r) defined in Eq. (9), the system evolves ac-
cording to U (r). In the interaction picture, it evolves
according to U (r)

In Eq. (55), we have defined Leo =
coke

—col and
5k =k —kL . It is convenient to also define

K,":L,"+i(h—co —b,k.v, ) . (56)

Since all the atoms are equivalent, we can split the double
sum and the trace in Eq. (55). Calling one of the atoms
the radiator and the rest perturbers, we can write Eq. (55)
as

K~~
Ckz(r) =N Tr„.B„e " [fTr [g,"(r)+g2 (r)] .

P

K~~=NTr„.B„e ' gTr~[P, gi (r)+P,gz (r)] . .
P

(57)
I

Here g are defined by

g i"(r):U "(r)—p (0)8„+, (58)

and

Substituting Eq. (57) into Eq. (53), we find the stationary
spectrum becomes

o k& =2N lim Re{Tr„[8„[f& (s}+f2(s) ]]),s~0
(60)

where f (s) is defined by

—(s —KR)f (s) =f e " g Tr&P,g "(r)dr .
P

(61)

The scattered spectrum is therefore given by the Laplace
transforms of P&Tr~P, gP(r) and g Tr P,gP( )rat
s'=s —SC,".

From their definitions it is obvious that P,g "(r) satis-

fy the same equation [Eq. (26)] as P,p "(r) does. The
only difference is that we can only assume now

Q,g ( —~ ) =0 [instead of Q,g "(0)=0], since at r =0
the system has already reached a stationary state. With
this initial condition, we have, after making a binary-
collision approximation the same way as in Sec. IV,

g2" (r)= U (r)p"(0) g B~+ exp[ibk. (r .o—r„o)] . (59)
P

B,P,g (r) =NP, V„(r)P,g (r)+NP, V„"(r)f U„"(r,r')V„(r')P, g (r')dr'+NP, V„(r)U„(r,0)Q,g (0),
0

where

Q,g' (0)=f G (O, v')Q, V (r')P, g "(r')dr'.

We have not inade the BCA on Q,g "(0) since it is not very useful at this stage.
Using the stationary property of the collisional average given by Eq. (42), and Eqs. (61) and (62), we obtain

f (s)=X ' g Tr P,g "(0)+Nf e ' g Tr P, Vz (r)U&"(r,0)drQ, g (0)
P Tl

(62)

(63}

(64)
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Here, X is a line-shape operator given by

(65)

and Xo is defined by

L =s —E„R0

We have also used

X, =NXoTr f e '
[U„~ (~,0) 1]p—~" drXo

0

=NXOTr f [U„(0, r) —1]e— ' p~' drXO .
0

(66)

(67)

The task of deriving the spectrum is now reduced to deriving workable expressions for the two source terms (initial
conditions) on the right-hand side of Eq. (64). The physical origin of the second source term is in the non-Markoffian
nature of the redistribution problem [16]. Away from the line center mo, light can be emitted only during a collision in

which the system is correlated.
The source terms for f, (s) are easy to handle. Keeping in mind that our system is in a steady state from r- —1/s to

~= + I /s, which eventually goes to (
—~, + ~ ), we obtain

+Tr P,g,"(0)= gTr P,p (0) D„=X' 'D„

—P VIR( ) UIR( () )Q
IR (0)

(69)

P V (&)UIR( 0)[Q R(0)]D+

=P V "(~)U (~ 0) f G (O, r')Q, V "(~')P,p "(r')dr'

The binary collision approximation on this term can be carried out the same way as in Sec. IV. Noticing that in a
—L 7 (p)

R

steady state g Tr~p (~)=e ' X' ', we obtain

X, =P, V, (r)U„(~,0) lim f U (0 r')V„(r')p"' e " dr'X' '

g —+p —oo

The source terms for f2(s) are slightly more complicated,

P Tr~P, gz" (0)= g Tr~P, gD~+ exp[id, k (r~ o
—r,o)]p (0)

= g Tr P, Q 8+ exp[ihk (r .0—r„o)](P,+Q, )p (0)

If w (r o, v~o) does not vary significantly over the range of I /~ bk~ (we are not concerned here with the Rayleigh scatter-

ing in the forward direction since it cannot be measured experimentally, and k=kl in fact corresponds to radiation in

the laser mode which is specifically excluded from our treatment), we have

Tr 8+ exp[ibk. (r~o —r„o)]p~' =0 . (71)

physically, this corresponds to the usual argument that, due to random phase (i.e., the exp[id k. (r~o —r„,)] fa««s), the

scattering in directions other than the forward direction is proportional to 1V rather than X . Therefore

g Tr P,g (0)= g Tr P, g D ~ exp[id. k.(r 0
—r„o)]Q,p (0)

L R)g
=NTr D+ exp[ibk. (r o

—r„o)] lim f U„(O,r')V„(w'}p"' e " dr'X' '

g ~p —oo

(72)

If we define

X =P V (~)U (r 0)Q g (0)

we can move all P, - (p "gp) from P, (remember P, „=P, -) to Q, to form
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X,=P, V ~ (r) U„p (r, O)(1 —P,~ )g "(0)

=P, V„(r)U (r, 0)(1 P—, )[[P,p"(0)+Q,p"(0)]8~ exp[ibk. (r~o —r„o}]j .

We therefore obtain in thermodynamic limit [12] (1 P—,z = 1),

(s —L )v'
X2=P, V~ (r)U„(r,0) p"' X' '+ lim f U„(O,r')V„(r')p" "e'" dr'X' ' 8+ exp[id, k (r o

—r o)]
s~O

(73}

In deriving Xz we have again used Eq. (71).
Combining Eqs. (60), (64), (69), (70), (72), and (73), we can write after some integration by parts our final expression

for the spectrum in the form

crki, =2N lim Re Tr„B„X ' X' 'D„+N Tr B~ exp[ihk (r~o —r„o}]f [U„(0, r) 1—]-
s~O 0

—(s —LR)
( L R)y(0) st, R

P

—(s —L )8
+NXOTr f e ' [U~"(r,0) 1]dr —f [U„"(0, r') ——1]e ' dr'

X (s —LR)X'0'p"'R [8„++8+exp[iAk (r~o r„o—] j

+N&OTr f e 0 [UtR(r, O) 1]drI X—' 'p~' 8~ exp[id k.(r~o —r~] j
0

(74)

This is the more traditional way of deriving the spectrum. We have found it worthwhile to also derive the spectrum fol-
lowing the procedure of Mollow [5,17]. The initial conditions are included more readily in such a procedure, which
makes the derivation easier.

The rate of emitting one photon into mode (k, A, }at time t is given by

o„i(t)=B,« [lj«, [lj„iITr„TrRp„~(t)=B,&& [lj„i,Il]«ITr„p'(t) . (75)

TrF means tracing over all the field modes except (k, A, ). p„F(t) is the full density matrix for the complete system of all
atoms plus field modes. p'(t) satisfies basically the same equation [Eq. (1)] as p(t) except we still have the interaction
with the mode (k, }(.) left over by not tracing over it. Going to the rotating frame and interaction picture as we did ear-
lier, we can write

o ki,«}=« [ 1 ] ki, , [ 1 ]ki.lTr„B p (t)

where p "(t) satisfies [cf. Eq. (20)]

B,p
' (t)= g V.', (t)p '"(t)+ g L,'" (t)p ' (t),

a, b
a(b

(76)

(77)

where L,k&(t) is the interaction of the atom a with the radiation mode (k, l, ); it is given in the rotating-wave approxima-
tion (RWA) by

L,kz(t)=e ' [8, exp[ ibk r, (t)+iitsc—ot]akim
—H. c., ]e '

Substituting Eqs. (77) and (78) into Eq. (76), we obtain

~ki(t) = « [ 1 j~&, [ 1 jki. lTr& &L.'ki (t)p

(78)

=N« I 1jkz, [1jkilTr„L kz(t) g Tr P p (t)=2NRe[Tr, B„F(t)],
P

(79)

where we have defined

F(t)=« [0]k&, [1jki I exp(K„ t —ihk r„o)g Tr&P,p "(t) .
P

(80)
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Since eventually we will obtain the stationary spectrum from Eq. (79) by taking t to infinity, i.e.,

crk&=2N lim Re[Tr„B„F(t)]=2N lim Re[Tr„B„sF(s)],t~ oo s~0

we can assume there is no correlations at t =0:

Q 'IR(0) 0

meaning no atom-atom correlation at t =0, and

«[0]kk [']kklp "(I)—= & [0]kklp (t)l [I]kk) =0,

(81)

(82)

(83)

meaning no atom-field correlation at t =0. The initial condition for F (t) is therefore simply F(0)=0.
From Eq. (77), we can derive an equation of motion for P,p "(t) in the same way as for P,p (t). We obtain [cf. Eqs.

(26) and (30)]

g p 'IR(t) —[LIR (I)+Np V~JR(t)]p 'IR(t)

+NP, [L~kk(t)+ V„(t)]f G "(t,t')Q, V "(t')+ gL kk(t') P,p "(t')dt', (84)

where we have used the initial condition given by Eq. (82). G is defined by

G'I (t, t')=Texp f Q, V (tj)+ QL,kk(t&) 'dt,
a

(85)

Expanding 6'rz according to

G "(t,t')=G (t, t')+ f G (t, t, )Q, QL,„,(t, )G "(t,t')dt, ,
a

(86)

and keeping only the terms up to first order in L,k& [we can use such a perturbative approach as long as there is no ac-
cumulation of photons in mode (k, A, )], we have

B,p, p (t)=NP, V„(t)P,p "(t)+NP, V„„"(t)f G "(t,t')Q, V "(t')P,p "(t')dt'

+LIR (t)p 'IR(t)+Np LIR (I)f GIR(t tk )Q VIR(ti)p p IR(ti)dtt

+NP, V„"(I)f G' (t, t')Q, gL~'"„k(t')P,p "(t')dt'

+NP, V„'"(I)f f GIR(t, t, )Q, QLIkRk(t, )GI"(t„t')Q,V (t')P, p (t')dt, dt'.
0

(87)

The binary-collision approximation can be carried out in the same way as in Sec. IV. With the help of Eq. (71), we get

a,p,p IR(t) =N'p, VIR(t)p, p IR(t)+N'p, V„", (I)f 'U„", (t, t ) V,',"(t )p,p'IR(t )dt

+LIR (t)p p'IR(t)+Np LIR (I)f UIR(t I )VIR(t )p p'IR(t )dt

+NP, L kk(t)p, p "(t)+NP, V„(t)f U„(t, t')L „"„(t')P,p (t')dt'

+NP, Vp"(t) f f U~"(t, t, )[L kk(t, )+L kk(t, )]U~"(t„t')V„(t')P,p "(t')dt, dt' .
0

(88)

It is now straightforward to derive an equation of motion for F(t). Using again Eq. (71) and the stationary property
given by Eq. (42), we have

d, F(t)=K„"F(t)+NTr V„(0)p"' F(t)+NTr VI (0)f U„(O, t' t)V„(t' —t)p"' e ' —F(t')dt'+X' '(t)8„+
0

+NTr 8+exp[ibk (r o
—r„o)]f U„(O, t' t)V„"(t' t)p~'"e —" X' —'(t')dt'

+N Tr f e " V„(t t')UIR(t —t', 0)Ip"—X' '(t')8+ exp[ibk. (r o
—r„o)]Idt'

0
r K~(t —t ) Urz t ~ O

0
L "(,t —t')

X f Uz (O, t' t& ) V~"(t' —t, )e " ' —X' '(t')pz' [8„++8&+exp[ibk. (r~o
—r„o)]]]dt'dt& .

0
(89)
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In this equation X' '(t) is defined by

J Rt
~( [0]kk [0]kkle

' g Tr, p,p' ( &}

From Eq. (88), it is easy to show that it satisfies the same
equation as the X' ' defined earlier by Eq. (41), and is
therefore the same quantity.

Taking the Laplace transform of Eq. (89) [keeping in
mind that we have the initial condition F(0)=0], we ob-
tain after some integration by parts the same result given

by Eq. (74).
The spectrum given by Eq. (74) is the main result of

this paper. It forms the basis for calculating, for exam-

ple, the emission spectrum from a system of cold atoms
in a trap. It is also directly related to the probability of
one or more photons being emitted during a single col-
lision, which is important for understanding the radiative
escape [2] and other fascinating behavior of cold atoms in
a laser field [4,18].

VI. DISCUSSION AND CONCLUSIONS

As indicated in Sec. IV, the collisional width y, is or-
ders of magnitude smaller than the radiative decay width

y. We can therefore expand our line-shape operator
given by Eqs. (65)—(68) to the first order in collisional
width according to

state atom these eigenvalues (given by detls L—„"l=p}
correspond to s =0 and the roots of the Mollow cubic
[15]. The damping part of the roots of the cubic is of or-
der y, which is large compared to elements of L, (of or-
der at most y, with 1/y, the time between collisions

T„t&}. The s =0 root corresponds to the steady state, for
which L, p", =0. The steady state, when collisions are
included, however, corresponds to Eq. (45), i.e., to the
eigen-tetradic of L,"+L, with eigenvalue s =0. Conse-

quently, perturbation theory, to lowest order in L„shows
that the diagonal tetradic matrix element of L, in the
eigen-tetradic of L, for eigenvalue s =0 is zero. This
means that no divergent terms proportional to 1/s (with
s =0) occur in the second term of Eq. (90). Thus the
second term in Eq. (90) is of order y, /y compared to the
first.

It should be noted that the 1/s pole corresponds to
Rayleigh scattering, so that when the first term in Eq.
(90) corresponds to this pole, the second term indicates a
modification to the Rayleigh scattering of order y, /y.

The stationary density matrix in the presence of col-
lisions defined by Eqs. (45) and (46) can also be expanded
to the first order in collisional width,

1 1 1 1 1 1
(90) -p"' +lim L p"'"1

Lg c P (91)

The validity of this expansion has to be considered care-
fully. To evaluate 1/Xo we use eigen-tetradic states
(complex dressed states) of the Liouville L, For a tw. o-

After some straightforward algebra, we obtain the sta-
tionary spectrum to first order in collisional width,

okk=2N lim Re Tr 8 X (p'' 8 )+NEO (Tr [(s L) V (0—)U (Q —oo)p'' p'' ]D+
s~o

+Tr [8+exp[ibk (r~o —r 0)][s L„" L~"—iA—k (v ——v„)]

X VIR(P)UIR(P )
st, R st, R] )

+N Tr f e "[U~ (rp) 1]dr—
X([Ura(0, —oo )p'„' p' ' ][8„++8+exp[ibk(92)0 —r„o)]j ) (92)

The first term is the spectrum in the absence of col-
lisions. It is the familiar Mollow spectrum [15] for a
two-state atom. The 1/s pole corresponds to Rayleigh
scattering and the roots of the cubic give rise to the Mol-
low triplet. The second term represents the effect of the
collisions on the steady-state density matrix. This
modification, which physically described the effect of col-
lisions on the population (in contrast to coherences) of
complex dressed states [11],afFects both the "triplet" and
Rayleigh components of the spectrum. The third term is
the "collisional broadening" term corresponding to the
destruction of optical coherence. It describes the process
of emission during a collision. The U~ (0, —oo ) part of
this term gives the evolution during a collision of the

I

states of the radiator and the perturber from free states at
~= —ao until at ~=0 a dipole coherence is created by
8„+ (or 8+). The U„(r,p) —1 integral then describes
the decay of this coherence. Note, in particular, that the
evolution from —ao is specific for a given collision since
both Uz"(0, —oo) and U„(r,p) are calculated for the
same single-collision parameters. Due to the s =0
steady-state pole of the Xo operator this third term also
contains corrections to the Rayleigh component.

Due to the e'"' factors in V~ [see Eq. (13c)] and that
multiplying 8, the above expression specifically in-

cludes all Doppler effects. In addition, we emphasize
that the modification of the radiative decay is fully in-
cluded as well as fully retarded interactions.
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Another interesting feature of this spectrum is that it
includes, in both the second and third term in Eq. (92),
the effects of resonant exchange of coherence and
excitation. This exchange affects the spectrum through
the terms of the type 8„[U„~ (r, 0) 1—]8+. In the con-
text of resonance broadening Berman and Lamb [19] (see
also Ben-Reuven [3]) have obtained expressions for the
line shape by keeping track of the excitation which, fol-
lowing a collision, may either remain on the original radi-
ator or be transferred to its collision partner. Within ap-
propriate limits, which correspond to making (i) 1/b, co

expansion of the resonant broadening line shape [a
single-collision expansion equivalent to our expansion of
Eq. (90)] and (ii) making an impact limit on our expres-
sions with radiative decay during a collision being ig-
nored and driving field being weak, it can be shown that
our results for both direct and exchange of excitation
terms agree with those of Berman and Lamb and Ben-
Reuven. Of course our results are not restricted to the
impact limit, or to the neglect of radiative decay, or to
weak field. Further, not only can exchange of excitation
occur, but a coherent superposition (atom-atom coher-
ence) can also exist after a collision and is again included
in our formalism, i.e., we include two-atom coherences as
well as one-atom coherences (excitation).

For ~co' —coo~ &&y, 0, emission is possible only during a
collision (except for the Rayleigh scattering, of course).
In this large-detuning limit, the integration in the third
term of the spectrum can be carried out by a stationary
phase method [20]. This integration corresponds to emis-
sion at the stationary phase point (equivalent to a Frank-
Condon transition). In the weak-field limit, when the ini-
tial propagation in the collision due to U„(0,—ao ) cor-
responds to a single absorption before the emission takes
place, we can recover the results for absorption and emis-
sion during a collision, as given by Gallagher and
Pritchard [2]. We note that Gallagher and Pritchard use
a trajectory that is modified by the potential, whereas for
convenience we used straight lines. In the general theory
of redistribution due to foreign gases [16] in the weak-
field limit various types of absorption and emission pro-
cesses occur. Although we choose to work with complex
dressed states to describe the free evolution we stress that
all such effects are included here. In fact, we emphasize
that the use of these complex dressed states includes mul-
tiple emission and absorption to all orders. Before the ra-
diative event for the mode of interest (k, i, ), characterized
by the occurrences of 8„+ (or 8~+), the U (0, —~ ) can
describe multiple absorption and spontaneous emission
into any mode other than (k, i, ). Similar physics is also
implied by U„"(~,0) in the third terms of Eq. (92). The
treatment of Gallagher and Pritchard [2] does not in-
clude these reexcitation events. It is interesting that the
reexcitation is related in phase to the driving laser field,
thus the different evolution periods in the collision are
correlated. This leads, among other interesting features,
to the contribution of the third term to the coherent Ray-
leigh scattering.

Finally, we mention again that we have, for conveni-
ence, assumed a straight-line classical trajectory. This
appears to omit two potentially important effects. The

first is the deviation from a straight line due to close
strong interactions, which tend to dominate the spectrum
in the far wings (the quasistatic region). These close,
small r, collisions are amenable to a quantum treatment
(see, for example, Julienne and Vigue [21])provided suit-
able connection is made to the large-r behavior where
straight lines are appropriate. Alternatively, to a first ap-
proxirnation the particle could follow trajectories deter-
mined by forces obtained via Ehrenfest's theorem. In
principle, it is straightforward to deal with deviations
from a straight line.

The second effect is more subtle, but of crucial impor-
tance to the theory of laser cooling; namely, the forces
and diffusive motion due to the recoil as a result of spon-
taneous emission. In principle, one could treat the
center-of-mass motion quantum mechanically and our
Liouville equations of motion would be replaced by equa-
tions for Wigner distributions [22].

Although these are interesting effects, in general, they
are not very important for determining the collisional
part of the spectrum which is the quantity of interest in
this study. For a frequency separation of hm, the "time
of interesting" is of the order of I/~bco~, which for the
collisional part of the spectrum (bco & y) is at most I/y
where y is the radiative decay rate (and much less in the
wings). The narrow features observed by Westbrook
et al. [23] are due to constraining the free motion within
a volume of -A, (i.e., Dicke narrowing). The time scale
for these features corresponds to the time to move a dis-
tance of the order of a wavelength, which is longer than
1/y. This "free motion" therefore does not affect regions
of the spectrum where b,co & y (in fact, in this approach
we are not concerned with such localization of atomic
motion since we are only considering a running wave).
The quantity which determines the collisional part of the
spectrum is qualitatively the phase shift g due to the in-
teraction, i.e., i) = JoV dt'/R where V is the appropriate
interaction. Simple Weisskopf theory shows that in the
impact region of the spectrum the most important re-
gions are those for which g-1. For times of interest
—1/y this gives important impact parameters of the or-
der of A, /2m. for cold collisions (and less for b,co in the line
wings). The relevant question now is: "Will the effect of
recoil change the trajectory by a sufficient amount that
the phase shift due to a collision as calculated by straight
lines is in significant error?" The answer is "no," since
the deviation in the trajectory due to recoil in a time of
1/y is, for a particle of mass M, approximately
2M/Myi, which is typically negligible ( —10 ) com-
pared to A. /2~. Thus during the time of interest
deflections have negligible effect on the collisional phase
shift (and hence the spectrum). The deflections due to
recoil momentum are, of course, very significant over the
longer periods of time needed for cooling or Dicke nar-
row. A similar effect occurs in the usual line-broadening
theory where often straight lines are fine for calculating
broadening cross sections (especially in cases such as that
considered here where the potential is very long range)
but hopeless for calculating difFerential cross sections
(i.e., deflections).

In conclusion, we have derived the redistribution spec-
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trum for a system of cold identical atoms in a driving
laser field. Obviously spontaneous decay and long-range
interactions play a significant role in cold identical atom
collisions; however, more detailed understanding awaits
future numerical calculations.
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