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Bound states of guided matter waves: An atom and a charged wire
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We argue that it is possible to bind a neutral atom in stable orbits around a wire charged by a time-
varying sinusoidal voltage. Both classical and quantum-mechanical theories for this system are dis-
cussed, and a unified approach to the Kapitza picture of effective potentials associated with high-
frequency fields is presented. It appears that cavities and waveguides for neutral-atomic-matter waves

may be fashioned from these considerations.
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INTRODUCTION

The availability of slow atoms from laser cooling
sources [1-5] has stimulated us to consider new methods
to contain, manipulate, and study these extremely low-
energy neutrals. We are concerned with both classical
and quantum-mechanical atomic motions, and we intend
to show that the experimental study of both regimes
should provide a fertile enterprise that will enable the ob-
servation of new phenomena and the development of de-
vices of practical utility.

Because of the possibility of immediately realizing
practical structures based on the interaction between a
charged wire and neutral polarizable atoms, we shall
focus most of our discussion on the resulting attractive
1/r? interaction potential. Nevertheless, a number of our
results and methods of analysis are valid for more general
systems, and we present them in generic form. In the
course of our discussion we comment on the connections
with the work of Cook, Shankland, and Wells [6], Com-
bescure [7], and Brown [8], aimed mainly at understand-
ing ion motion in a Paul trap [9], which is governed by
the Mathieu equation.

The static 1/r? potential is known mostly to physicists
for the role it plays in accounting for the effects of con-
served angular momentum in the radial equation of
motion for a particle moving in a central field. This
effective potential is always repulsive and leads to re-
duced binding for increasing angular momentum when
combined with an attractive force that supports bound
states. The attractive 1/r2 potential has been discussed
classically [10] and quantum mechanically [11-13] and
has been of interest mostly for the peculiarities of the
motions it engenders rather than for its importance in
practical problems. In the following we point out that it
is exactly these peculiarities that must and can be over-
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come to enable the realization of new stable states of
matter based on the interaction of polarizable atoms with
a charged wire. First we review the basic features of the
motion.

The attractive 1/r? potential stands on the border be-
tween highly singular and regular potentials for which
the centrifugal barrier can keep a particle from passing
through the origin. Only motions with angular momen-
tum below a critical value can be bound and all of these
do in fact pass through the origin.

Consider now a neutral atom and a line of uniform
charge density as might be contained on an extremely
thin wire. The atom is polarized by the electric field from
the wire and is consequently attracted to the wire by the
electric-field gradient. This results in a 1/r? interaction
potential when the induced dipole moment is linearly
dependent on electric-field strength.

The fate of an atom bound in this way is an unavoid-
able collision with the wire, which most likely results in
absorption of the atom to the surface of the wire or in in-
elastic reflection. Either of these would severely limit the
lifetime of bound states where the atom moves in stable
orbits around the wire.

A main motivation of our studies is to show how long-
lifetime, stable motions can be realized. It is one of our
central themes that this can be accomplished by adding a
high-frequency component to the static interaction po-
tential. The strategy by which we demonstrate the
efficacy of this procedure is remarkably similar to one
that can be used for introducing the notion of a centrifu-
gal barrier or effective potential in central force prob-
lems. The latter involves a canonical transformation
from Cartesian to polar coordinates, which has the favor-
able consequence of making the angular coordinate ig-
norable in the transformed Hamiltonian. The radial
motion is, however, influenced by an effective potential
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whose magnitude depends on the conserved angular
momentum. Similarly, we find that under certain cir-
cumstances, a high-frequency potential-energy function
can be canonically transformed away, leaving a time-
independent effective potential in its place. The
transformed Hamiltonian yields insight into the particle
motion, and, in our case, it demonstrates how bound
motions of the type we desire can be obtained.

A major achievement of this strategy is that it can be
extended from the classical to the quantum regime,
which is important for the systems of atomic waveguides
and cavities we envision. In this way our approach
represents an extension of the analysis presented by Ka-
pitza [14] in his study of the inverted pendulum.

BOUND STATES: CLASSICAL DESCRIPTION

Consider a neutral atom of mass M and polarizability
a, situated a distance r from the center of a wire with
static charge per unit length g and radius ;. A grounded
cylinder of radius r; >>r, surrounds the wire to give the
system a well-defined capacitance. The atom experiences
a radial force of attraction towards the center of the wire,
derivable from the potential-energy function

2
v(r)=—£’i§1— . (1)
r

A free translational motion along the wire is obtained,
and we shall focus on the separate problem of
transverse-motion confinement.

The Hamiltonian for the transverse motion of the sys-
tem is given by

H=P_’2_£‘ﬁi+ L’ 2)
2M r? 2Mr?’

with radial momentum P, =Mdr /dt and conserved angu-
lar momentum L =Mr2d@/dt along the wire. Bound
states have energy of transverse motion E <0, which can
occur only when L?<4Mag?. Integration of the com-
plete equations of motion gives

r=b/cosh[(4Mag?/L*—1)1/%9] , 3)

with apogee b determined from v(b)+L?/(2Mb?)=E,
and

tanh " !'[(4Maq?®/L?—1)"2Lt /Mb?]

(4Mag®/L*—1)17? '
The maximum time an orbit can have before crashing
into the origin is

2
(4Mag?/L*—1)"/

A plot of a characteristic trajectory spiraling into the ori-
gin is indicated in Fig. 1. Clearly, maintaining atoms in
this system is impossible.

Now imagine adding a time-varying term to the Hamil-
tonian in Eq. (2) so that it takes the form

()= 4)

(5)

P} 202>  L?
H=—_—=%9 . +W t. 6
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FIG. 1. (a) Orbit for a sodium atom (=27 A’) with L =484
attracted to a wire with an applied voltage of 8/v'2 volts and
70=0.1 um. r;=1 cm. (b) Time-dependent radial motion for
orbit in (a).

An elementary discussion of the consequences on motion
described by such a Hamiltonian is given by Landau and
Lifshitz [15] under the condition that o is sufficiently
high. They show that Newton’s equations of motion may
then be integrated approximately, yielding a solution for
r that consists of a fast component W'coswt /Mw? super-
imposed on a slow motion that is governed by the static
interaction potential and an effective potential,

4Mo? ’

which we shall refer to as the Kapitza potential. Unfor-
tunately, the aforementioned derivation gives neither a
completely clear picture of what the expansion parameter
and correction terms to the Kapitza description are, nor
a clear path to the role this potential might play in quan-
tum descriptions of the motion. We therefore divert tem-
porarily from our problem of an atom and charged wire
to fully develop the Kapitza picture in a classical descrip-
tion.

Consider a time-dependent Hamiltonian system de-
scribed by

VKap (7)

2

Py
H=—22+V(X)+W(X)cosot 8)

in which X and Py are canonically conjugate variables.
To simplify the equations of motion, we want to extract
the presumed small, high-frequency component from
both the position and momentum by a canonical transfor-
mation to a new coordinate Y and momentum Py related
to X and Py by

X=Y+ L );) coswt 9)
@
and
Py=~Py— Wa()Y) sinwt . (10

The displacements in position and momentum on the
right-hand sides represent the motion of a free particle
exposed to the time-varying potential alone.

The transformations in Egs. (9) and (10) are not strictly
canonical [16], and therefore the motions of Y and Py are
not governed by a Hamiltonian function. Equations (9)
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and (10) are, however, the lowest-order terms for a whole
class of transformations that are canonical, where the ex-
pansion parameter €(Y) is given by

_ WII( Y)
Mo?

which vanishes in the limit of high frequencies. From
these we select one that, though not the simplest possible,
corresponds to a particularly simple unitary transforma-
tion in the quantum-mechanical description. The next
section contains a discussion of the quantum-mechanical
case. Remarkably, the detailed canonical transformation
for the classical case can be obtained in closed form, but
it has little transparent physical content beyond agreeing
with Egs. (9) and (10) to lowest order. We therefore
relegate this canonical transformation and its generating
function to Appendix A as Egs. (A4), (AS5), and (A2).
Our results are greatly simplified by restricting applica-
tions to power-law potentials [see Eq. (A1)].

The transformed coordinates satisfy Hamilton’s equa-
tions of motion generated by a new Hamiltonian. From
the theory of canonical transformations [16], which in
our case are time dependent, this Hamiltonian is obtained
by both augmenting the old one with the time derivative
of the generating function [Eq. (A2)] and by expressing
the old coordinates in terms of the transformed ones.
For the new Hamiltonian, to first order in the expansion
parameter €(Y), we obtain

e(Y)

) (11

Pj
Hy==+V(Y)+ Vg V)

M
|4
+ Vkap(Y) 4W coswt — cos2wt
+e(Y) Py
€ ; coswt

+ Viap( Y)( coswt — cos3wt) (12)

The time-independent part of this Hamiltonian contains
the static Kapitza potential in addition to the original
V (Y) interaction. The canonical transformation has had
the desired effect of reducing the time-varying part of the
potential by €(Y) [note that Vi,,/W ~e(Y)]. In addi-
tion, a P} term of first order in €(Y) has appeared. This
can be interpreted as a spatially dependent mass correc-
tion. The amplitudes of the time-varying parts of the po-
tential, though greatly reduced as compared to the origi-
nal Hamiltonian (8), still have a spatial modulation of the
Kapitza type. Since the ultimate goal is to consider the
time-dependent terms as a perturbation, a second canoni-
cal transformation is applied to introduce another reduc-
tion of these time-varying terms. The generating func-
tion and the transformation to the final coordinate Z, and
momentum P, are given in Appendix A. The new Ham-
iltonian H is also given there to first order in €(Z). All
lowest-order terms of H, are indeed time independent.
Of course, the utility of this Hamiltonian depends upon
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neglecting the terms multiplied by €(Z) which must then
be small compared with unity in a sense to be discussed
below.

We anticipate that the Hamiltonian H, generates some
motions for which the expansion parameter is small for
all their accessible regions of phase space. As a result,
the correction terms may be neglected or treated as a per-
turbation. Under such conditions we identify the Hamil-
tonian with the Kapitza Hamiltonian

P;

M

and, after solving the equations of motion in this repre-
sentation, the total motion in X space is found by the in-
verse transformation: Z—Y —X.

We now apply and test the above formalism on the
atom-wire problem. To obtain guidance for how small
the expansion parameter € must be for the Kapitza pic-
ture to hold, we compare with computer calculations
where trajectories are obtained from the original Hamil-
tonian (8). For the charge on the wire, we shall assume a
purely sinusoidal time variation at frequency w/2 and
amplitude Q, which gives

Hyopy= o+ V(2)+ Vi (2) (13)

qzzQzl—coscot ‘ (14)
2
Thereby, the atom-wire Hamiltonian assumes the form
Pl 1 |L? aQ?
_Tr N2
H—2M+7; 2—]‘2 aQ“ |+ 2 coswt . (15)

In the Kapitza limit, taking r =X — Y —Z, the motion is
governed by a time-independent Hamiltonian,
P; 1 |L? 1 o2Q*

Z 4+ | = —aQ? |+ = ,
oM Z2 |2M “Ql Z° Mo?

Hypp= (16)

which gives rise to a new conserved quantity
Exap=Hy,p- The total potential in Hg,, has a minimum
U in at Z in, and if we convert the coordinate Z and en-
ergy Ey,, into reduced variables { and 8, we may write
(16) as

P 301

57 P Unin | 555~ 55 | =81 Uil - (7

2M min [2§2 2§6 | m1n| )
with

24
§= Z ’ Z:nin:a Q2 3 2 (183)
Zmin Mo 2 L
QoM

and

— _ 2 aZQ“

8_EKap/|Umin|’ Umin__z6 Mo? . (18b)

min
The potential-energy terms of (16) are plotted in Fig. 2.
They consist of a 1/Z? interaction (just the time-
independent potential in the original Hamiltonian) and a
repulsive 1/Z° Kapitza term. Clearly, for appropriate
initial conditions on the motion, bound states are suggest-
ed, which are constrained to occupy regions away from
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FIG. 2. Total effective potential in the Kapitza picture for a
sodium atom, L =49#, r;=0.1 um, r;=1 cm, and an applied
peak voltage of 8 V at @/2=27X (400 kHz). Shown also are
the lowest quantized energy levels for this system.

the origin or wire in our problem.

Figures 3(a) and 3(b) show plots of a stable bound tra-
jectory obtained from a numerical integration of the orig-
inal dynamical equations with initial conditions chosen to
correspond to a bound motion in the Kapitza picture.
The separation into fast and slow motion, inherent in our
canonical transformations, is clearly seen. However, as
can be seen in Figs. 3(c) and 3(d), even for initial condi-
tions that suggest bound states of the Kapitza Hamiltoni-
an, the actual motion may not be stable. The difference
between these two cases is related to the value of the ex-
pansion parameter €(Z).

We empirically find that stable motion is obtained for a
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FIG. 3. (a) Bound orbit with conditions as in Fig. 1 but with
an applied sinusoidal voltage of 8 V peak and »/2=27X (400
kHz). €=0.20, § <0. (b) Stable time-dependent radial motion
in (a) shown as a solid line. The dashed line shows Kapitza
motion for Z. (c) Unstable orbit with €=0.32, § <0. (d) Unsta-
ble time-dependent radial motion in (c) shown as a solid line.
The dashed line shows Kapitza motion for Z.
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wide range of initial conditions as long as e(Z) is less
than a critical value at the inner turning point in the po-
tential of Fig. 2. The motion predicted by the Kapitza
Hamiltonian is then a good approximation to the slowly
varying part of the trajectory. We find that bound states
of extremely long lifetime compared to that in Eq. (5) will
be obtained when

e=¢e(Z;,)<0.28 (19)

at the distance of closest approach to the wire, Z;,. This
distance is obtained from Eq. (17) with P, =0 and gives,
when inserted in (11), the 8-dependent lower limit on L?
in (20a),

2MaQ?[1—0.28f(8)]<L?*<2MaQ?, (20a)
where
1 4 1 :
cos ?cos_'(1—282)+—1 +E
11
f(8)= > 52
(20b)

The upper limit (L2,,) for L? in Eq. (20a) is simply
determined from the requirement that the total radial
effective potential energy be negative. Of course, the re-
duced energy 8 must be negative for bound states, i.e.,
—1=<8<0. Note the dependence of the left-hand side of
(20a) on 8. In Fig. 4, L%, is given as the left-hand side of
(20a) with 6= —1.

Figure 4 shows regions of Ex,,—L space where the
Kapitza picture should be valid. The stability region is
delimited by the obvious constraints that
Unpin < Exap <0, and by the upper and lower L values dis-
cussed in connection with Eq. (20). The bound motion
shown in Figs. 3(a) and 3(b) has €=0.20 and occurs at
point A4 in Fig. 4, which lies within the stability region.
Small deviations from the Kapitza motion, such as those

min Lzero Lmax
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FIG. 4. Regions of stable bound motion for sodium atoms,
with sinusoidal voltage of 8 V peak, w/2=2m7X (400 kHz). The
upper boundary connecting L ;, with L, . is obtained from the
left-hand side of condition (20a). L.,, comes from the right-
hand side of (20a). Points 4 and B correspond to the stable and
unstable trajectories in Fig. 3. WKB energy levels from Eq. (B7)
are also indicated.
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seen in Fig. 3(b), can presumably be accounted for by
higher-order terms in the Hamiltonian [see (A10)]. Point
B corresponds to the motion of Figs. 3(c) and 3(d), with
€=0.32, which is unstable and ultimately escapes to
infinity. At the distance of closest approach to the wire,
it is condition (19) that is violated, so the left-hand side of
(20a) is not fulfilled for this trajectory. This leads to a
breakdown of the Kapitza picture. For trajectories like B
that reemerge into regions where €(Z) <0.28, motion will
again be governed by the Kapitza Hamiltonian but with
completely new values of 6 that are very sensitive to the
original initial conditions of the problem.

A complementary and more global view of the system
dynamics is provided by the Poincaré plots shown in Fig.
5. The motion in two-dimensional radial phase space is
sampled at the frequency of the ac drive. Keeping the
amplitude and frequency of the sinusoidal voltage fixed,
we varied the initial position and velocity for constant an-
gular momentum to obtain trajectories for the range of
energies Ey,, shown in Fig. 4 by the vertical line (at
L =48%) crossing the boundary of the stability region.
For the largest binding energies (corresponding to the
smallest values of €), the slow motion is essentially
governed by the Kapitza Hamiltonian, which gives rise to
the concentric rings (cross sections of tori) in Fig. 5. As
this energy is decreased, the lengthening period of the
slow motion comes into resonance with an integral multi-
ple of the period for the ac drive, and the nonlinearities of
the problem stabilize that motion, forming the ring of
nine islands in Fig. 5 (corresponding to €=0.23). This is
a subtle indication of the imminent breakdown of the Ka-
pitza picture.

Further decreases in the binding energy (and increases
in €) give successively more complicated overlapping res-
onances (and lack of energy conservation expected of the
Kapitza picture). We conjecture that the stable and

bound motions in this phase space correspond to those in
problems

time-independent  nonlinear where the

vy (um/psec)

Y(/_Lm)

FIG. 5. Poincaré plots of trajectories for L =487 along the
vertical solid line of Fig. 4 with energies from U, to just
beyond the line of stability. @, —8.9X107!° eV, €=0.16;
b,—8.7X1071% eV, €=0.19; ¢,—8.5X107'° eV, €=0.20;
d,—8.3X107'0 eV, €=0.21; ¢,—8.1X107'° eV, €=0.23;
f£,—7.8X107 10V, €=0.24.
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Kolmogorov-Arnold-Moser theorem [17,18] has been ap-
plied and has provided guidance on the existence and
number of such orbits.

BOUND STATES: QUANTUM DESCRIPTION

We begin immediately by considering the possibility of
a Kapitza description under conditions where a
quantum-mechanical description is called for. In particu-
lar, we note that de Broglie wave lengths for the atoms
can indeed be comparable with orbital dimensions at the
low energies we are discussing.

Thus we return to our original time-dependent Hamil-
tonian,

p2
Hy=—4+V(X)+ W (X)cosot . 1)
2M
The dynamical variables are now interpreted as operators
in the Heisenberg picture, which offers the closest
correspondence between classical and quantum-
mechanical descriptions. In quantum mechanics, canoni-
cal transformations are represented by unitary transfor-
mations, and accordingly we anticipate that a unitary
transformation that accounts for the fast motion will sim-
plify the description under high-frequency conditions and
again lead us to the Kapitza Hamiltonian.
The generating function in (A2), which led to the clas-
sical canonical transformations, corresponds to the
quantum-mechanical unitary operator

i rY, W'(y) sinot
U=exp |—~ [ dy—= 22 Smat
P17 % f i’ TXy) o
i W'Yy , wi(Y)
X —— |P + P t|,
PN | Mo T Me? T

(22)

where the function T is defined in (A3). The first factor is
a gauge transformation, which accounts for the proper
momentum displacement, and the last factor results in
the translation in position. The transformation relations
for coordinate and momentum operators are obtained
from

x=U'vu,

¥ (23)

Py=U'P,U,
and the result is given in Appendix B. The classical rela-
tions [Egs. (A4) and (AS5)] are regained apart from the
symmetrization needed to insure that the momentum
operator is Hermitian. The Hamiltonian, which gen-
erates the equations of motion for these new operators in
the form

m%:[y,ﬂy] ,
(24)
., 4Py
i dt =[PY)HY] >
is given by
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P
- _2% FV(Y)+ Vi () + Vi (Y) 1Y cosot — cos2et

/4

- ﬁ[ﬁe( Y)+2Pye( Y)Py+e( Y)P] cosot +€( Y)Wy, (¥)( cosot — cos3ot) + - . (25)

This result agrees with the classical one in Eq. (12) except
for the mass-correction term, which now appears in sym-
metrized form due to the noncommuting behavior of Py
and Y. Note again the appearance of the Kapitza poten-
tial and the expansion parameter €(Y) in this operator
equation.

As in the classical case, a second transformation, to
coordinate operator Z and momentum P, is required to
eliminate the time-dependent Kapitza-like terms. We
give the corresponding unitary operator and the associat-
ed Hamiltonian H, in Appendix B. Since this second
transformation does not alter the mass-correction term to
first order in e(Z), the Hamiltonian differs from the clas-
sical result only by the symmetrization of the mass-
correction term as was found in Hy. To lowest order, we
obtain the Kapitza Hamiltonian operator

P;

Hyaw =01

+V(Z)+Vgap(Z) . (26)
Let the system be in state |¥ ), and consider the probabil-
ity amplitude for the observable corresponding to the
coordinate operator Z to have the value z at time . We
denote it by W(z,¢). From the equations of motion (24)
for the operators, we find that the amplitude ¥(z,¢) must
solve the Schrodinger equation

#Qwizn= |- Ve (2) Wz
a 2M 972 Kap ’
+AHy |z, —if2 1 Wz @7
VA ’ az’ ) .

Here AH, [see (B4)] consists of the higher-order terms in
€. We have replaced the coordinate and momentum
operators Z and P, by their representatives in the coordi-
nate representation. Due to the periodicity in time of
AH,, we may choose solutions W¥(z,¢) as Bloch functions.
The classical coordinate transformations (A4) and (A8)
relate eigenvalues for the X, Y, and Z operators. Hence
we obtain the wave function in the X representation from
the solution W(z,t) in the Z representation by using the
inverse of these transformations,
172
Bz oy

Y(x,t)=W(z(y(x)),t) 3y ax

(28)

The Jacobians originate from the normalization of the
coordinate operator eigenstates. Since the canonical
transformations are periodic in time, the Bloch-function
character of the solution is preserved.

We anticipate that for small values of the ‘“expansion

r

parameter,” states in the Z representation develop ac-
cording to the Kapitza Hamiltonian. Solutions of Eq.
(27) may then be chosen as stationary states of this opera-
tor, i.e.,

Vi(z,t)= exp(—iEg,pt /A)¥(2,0) , (29)

where W is an eigenfunction for the Kapitza Hamiltoni-
an corresponding to energy Eg,,. Transformation back
to the X representation causes a translation and a rescal-
ing of the argument of the wave functions, which make
explicit the high-frequency effects hidden by our transfor-
mations to the Kapitza picture.

Corrections to the Kapitza approximation are obtained
through perturbation theory as long as the appropriate
matrix elements involving the “‘expansion parameter” are
small. Compared to the classical case, there is, of course,
the problem that the “expansion parameter” is now an
operator. We are ultimately interested in the stability of
states, and, for our atom-wire problem, we shall give esti-
mates for the lifetime of eigenstates of the Kapitza Ham-
iltonian, based upon the golden rule.

In addition to the fact that the above quantum descrip-
tion corresponds to the apparently successful classical
description, note that for quadratic power potentials it
yields the exact solution to the problem of the Paul trap
for ions in the high-frequency limit. There our results
reduce to those of Combescure [7] and Brown [8], who
have taken advantage of the linear (Mathieu) equations of
motion for the Paul trap to find exact solutions at all fre-
quencies. Our case is nonlinear, and the methods we
have developed yield useful results only at high frequen-
cies. A transformation corresponding to a part of (22)
was performed by Cook, Shankland, and Wells [6]. This
yields a translation in the momentum operator only and
results in an incomplete description of the Kapitza pic-
ture.

We now return to the neutral-atom-wire problem. The
time-dependent Schrodinger equation for the transverse
motion is given by

_ z‘ii 3
. B r or Or 1 | L2 R
zﬁat\l!(r,(),t)— M +r2 M aQ
aQ2
+ S coswt Y(r,6,t) . (30)
r

Since the angular momentum operator L involves the an-
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gle only, we can separate the variables and choose states
of the form

(r,0 (r, 1)
Y(r,0,t)=R (r,t)——
V2
which are eigenstates for the L operator with eigenvalues
[#i. The radial equation may be written in terms of
x(r,t)=R(r,t)-V'r as

1=0,+1,%£2,..., (31)

21
3 # 3 1 7
oyt = | — L | —aQ?
i at)((r ) N EEREE # M aQ
2
_+_aQ2 coswt |x(rt), (32)
r

which is a one-dimensional time-dependent Schrodinger
equation corresponding to a Hamiltonian of the form (21)
with

#2(12—1)
‘T“_ag2

2
Vir= . ,win=22 33

¥ r

(The #*/4 term above originates in the two-dimensional
nature of the problem.)

By letting the operator r =X — Y —Z, we obtain a sta-
tionary equation in the quantum-mechanical Kapitza pic-
ture, which in reduced variables [see Eq. (18) with
L*>#(1*—1)]is

d?*y 3 1
- U min - =8 min ) (34)
e Y X =38t min X
where
2
Umin = Umin/ L 2 . (35)
2MZ

min

Although it is possible to integrate this equation by nu-
merical means, we have found that in the phase-space re-
gions of interest here (u_;, > 10), the Wentzel-Kramers-
Brillouin (WKB) approximation yields very accurate re-
sults for the reduced bound state energies in an analytic
form. In the limit of weak binding (§—0) they are given
as

—(n+4H)m

6=—Cexp

— 36
12V'3 (36

exp(3) ’

This approximation can actually be used in the range of
|8] <0.9, where the error introduced for large binding is
only a few percent. The eigenvalues are shown graphical-
ly in Figs. 2 and 4, where they are superimposed on the
classical stability region. In Appendix B, results from the
numerical integration are compared to WKB energies.
Having found energy eigenvalues and corresponding
eigenstates for the Kapitza Hamiltonian of the atom-wire
problem, we can now return to the question of stability of
these states. A conservative estimate of the transition
rate between states Y; and X, is given by the golden rule,
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FZ% S KxslAH(no)lx)|?
n=123,...

dN i
XE(E{(”—EKapinﬁw), (37)

where dN /dE is the density of Kapitza states, and the
“Fourier components” AH (nw) of the perturbation are
obtained from (B4) as the amplitudes of the cos(nwt)
terms.

We shall consider the lifetime of the ground state in
Fig. 2 that is deeply inside the quantum regime. The en-
ergy quanta of the radio-frequency driving terms in the
perturbation are much larger than the depth of the
effective potential in the Kapitza picture. The perturba-
tion thus couples the ground state to free states. With
the atom-wire potentials inserted into Eq. (B4), where we
include only the cos(wt) terms, we obtain from (37)

9 ufnin| |2

= 0—————F , (38a)
16V/8; I
with
_ 33 6 46i+(6lr2nax /'umin|3/2)
1= [d¢|xpx Toe® g &
dxy 8 1
2 — 38b
M dg Xi U min §5 ( )

Here 3 is the energy of the final states in reduced units,
and #l ,, =(2MaQ?)!/? is the maximum L value given
by the right-hand side of (20a).

The result is a ground-state lifetime of 3 msec. This is
much shorter than the lifetime predicted by the classical
description, where we found stability over seconds. The
reason for this difference is clear: the ground state tun-
nels into classically forbidden regions where the expan-
sion parameter is large. We can approach the classical
regime by choosing larger values for the voltage, frequen-
cy, and angular momentum. It is then possible to obtain
stability of the states for seconds or more. For these
cases, the energy of the radio-frequency quanta becomes
much smaller than the depth of the potential, and, ac-
cordingly, scattering between Kapitza states does not
necessarily lead to loss of the atom. Although the
quantum-mechanical lifetime found is much smaller than
the classical result, we still see enormous enhancements
when compared to the static case of Fig. 1.

DISCUSSION

The bulk of the preceding has dealt with establishing
and evaluating the applicability of the Kapitza picture to
the atom-wire and related problems. All of our classical
and quantum-mechanical intuitions about the atomic
states are deduced from this description. Even where the
exact equations of motion were directly integrated to
study stability, the interesting parameters and initial con-
ditions were obtained from the Kapitza picture. Note
that expansions or linearization of the equations of
motion around exact solutions were not necessary. In ad-
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dition, the mathematical formulation of the Kapitza pic-
ture for power-law potentials led naturally to an expan-
sion parameter that serves as a useful guide to the phase-
space regions where the approximation is useful.

Here we shall give a physical argument explaining why
W' /M®* is an appropriate parameter controlling the ap-
plicability of the Kapitza picture to our problem. Clear-
ly, the description breaks down when the “local” fre-
quency for the slow motion becomes comparable to the
high frequency of the time-dependent interaction, since
then energy transfers to the slow motion can be large and
unpredictable. The local frequency is proportional to the
square root of the curvature of the total potential in the
Kapitza picture. The strictest requirement is obtained at
the inner turning point, where the potential is approxi-
mately the Kapitza potential only,

172
~ Ll 7 (39)
Mo

”n
VKap

M

1
>_

(0]

which is exactly our expansion parameter.

It should be emphasized that this requirement for the
local frequency is a stronger constraint than the require-
ment that the overall oscillation frequency for the slow
motion be small compared to the driving frequency. This
global oscillation frequency for the atom-wire problem is
determined mainly by the long-range, attractive 1/72 po-
tential. In the case of the Paul trap, however, the global
and local oscillation frequencies coincide.

We see that for the Kapitza picture to be valid, the lo-
cal frequency of the slow motion should be small com-
pared to the drive frequency at any point in the oscilla-
tion. For our problem we then conclude that although
the global frequency becomes smaller for weaker binding,
the inner turning point moves closer to the origin, where
the local frequency is larger. The fact that instability
occurs at smaller rather than larger binding energies in
Fig. 4 is thus explained.

The theoretical discussion in the preceding sections
clearly shows that enormous enhancements can be
achieved in the time during which a low-energy neutral
atom may occupy stable, bound orbits around a wire.
Realization of such a system will most likely rely on the
combined technology of laser cooling atoms to the micro-
and nano-electron-volt regions and the fabrication of
structures like small wires of accurate dimensions on
micro- and submicrometer length scales. The plots we
presented above were all for what we believe to be realis-
tic experimental conditions, none of which is beyond
current capabilities. We expect the observation of these
states to occur shortly, followed by more-detailed spec-
troscopy and experimental probes of the atomic motions.

Since our atoms are uncharged, the coupling to exter-
nal electromagnetic waves at frequencies comparable to
the slow atomic motions is quite small. Indeed, the radia-
tive lifetime of the bound states need hardly be con-
sidered. The system should surely be probed spectros-
copically through signals applied directly to the wire.

Although we have for simplicity discussed only the ap-
plication of a sinusoidal voltage to the wire, we have also
studied the case where an additional constant voltage is

6475

applied. The methods of this paper can be applied equal-
ly well to this case, yielding similar bound-state motions.
The additional parameter adds the possibility of modify-
ing these states adiabatically during an experiment.

It is quite interesting to consider the possible mecha-
nisms that will limit the lifetime of the bound states.
First we must admit that in spite of all our preceding
theoretical and computer studies, we do not have a proof
of the possibility of absolute binding for infinitely long
periods of time for any classical or quantum-mechanical
motions that we have discussed. It is a conjecture that
the terms in the Hamiltonian beyond those of the Kapit-
za type result in secular phase perturbations only. Our
intuition that this is true in the classical limit is firmly
based upon computer simulations following the bound
system over millions of cycles.

Even if the classical trajectories could be shown to be
absolutely stable, it is clear that this will not be true for
the quantum-mechanical motion. Tunneling to classically
forbidden regions, where the expansion parameter is
large, can lead to transitions between Kapitza states and
ultimate loss of binding. The effect of tunneling to these
regions, or to the surface of the wire, can be probed ex-
perimentally. There is an additional quantum-
mechanical effect that we have not discussed that may
also play a role in the lifetime of stable states: in our
quantum treatment the charge on the wire was taken to
be a classical, time-dependent parameter. This is, of
course, an approximation. It must ultimately be con-
sidered as a quantum-mechanical dynamical variable in
its own right, and this can affect the stability of the atom-
ic states.

We are intrigued by the fact that the atom-wire system
may be investigated over a range of conditions spanning
classical to quantum-mechanical regimes. The existence
or interpretation of chaos in quantum systems is a topic
of current interest, and we expect the experimental and
theoretical study of the boundaries to motion governed
by the Kapitza picture to contribute to our insight here.

However, in the final analysis, we believe that the ulti-
mate utility of the new system we propose will depend
directly on the lifetime of those orbits we imagine to be
the most stable. Under favorable conditions, atomic con-
stants and interactions between surfaces and atoms may
be determined. Reference systems that depend on the
values of such constants could be established. Transport
of atoms in well-defined states over large distances or
containment over long times would be achieved. The
possibility of large numbers of atoms being contained
simultaneously must also be considered. In this connec-
tion it is extremely important to note that internal heat-
ing from interparticle interactions will be strongly
suppressed for neutral-particle confinement compared to
that in ion traps. The distinction between Bose and Fer-
mi particles must also be taken into account, and achieve-
ment of a bound, condensed state in the former case is an
exciting possibility. Confinement along the wire’s length
is then required as well, and we anticipate that nonunifor-
mities in the wire or modification of external-field-
forming surfaces will satisfy this requirement.

The general utility of the Kapitza picture in under-
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standing and unifying a number of diverse physical phe-
nomena perhaps also deserves some note. Strong focus-
ing in accelerators, channeling of charged particles in
crystal lattices, trapping of ions in the Paul trap, and the
Lamb shift of atomic physics as well as the new atomic
states we have introduced here may all be viewed as re-
sulting from the peculiar rectification of high-frequency
driving forces in dynamical equations of motion. We
hope our work will serve to promote interest in and un-
derstanding of this point of view.
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APPENDIX A: CLASSICAL TREATMENT

Here we shall give the explicit expressions for the
canonical transformations that lead to the Kapitza pic-
ture. We restrict ourselves to power potentials of the
form

V(X)<X/,

. (A1)
W(X)=<X'.
The generating function for the first transformation of
the classical treatment is

W'(y) sinwt

o . (A2)
y

F(Py,Y)=—Py¥S(V)— [dy

where the scaling functions S and T for coordinate and
momentum, respectively, are given by

) 1/2—))
S(Y)= 1—%_—#( Y) cosot ,

-, G=1/G—2) (A3)
T(Y)= 1—%€(Y}cos¢ot

Here the symbol j denotes the power of the interaction
potentials. For the atom-wire problem j =—2, and for
the Paul trap j =2. The generating function in (A2) re-
sults in the following relations between new and original
coordinates and momenta, Y, Py and X, Py, respectively,

1/(2—j)

x=¥sn=7 |1—-Y=2) «(¥) coswt ,

(A4)
Gj—1
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W'(Y) sinwt
P,= ——— = [T(Y)
x Yoy (
(i—2) G=D/G—2)
=Py |1— —'_L—e( Y) coswt
(j—1)
W'(Y) sinwt
- G—2) G, - (AS)
1— ?]',L_T)e( Y) coswt

From these expressions it can be seen that the first term
in the generating function accounts for extraction of fast
motion in the position coordinate, whereas the second
term represents a gauge transformation chosen to give a
conjugate momentum Py, which results in the simplest
form of the associated Hamiltonian. This gauge transfor-
mation accounts for subtraction of fast motion in the
momentum. [It should be noted that, depending on the
time, the coordinate transformation (A4) does not cover
the full X or Y axis. The maximum length of the missing
interval is closely related to the value of the expansion
parameter €.]

The second canonical transformation has the same
structure as the first one, although it looks more compli-
cated. This is due to the more-complicated analytical
expression—in terms of ¥ and W —for the time-varying
terms and to the presence of the spatially dependent mass
correction in the intermediate Hamiltonian Hy. We have

V ieap(2)

z
— f dz———“::——‘:—‘—z—
[T(zS(2))T(2)]

V . .
4Wsmwt —1sin2wt

X , (A6)
(]
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FIG. 6. Reduced eigenenergies 8. Circles show numerical in-
tegration of the Schrodinger equation (34). Lines show exact
WKB evaluation, which for the parameter range shown here
cannot be distinguished from the predictions of Eq. (36).
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" 1/(4=2))
_ 2i —4) Vkap(Z) 174
S(Z)= 1—22§_3; ;;‘:02 4——u—;coswt—%cos2wt ,
(2i—4) Vi) [ v (2j—3)/(2j —4) (A7)
T(2)= l—(2§_3) ;;';2 4Wcoswt—%cos2cot

For the transformation relations between final and intermediate coordinates Z and Y and between momenta Pz and Py
we then obtain

2/ —4) Via(2) v 1/(4—2j)
= - aj
Y=ZS(Z)=Z[1— (2§_3) MI;)Z 4—u—l- coswt — 1 cos2mt , (A8)
, 4L sinwr — 1sin2ot
Vkap(Z) w _
Y= Z— — — 2 T(Z)
[T(ZS(Z))T(2Z)] @
' (2j—3)/(2j —4)
=P, |1— (2j—4) Vkap(Z) 41 coswt — 1 cos2wt ’ ’
z (2j—3) Me? W +
. 2/ -4V (Z) 1/(4=2j) 1 Y(2—2)/(j —2)
— l~u coswt € 1Z 1————{—1(”7 4L cosmt—% cos2wt
-1 (2j—3)Mw w
) 4lsina>t —Lsin2wt
Vikap(Z) w 2
X " =372 =8 . (A9)
_(2j—4) VKaP(Z) 4-K coswt — 1 cos2wt @
(2j—3) Moa? w 4
The final form for the classical Hamiltonian is
_ oF _ P} P2 4i—5
HZ—HY+—a—t——ﬁ TV(Z)+Vgap(Z)+e(Z) Y coswt + Vi,,(Z) coswt—%j 2 + cos3wt 3 —4
6 34 W cos2m
(A10)

We consider it remarkable that there are no time-independent corrections of first order to the Kapitza Hamiltonian
which consists of the first three terms on the right-hand side of (A 10).

APPENDIX B: QUANTUM-MECHANICAL DESCRIPTION

The unitary operator in Eq. (22) results in the position and momentum operator transformations
X=YS8S(Y),

(B1)
1 W'(Y) sinot W'(Y) sinot
Py=— ————— |T(Y)+T(Y) |Py— —_—
2 TAY) TNy e
The unitary operator corresponding to the second canonical transformation is given by
) 4lsinwt —1sin2et
_ I VA VKap(z) W 2
U=exp|—— f dz s =5
# [T(zS(2))T(2)] o
1 Vikan(Z)  Vikap(Z) |4
i K K
Xexp | ——— Pz A;l;)z + A;l:oz Z 47 coswt — 4 coswt | | , (B2)
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which finally yields

—16-

r cos2wt |+ -+ . (B4)

—aU"
HZ:HY+iﬁUT=HKap+AHZ ,
with
AHZ=—ﬁ[P%e(ZHQPZe(Z)PZ+6(Z)P%]cosa)t
+€(Z)Viyp(Z) | cosot ‘;j :i + cosdor 7 1_4

i—1
3j—4 W

We end the quantum-mechanical description by considering the WKB approximation for Eq. (34) in more detail. We
form the phase integral and set it equal to a quantized volume in phase space,

172
_,3 2152
172 2 [ y tiyi—48 ] (n+H)m

& 3 1
d¢ |10+ ———+ = d — (BS)
f;l g 2§2 2§6 fyl 2y2 \/|umin|
The roots of the cubic function inside the square root are given by
yo=1+ cos %cos“l(l—282)+27ﬂ' , y1=1+ cos %cos“1(1—282)+477 , y2=1+cos |[Llcos ' (1—287) |,
(B6)
where the last two roots, y, and y,, are the inner and outer classical turning points, respectively.
The phase integral can be evaluated exactly in terms of elliptic functions to give
1=y [¥2= ¥ Y2~ (n+3)m
%‘/J’Z —JYo —K — — = (B7)
Y270 | Y27 Vo Y27 Yo Vi

Here the notation of [19] has been used.

The allowed energy values are obtained from this transcendental equation. Figure 6 shows plots of the energy eigen-
values for Eq. (34), obtained from numerical integration of this differential equation, numerical solution of (B7), and ap-

plication of Eq. (36).
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