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The impulse approximation for the Rydberg atom-atom collisions is analyzed on the basis of the Fad-
deev equations. A modified expression is derived for the cross sections, including the interference be-
tween the Rydberg-electron—perturber scattering and the ion-core—perturber scattering. This expression
is used for the calculations of the collisional quenching and elastic scattering in Rb(nS)-Rb and Rb(nP)-
Rb collisions. We use the electron-Rb scattering phase shifts obtained from ab initio close-coupling cal-
culations and their extrapolation, applying the modified effective-range theory. Our results show that
the impulse approximation agrees with the experimental data for the quenching cross sections at n > 20
but underestimates the quenching cross sections at lower n. The position of the maximum of the cross
section is in good agreement with experimental data. We also obtain reasonable results for the elastic
cross section at n > 20, but for the lower n the results are too large. The interference effect plays a minor
role in the process, which means that simultaneous electron-perturber and ion-perturber interaction is

unlikely.

PACS number(s): 34.60.+z, 32.70.Jz

I. INTRODUCTION

The theory of collisions of atoms in Rydberg states
with neutral atoms has been developed in great detail for
the case when the perturber can be modeled as a source
of a very short-range potential (Fermi approximation).
This allowed an explanation of the experimental data [1]
on collisional depopulation and line broadening of Ryd-
berg atoms when perturbed by rare-gas atoms. In con-
trast, when the perturber is an alkali-metal atom, the
theory is not as well developed. In this case the Rydberg
electron-perturber interaction has a very large radius due
to both a large polarizability of the perturber, and a low-
energy P resonance in electron-perturber scattering.
The Fermi approximation was shown [2,3] to be invalid
for the principal quantum numbers n up to 50. Two
nonempirical calculations [3,4] of the collisional broaden-
ing of Rydberg states have been performed which take
into account the long-range effects and the *P resonance.
Fabrikant [3] considered the broadening and shift of
Rydberg states in the asymptotic limit of the impulse ap-
proximation, which is called the Alekseev and Sobelman
theory [5]. More recently the problem of broadening was
considered in the adiabatic approximation [4]. This ap-
proach permitted us to explain the oscillatory depen-
dence of the width as a function of n as suggested by
Borodin and Kazansky [6]. In both cases ab initio
electron-atom scattering phase shifts were used.

Lebedev and Marchenko (7] calculated the quenching
cross sections for Rydberg atoms due to the interaction
with Na and Rb atoms employing the impulse approxi-
mation, but without using the approximate approach of
Alekseev and Sobelman. They used semiempirical
scattering phase shifts which were chosen to reproduce
experimental data for the quenching cross sections. Also,
they did not calculate the contribution of the electron-
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perturber interaction to the elastic cross sections since it
is small compared to the ion-core—perturber contribution
at n > 30 (the region of principal quantum numbers for
which the calculations have been done).

However, the importance of the e-B interaction in elas-
tic A **-B scattering increases rapidly when the principal
quantum number decreases. Omont [8] has shown that in
the scattering-length approximation the e-B contribution
to the elastic cross section varies as (n*)”* where
n*=n—2J is the effective principal quantum number, §
being the quantum defect. For the alkali-metal per-
turbers the e-B interaction becomes important for n < 30.
In this case the interference between e-B and A *-B
scattering may be essential. One of the major assump-
tions of the standard impulse approximation is statistical
independence of the e-B and A4 *_B contributions which
implies the condition (atomic units are used throughout
the paper)

2
rep<<nt, (1)

where r 4, =(wa/4V)!/3 is the Weisskopf radius of the

polarization interaction, a being the polarizability of the
perturber and V the relative A-B velocity. Condition (1)
is not satisfied for the alkali-metal perturbers if n <30.
Therefore, an investigation of coherence between e-B and
A 1-B scattering is important. In order to include this
effect, it is useful to rederive the impulse-approximation
formulas from the Faddeev equations [9]. This derivation
also gives an idea how the impulse approximation might
be improved. The Faddeev-Watson expansion [10] has
been used by several authors [11-13] for the problem of
Rydberg-atom —ground-state-atom collisions in order to
estimate the validity of the impulse approximation. Our
approach will be close to that of de Prunelé [12], but we
will start from the Faddeev equations containing all two-
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body interactions rather than from the Faddeev-Watson
expansion.

The main purpose of the present paper is an analysis of
the impulse approximation and the coherence effect for
the Rydberg-atom—alkali-metal-atom collisions for large
and intermediate (15<n <30) values of the principal
quantum number. As an example we have chosen
Rb**-Rb collisions because there are quite a few experi-
mental data available on the collisional depopulation
[14-16] and collisional self-broadening [2,17] of Rb. On
the other hand, the use of the ab initio e-Rb scattering
phase shifts, obtained from the close-coupling calcula-
tions [18] and modified effective-range theory [3], showed
good results for the high-n behavior of the collisional
widths and shifts [3] and allowed us to explain [4] semi-
quantitatively the oscillatory dependence of the width as
a function of n in the intermediate-n region.

II. FADDEEV EQUATIONS AND THE IMPULSE
APPROXIMATION

Let us consider the Rydberg atom A as a system con-
sisting of partices 1 (the ion core 4 ") and 2 (the Rydberg
electron). This system interacts with a particle 3 (the per-
turber B). Introduce the Jacobi momentum coordinates

mk,—m,k,
k= m,+m ’
1 2
(2)
(ml+m2)k3_m3(kl+k2)
Q3= .

m1+m2 +m3

The Jacobi coordinates with other indices could be ob-
tained by an appropriate interchange.

Introducing the two-particle Faddeev operators Tj;
and T'7 [19], we have the following set of equations:

T(12)=T12_TIZGO(T(13)+ T(23)) , 3)
T(13)=__T]3G0(T(12)+ T(23)) , (4)
T(23)=_TZSGO( T(12)+T(l3)) , (5)

where G, is the three-body Green’s function for nonin-
teracting particles, T, describes the initial bound state of
AT, and e has the form

2

T1y(ky,q93)=—8(q;—p) |le; |+ e, (kyy) s (6)

where p is the initial momentum of B relative to A4, ¢; is
the energy of the bound state, m,, is the reduced mass (in
our case m,~m,), and ¢, (k,,) is the initial bound-state
i
wave function in the momentum space.
T3 has the form
T13(k31, Q5 k31,0 E ) =113(k3p,K315€2)08(q3—q,) (D)

where

q3 my(m,;+my)
E_*z ,uz=—i—i——3 , 8)
2u,’ m;+m,+m;

t13 is the t operator for the two-body problem, and E is
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the total energy. T,, and T,; are defined in a similar
way.

Equations (3)—(5) should be solved for 712, 713 7(23),
Then the cross section for B- A scattering, accompanied
by the transition f<«i in the target, is

dos_ ;= B—(m”) Qm)iap' | TV, + T2, 9)

‘T-(’i)-xz_fq)f k21)‘l3) (kz],(]3)dk21dq3 ’ (10)
where
q)f(kzv%):‘f’ef(kzl)5((13_P') (11)

is the final-state wave function, p’ being the relative
momentum in the final state.

Equations (3)—(5) are very difficult to solve if even we
know all properties of the two-body operators #;;. When
the system (1-2) is the Rydberg atom, a reasonable ap-
proximation is to put T,,=0. This means that we
neglect the e-A4 © interaction during the 4-B collision,
although the momentum distribution of the initial and
final states is taken care of by T, and ® r- As aresult we
obtain two equations

T“3)=—T13GO(T,2+T(23)) , (12)
TP =—T,,Go(T\,+T"Y) . (13)

These equations are still coupled. It means that during
one A-B collision B can experience many collisions with
both e and 47, although e is considered now as a free
particle. Neglecting the coupling, we obtain two in-
dependent equations

TW=—T.,G, Ty, T®=—T)G,T}, . (14)

Equations (14) and (15) are equivalent to the impulse ap-
proximation which treats e-B and A *-B scattering in-
dependently. Its derivation from the Faddeev equations
(3)—(5) shows how it can be improved. However, even
Eqgs. (14) give more than the conventional impulse ap-
proximation, because after substitution of Egs. (14) into
Eqgs. (9) and (10) for the cross section, we obtain the term
describing the interference between e-B and A4 '-B
scattering which is usually omitted in the impulse ap-
proximation. In the remaining part of this section we
will obtain the explicit form of the inelastic and elastic
cross sections, including the interference effect.
From Egs. (6), (7), and (14) we obtain

, q
T3(k,,,q;)=1,; k31,k3l;E——2 2
X k, + | ) (15)
b |ky 1 R 94— P/ (>

where the arguments of the #,; operator should be ex-
pressed through k,; and q;

ms m(m,+m,+mjy)
21

k; = , 16
3 m1+m3 (m1+m3)(m1+m2)q3 ( )
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kot m, 17) Equations (21) and (22) can be reduced to the standard
=K m;+m, > impulse approximation for the B-4 * and e-B scattering,

and kj, can be obtained by using the equation q;=qs.
Similarly

2
' q1
T(ky,q3) =153 |Kj3, K3 E — 2uy

m,
X k, +——(q;—
., |k m1+m2(q3 p)| (18
where
m my(m;+m,+m,)
ky=——"—ky—————~>—2_q (19
m,+m;, (my+m3)m,+m,)
—ky + 20
q; =Ky m1+m2q3’ (20)

and kj; can be obtained from the equation q}=gq;.

Now we substitute these expressions into Eq. (10) and
use the following additional conditions.

1) my,my>m,.

(2) p,p' >>k,;. This condition means that the relative
A-B momentum is much greater than the electron
momentum.

(3) ky;/m, >>p/m . This means that the typical elec-
tron velocity is much greater than the collision velocity.
Both (2) and (3) are well satisfied for the thermal col-
lisions.

Then we have

, k3,
fii:_fd’:f(kﬂ)tn pp;E— 2m,
m,
X, |ka— Q |dk, , (21)
1 ml

where Q=p—p’ is the momentum transfer,

TP == [ 61 (k + Qs

2
tok E—P-
k2] Q’ ZI’E 211‘1 ]

X (K;))dky, . (22)

__1 p' 5
dan'l’e»nl_zl—_*_-l_ p y‘ldﬂpp”%,

where k=Kk,,, and f,z,f 4 4 p are scattering amplitudes.
In the case of inelastic collisions, the 4 T-B contribu-
tion is very small [21,22] compared to the e-B contribu-
tion. An estimate expression [7] based on the dipole ap-
proximation for the calculation of the atomic form factor
yields o'1% <10 A? for Rb-Rb collisions at n =30,
which is four orders of magnitude less than the e-B con-
tribution. Therefore we will include only the e-B contri-

f¢:f(k+Q)feB(k’*’Q’k)‘i’si(k)dk"'—,‘l—lfA +B(p,,P)f¢:f(k)¢s‘. lk—-% ]dk

respectively, if we use the on-shell reduction of the two-
body ¢ operators. This reduction actually consists of two
steps. For the t,; operator we have to make the follow-
ing assumptions.

(1) Assume that p=p’. This condition is satisfied very
well since the momentum transfer Q is small compared

top
(2) Assume that
k2 2 mym
— 21 = .2_’ u= _Tis . (23)
2m, 2u m;+m;

This condition generally cannot be justified since
E=p?/2u+e,¢, <O0.

For the t,; operator we have to assume the following.

(1) |k, =1k, +Q|. This condition is less satisfied than
the similar condition for the 4 *-B scattering. However,
since the main contribution to the integral cross section is
due to Q < 1/n? [20] and the typical value of k,; is 1/n,
this condition is reasonable.

2) E—p?*/2u=k3,/2m,. Again, this reduction can-
not be justified for the same reasons as for the 4 "-B
scattering.

We see that invalidity of the second on-shell reduction
makes the impulse approximation questionable. de
Prunelé [12] investigated the error induced by the second
on-shell reduction considering a model separable poten-
tial. He found that the error associated with this reduc-
tion is of the order of A /n, where A is the scattering
length. Therefore the on-shell reduction in the impulse-
approximation formula is valid if n>>A4. For the
thermal-energy collisions of Rydberg atoms with the
alkali-metal atoms, this condition leads to the same re-
striction on n as the single-scattering approximation [4,8]

YeB
27V’

where r,p is the effective radius of the e-B interaction and
V=p /u is the collision velocity.

After the on-shell reduction, the differential cross sec-
tion for the n'l’«—nl transition averaged over m and
summed over m' can be written in the form

n3> (24)

2

’

(25)

[
bution for inelastic collisions. In this case calculations of
the total cross section

inel —
Onl = z O n'l'—nl
n'l'
can be performed using the quasicontinuum approxima-

tion and the closure relation for the momentum-space
wave functions, as suggested by Lebedev and Marchenko
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[7]. Their result is

inel — 1 *®
Unlel V2 2: (nl)3 j;mindEEI/ZIgnl(‘:)|2
n

f Vmax
-1

)1/2 lfeB(8 V)I

(26)

where g, is the radial part of the electron wave function
in the momentum space as a function of e=k2/2m,,
fep(g,v) is the e-B scattering amplitude as a function of €
and v= cosf, where 6 is the scattering angle,

Emin=|AEp | /802, Ag,p bemg the energy defect for the
transition nl/—n’, and v_,,=1—2¢.,,/¢. The summa-
tion in Eq. (26) goes over all hydrogenlike n'l’ states
(3<!"=n'—1) with negligible quantum defects. The
contribution of the states with low [’ is negligible [7].
However, the case of elastic scattering n’l’=nl should be
considered separately. Generally the exact evaluation of
the first integral in Eq. (25) is a complicated task. How-
ever, in the case of s states the three-dimensional integral
can be reduced to a double integral with the result

2md
ans<—ns=
p2
1 o |
x [@dQ Q)+ S 5P QF m—l' ,
(27)
where
G(Q)=4 [ 8ulkfua [k, XL g (K rdp k7 ak
(28)
(k'?=k?*+Q?+2kQu, p= cosp
where S is the angle between k and Q and
F(K)=(nle™®*|n) (29)

is the atomic form factor which can be put equal to 1 if
n*K =n2Q/m, <<1[20].

III. SCATTERING AMPLITUDES

As soon as the on-shell reduction of the ¢ operators has
been made, we need e-B and A *-B scattering ampli-
tudes. As in Refs. [3,4] we used the first four partial e-Rb
scattering phase shifts calculated by the extrapolation of
the close-coupling phase shifts [18] down to low energies
using the modified effective-range theory [3]. These
phase shifts are presented in Fig. 1. The low-energy be-
havior of the 3S phase shift is dominated by a virtual state
yielding the scattering length 4=—16.9 a.u. The
scattering length for the 'S scattering is 4 =2.03 a.u.,
and the low-energy behavior of the P phase shift is dom-
inated by a resonance with the position £=0.023 eV and
width I'=0.025 eV [3].

3.6 T T T T T —
3.2
28+t
Taaf

£20F

HI

D16 15 1

PHASE

1.2
0.8 B
0.4 |

0.0
0.00 0.05 o1o 0.15 0.20 025 030 035 040 045 0.50
ENERGY (eV)

FIG 1. Electron-rubidium scattering phase shifts.

For the calculation of the A4 *-B scattering amplitude
we used the quasiclassical expression [23] for scattering
by the polarization potential —a /2r*

Faaplk,0)= i J oM~ 0r(a0dn, GO)

where g =maup?/4 and J,, is the Bessel function.
If 6>>g !/ integral (30) can be calculated by the
stationary-point method with the result [24]

(3g)!* . 3/4,1/4
fasn ————21/2 P exp[4i(6/3)°""g'"*] (31)
and at 6=0
fa+p(k,00= —pr( L)e im/3g2/3 (32)

For 0<05g !/ integral (30) was calculated numerical-
ly.

The scattering amplitude for =328 a.u. (the value
used in our calculations) is presented in Fig. 2. The range
of angles making the most important contribution to
O ,sns lies around 8~1072, which corresponds to the
momentum transfer Q ~ 1072 a.u.

AMPLITUDE (105 a.u.)
o
[o4]

0.4

0.0

-0.4

0.000 0.002 0. 006 0.008

0.004 0.010
SCATTERING ANGLE (rad)

FIG. 2. The real (solid curve) and imaginary (dashed curve)
parts of the Rb*-Rb scattering amplitude. The Rb™ ion is
modeled as a point charge.
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IV. RESULTS AND DISCUSSION

In Fig. 3 we present the cross sections for the inelastic
Rb(nS)-Rb collisions. Since the quantum defect for the
nS states is close to integer (§,=3.133), the n —3«-n
transition is dominating. For example, at n =30

Opn—ben Op—2cn

=0.0053, =0.0019 . (33)

g

n—3«n n—3«n

At n = 30 our curve has the same form as the semiempiri-
cal curve of Lebedev and Marchenko [7], but gives values
which are about a factor of 2 smaller. The same relation
is observed between our results and the experimental data
[16] in this range of n. However, our results agree much
better with the data on collisional broadening which we
obtained from Ref. [2] using the relation between the col-
lisional width ¥ and the total scattering cross section o

y=N(Vo), (34)

where the angular brackets denote the average over the
thermal energy distribution. We also assume that the
elastic-scattering contribution to y is small at large n. In
actual calculations we did not perform the averaging over
the thermal distribution, but did calculations for two
values of V corresponding to the mean velocities ¥ at
temperatures 7=420 and 530 K. The velocity depen-
dence of the results appears to be very weak which
justifies the approximation

At n =22 our results are small compared to both sets of
experimental data. Apparently, the impulse approxima-
tion underestimates the quenching cross sections in this
region. Moreover, the elastic contribution becomes
significant here, and the disagreement with the broaden-
ing data is more essential. It is worth noting that the
theoretical results [3] obtained from Alekseev and
Sobelman’s [5] theory of broadening strongly exceed the

quenching cross section (10-12 ¢mz2)

10 15 20 25 30 35 40 45 50
n

FIG. 3. The quenching cross sections for the Rb(nS)-Rb col-
lisions. Solid curve, calculations for the collision velocity corre-
sponding to 7=530 K. Long-dashed curve, the same for
T =420 K. Dashed-dotted curve, cross sections, corresponding
to a *P bound state of Rb~ with binding energy 7 meV. Short-
dashed curve, the total cross sections obtained from the
broadening data [2]. Squares with error bars, experimental data
[15,16] on the quenching cross sections.
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experimental data in this region of » and do not give the
maximum at n =23. The position of the maximum given
by the present calculations agrees very well with the ex-
periments. However, the theoretical curve does not show
the oscillatory dependence on # in the region of the max-
imum.

The form of the curve results from the competition be-
tween two factors. At large n the probability of e-B col-
lisions becomes less likely due to the large size of the
Rydberg atom. At small n the perturber becomes less
capable to induce the transitions between nondegenerate
ns and n'l’ levels because the energy defect Ag,.,; in-
creases. It could be shown [25] in the scattering-length
approximation that the maximum of the quenching cross
section appears at A= 1, where

n’nl|

v

The position of our maximum agrees quite well with this
estimate. It means that the form of the curve oi"fi(n) is
insensitive to the energy dependence of the e-B cross sec-
tion. For a noticeable influence of the latter on the form
of the curve o' the resonance width should be small
compared to the distance between nodes of the
momentum-space wave function of the Rydberg elec-
tron[3]. This is not the case in our calculations. Howev-
er, the resonance in the e-B cross section increases the
magnitude of the quenching cross section.

To demonstrate these features we also present in Fig. 3
(dashed-dotted curve) results obtained from 3P phase
shifts without the resonant behavior. We assume a
bound *P state with binding energy 7 meV instead. The
curve has essentially the same form as in the case of the
resonance, but the magnitude of the cross section is much
smaller.

Since at low n the multiscattering effect becomes more
important, the impulse approximation in this region un-
derestimates the ability of the perturber to induce the en-
ergy transfer. Therefore the calculations give too low
values at small n.

In Fig. 4 we present the results for the quenching of

n|Ae
.

§
S 40 b Rb(nP)-Rb .
o ]
s 4
k]
b3 2
12]
12
e 1
o
o
£ [
G 0.4
C
Lo
3
T 0.2
0.1

10 75 20 25 30 35 20 45 50
n
FIG. 4. The quenching cross sections for the Rb(nP)-Rb col-
lisions. Solid curves are contributions due to the n—3<«n
(curve 1) and n —2<—n (curve 2) transitions. Dashed curve, total
theoretical quenching cross sections. Squares with error bars,
experimental data [14].
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FIG. 5. The elastic cross sections for the Rb(nS)-Rb col-
lisions. Solid curve, total coherent cross section. Short-dashed
curve, e-Rb contribution. Dashed-dotted curve, incoherent sum
of the e-Rb and Rb™-Rb contributions. Long-dashed curve, e-
Rb contribution calculated in the scattering-length approxima-
tion [8]. Squares, “experimental” results obtained from the
broadening data [2] and quenching cross-sections data [15] ac-

cording to Eq. (37).

the nP states of Rb. Experimental data [14] are available
only in the low-n region where they strongly exceed the
theoretical results. In this case the quantum defect
6,=2.65 differs substantially from an integer, therefore
the contribution of the n—2<«-n transition is non-
negligible.

In Fig. 5 we present the elastic cross sections for the
Rb(nS)-Rb collisions in the range of n where the contri-
bution of the elastic scattering is noticeable. Omont’s [8]
estimate for the e-B contribution to the cross section fol-

lows from the scattering-length approximation f=— A4
and yield
72
otlp=—>T— (36)
“ VAn—8)

where 47 is the square of the scattering length averaged
over the spin states for the e-B system. In our case
A4%=215.2.

The proper inclusion of the energy dependence of the
scattering amplitude increases the cross section by a fac-
tor of 2. The interference between the e-B and 4 *-B
scattering leads to a further increase of the cross section
for the whole range of n values considered, and does not
give any nonmonotonical dependence of the cross section
on n. It is interesting to note that the coherent 4-B
scattering cross section exceeds the incoherent sum
oy +a‘f1 +.p- In order to estimate the relation between
the experiment and the theory, we have calculated the
“experimental” elastic cross sections at n =14, 17, and 19
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using the relation
o'=g—g™, (37)

where the values of o were taken from the broadening
data [2] and those of ¢'™! from the quenching data [15].
This estimate is very crude and may not give reliable re-
sults. For example, at n >30 the quenching data [16]
yield the values which exceed those obtained from the
broadening data [2] (see Fig. 3), which means that the ex-
perimental errors exceed the elastic-scattering cross sec-
tion in this region. However, it is reasonable to conclude
from Fig. 5 that the impulse approximation overestimates
the elastic-scattering cross sections at n <20.

V. CONCLUSIONS

We have presented the results of ab initio calculations

of Rydberg-atom-alkali-metal-atom scattering in the im-
pulse approximation. The impulse approximation gives
good results for inelastic cross sections at n >20 but un-
derestimates them for lower n values. The elastic-
scattering cross sections appear to be too large at n <20
in spite of inclusion of the interference between the e-B
and 4 "-B scattering. Both cross sections do not exhibit
an oscillatory dependence on n.
We conclude again that the oscillatory structure of the
collisional widths observed in the experiments [2,17] is
due to multiple e-B scattering which occurs at low rela-
tive A4-B velocities [4] not satisfying condition (24). The
too low values of our cross sections at low n also are due
to neglect of the multiscattering effect. In order to in-
clude this effect in the Faddeev equations (3)—(5) we have
to leave there the operator T',. As we see from the
present results, the simultaneous e-B and 4 *-B interac-
tion is very unlikely, therefore we can neglect T;; when
considering the e-B scattering. As a result we obtain the
equation for 7?3

TP=TZ) +T,,G,T,G,T'*, (38)

where T%ﬁ,ﬁ is the T'*¥ operator in the impulse approxi-
mation. The Faddeev-Watson expansion used by de
Prunelé [12] is equivalent to this equation. It will be in-
teresting to compare the solution of this equation for the
case of an alkali-metal perturber with the results of Ref.
[4] obtained in the adiabatic approximation.
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