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Amplitude universality for driven interfaces and directed polymers in random media
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We present accurate estimates for the prefactors of the second and third moments of the height and

free-energy fluctuations, as we11 as the leading correction to the growth rate and free energy per unit

length, obtained from extensive simulations of a wide range of one-dimensional models of growing inter-

faces and directed polymers in a random environment. When scaled by the appropriate model-

dependent parameters the amplitudes reduce to universal numbers which characterize the strong-

coupling fixed point of the equation of Kardar, Parisi, and Zhang [Phys. Rev. Lett. 56, 889 (1986)]. To
check the expected scaling we use models for which the model parameters can be computed analytically.
For other systems, such as ballistic deposition, the restricted solid-on-solid model, and the finite-

temperature directed polymer, the parameters are determined numerically from steady-state properties.
Apart from the standard transient simulation which starts from a flat interface, we also report results for
time-dependent correlations in the steady state, which give rise to different universal amplitudes. We

compare our results with recent predictions arising from replica calculations and dynamic

renormalization-group treatments, finding agreement in the latter but severe discrepancies in the former
case. We speculate that the failure of replica theory may be indicative of replica symmetry breaking.

PACS number(s): 02.50.+s, 05.40.+j, 61.50.Cj, 75.60.Ch

I. INTRODUCTION

In the past five years following the seminal work of
Kardar, Parisi, and Zhang (KPZ) [1]the kinetic roughen-
ing of driven interfaces has aroused a tremendous amount
of interest in the statistical-physics community [2].
Indeed, the KPZ theory provides a quantitative under-
standing of some of the fascinating structures generated
in a broad range of stochastic nonequilibrium processes
[3]. Moreover, kinetic roughening is of relevance to
many applied fields ranging from crystal-growth [4] and
deposition [5] processes to two-phase flow in porous
media [6]. Hence long-standing problems in materials
science, such as the columnar growth morphology ob-
served in thin-film deposition [7], can be expected to
benefit from our improved understanding of kinetic
roughening. Finally, workers with a background in the
statistical mechanics of disordered systems have been at-
tracted to the field by the close formal relation between
moving interfaces and directed polymers in a random
medium [8], bringing with them a wealth of powerful and
inventive methods [9—12].

Here the term kinetic roughening implies the process
by which the noisy local displacement dynamics of an in-
terface translates into scale-invariant fluctuations of the
interface position. In the commonly employed simula-
tion scheme the interface is prepared in a flat state at
time t=0 and the evolution of the fluctuations is moni-
tored by measuring the width

g(t, L ) =L &f ( t /L'), (2)

where the scaling function f(x ) saturates at large x and
f(x~O)-x~~'. The width grows as t&~' at early times
and saturates at a value proportional to L~. The ex-
ponent g is called the roughness or wandering [14] ex-
ponent. The two scaling exponents in (2) satisfy the rela-
tion g+z =2 [15—17].

A specific symmetry of one-dimensional interfaces
[18,19] forces the roughness exponent to take the value
g= —,

' familiar from thermal equilibrium, and hence z =—',
exactly [1]. Much of the previous numerical work has fo-
cused on obtaining accurate estimates for the scaling ex-
ponents in dimensions d=2 and higher [20,21]. In the
present paper we return to the one-dimensional case to
look for universal quantities other than the scaling ex-
ponents which can be extracted from theory and simula-
tions. Specifically, we investigate the prefactors of the
asymptotic power laws governing the divergence of the
interface width (1) and higher moments of the height fiuc-
tuations. Our motivation is twofold. First, in experimen-

g=([h(x, t) —(h(x, t))] )'i

where h(x, t) denotes the height of the interface above a
point x on a d-dimensional substrate, at time t. The
width grows with time as a power law up to a saturation
time that scales with the substrate size L as L', where z is
the dynamic scaling exponent. The dependence on t and
L can be summarized in the scaling form [13]
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tal applications [4,6] it is important to understand how
these amplitudes depend on the system parameters in or-
der to estimate the range in which to expect the asymp-
totic power laws. Second, since the scaling exponents in
one dimension are basically determined by the sym-
metries of the problem, the fact that different models
show the same asymptotic scaling gives only a weak indi-
cation of the presence of true universality. Technically
speaking, the existence of several fixed points with identi-
cal scaling exponents is a conceivable scenario [22] in the
renormalization-group context [1,11,17] which can be
ruled out only by demonstration of amplitude universali-
ty.

DifFerent sets of amplitudes are associated with the two
asymptotic regimes combined in (2). Since we wish to
characterize the full probability distribution of the height
fluctuations, we define one set of amplitudes associated
with the transient regime t (&L',

universality class. In Sec. V the connection to directed
polymers in a random medium is outlined, the relevant
parameters are identified, and numerical estimates of the
amplitudes are presented that agree with the results ob-
tained from the growth models. In Sec. VI we abandon
the conventional setup of starting from a flat interface,
and investigate instead dynamic fluctuations in the sta-
tionary regime. This leads to a different set of ampli-
tudes. Finally in the last section we conclude by compar-
ing our numerical results to existing theoretical predic-
tions. Some technical details concerning the numerical
measurement of the amplitude b„defined in (7) are dis-
cussed in an appendix.

II. MODEL-DEPENDENT PARAMETERS
AND UNIVERSAL AMPLITUDES

According to Kardar, Parisi, and Zhang the local posi-
tion h(x, t ) of a moving interface satisfies [1]

a„= lim lim t "~ ([h(x, t) (h(x—, t)&]"&, ,
f —+oo L, ~oo

(3)
—h(x, t)=uo+ —(Vh ) +vV h+rt(x, t),a A 2 2

Bt
' 2

where the first two terms on the right-hand side arise
from a gradient expansion of the macroscopic
inclination-dependent growth rate [25] and the last two
terms describe the microscopic growth-rate fluctuations.
The noise g is Gaussian with zero mean and variance

where (X"&, denotes the nth cumulant [23] of the ran-
dom variable X, and one set associated with the station-
ary regime t ))L',

b„= lim limL "~ ([h(x, t) (h(x—, t)&]"&, .
L, —+00 f~OO

(4)

(q(x, t)rt(x', t') & =D5 (x—x')5(t t') . — (9)
Comparing with (2) it is clear that lim „f(y) =b& and

f (y) =a z~ y
'~ for y —+0. It will turn out that, due to the

special structure of the one-dimensional problem, the
static amplitudes b„are trivial, while the dynamic ampli-
tudes a„contain nontrivial information about the KPZ
fixed point.

Another quantity of interest is the leading correction
to the asymptotic growth rate v „=lim, L „(Bh /Bt &.

Two of us have recently shown that [24]

The major simplifying feature in d = 1 is that the station-
ary height fluctuations are independent of the nonlinear
term in (8), and hence all static (stationary, equal time)
correlation functions can be easily computed [18,19].
The stationary distribution is Gaussian, with the variance

lim & (f(k, t)~ &= D
2vLk 2

(10)

for the discrete Fourier modes f(k, t ), k =2n m /L,
m = L/2, . . . , ——1, 1, . . . , L/2. Consequently, the sta-
tionary height-difference correlation function in an
infinite system is

Ci, (r) = lim ( [h(x+r, t ) —h(x, t )]~&= Ar
t~ 00

for large r, with6a„= lim lim t ~ ((Bh/Bt &
—v„)

g~ 00 g~ 00

for one-dimensional interfaces, where f(y) =const for
y »1 and f(y)-y for y «1. This leads to the am-
plitudes

and

b„= lim lim L ( ( Bh /Bt &
—v „),

I.~ 00 t ~ 00
(7)

hence b„=lim„ f(y) and a„=lim y ~~ f(y).
The amplitudes defined above are not universal as they

stand: They contain model-dependent parameters that
have to be determined in order to extract universal num-
bers. The relevant parameters will be identified in the
next section, and it will be shown how they can be nu-
merica11y measured for a given growth model. To avoid
numerical uncertainties associated with the determina-
tion of these parameters, we have investigated a family of
models for which they can be derived exactly. This will
be described in Sec. III. Section IV summarizes our nu-
merical estimates for the universal amplitudes. In partic-
ular, we find that all growth models belong to a single

D
2v

(12)

and the stationary width in a finite system with periodic
boundary conditions is

' 1/2

lim g(t, L)= A L 1/2

12
(13)

b = ——((Vh) &=- A. A
U 2

(14)

for large L, i.e., b~= A/12. The Gaussian character of
the stationary distribution implies that all higher cumu-
lants vanish, b„=O for n )2.

The finite-size correction (5) arises from the fiuctuation
contribution to the growth rate obtained by averaging the
right-hand side of (8). Using (10) it follows that [24]
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From a practical point of view, the results (11), (13), and
(14} for the static amplitudes provide us with a simple
method to numerically determine the values of A and A.

for any model of interest. In addition, A. can be deter-
mined directly from the inclination dependence of the
growth rate. Indeed by imposing a small tilt
h (x, t )~h (x, t ) +ex in (8) and computing the response in
the average growth rate we find [25]

X=U'„'(0) . (15}

These ideas will be put to work in Sec. IV.
In the transient regime (10) takes on the dynamic scal-

ing form [26—28]

(~h(k, t)~ )= g[(g A)' kt 3]
2vgk 2

(16)

where g is now a uniuersal (model-independent} nontrivial
scaling function. The height fluctuations in this regime
are no longer expected to be Gaussian, and hence the
higher moments are not related to the variance (16) in

any simple way. In particular, since the nonlinear term
in (8) breaks the h ~—h syminetry, odd moments may
become nonzero. Nevertheless the higher moments are
expected to satisfy scaling relations similar to (16). Un-
der this assumption it follows that the general form of the
transient amplitudes is

and

a„=(~k~ A )" c„

a„=(~A, A )' c, ,

(17)

(18)

where the absolute values of c„and c„are expected to be
universal numbers. The signs of c„(for n )2) and c, are
not fixed a priori, but it is clear from the symmetry of (8)
that they have to be determined by the (model-dependent

[25]) sign of A, . It has been shown previously [24] that the
sign of c, is opposite to the sign of A, [see also (14)].

Both c2 and c, can be related to the scaling function g
of the variance (16). Going to the continuum limit in k

one obtains

c, = f dx—1 ~ g(x)
7T 0

(19)

and

~c„~ = f dx [1—g(x)] (20)

c2Ic, I

= =0 079 58
1

4~
(21}

independent of the width a.
The main point of these considerations is that all am-

plitudes can be expressed in terms of only two model pa-
rameters, the spatial correlation function amplitude A

and the KPZ coefficient A, . In the context of the KPZ
equation (8), this implies that the parameters v and D ap-

[recall that lim g(y)=1 by definition]. Assuming a

Gaussian shape for the scaling function, g (x)= 1 —e
leads to the simple relation

(23)

which leads to g)=(A' ~i, ~t) and g=(A ~A, ~t)'
The same reasoning carries over to higher-dimensional
interfaces, where the scaling exponents g and z are not
known exactly. Defining the stationary amplitude A

through C„(r)=A ~r~
~ we find g„=(A' ~A, ~t)' ' with

z =2—
g and, using the scaling relation, g= ( A '~~~A,

~
t )~~'.

Hence the general expression for the scaling parameter is

(24)

We note, however, that the relation between A and the
parameters in the KPZ equation is not as simple as (12) in

higher dimensions. In particular, A is expected to de-
pend on A, .

III. SINGLE-STEP MODELS

It is useful for our purposes to start out with a family
of models for which the parameters A and A, can be ob-
tained analytically. The nearest-neighbor height
differences (step heights) tr„=h„+,—h„, x =1, . . . , L, in
these models are restricted to the values + 1 or —1, and
hence can be conveniently thought of as "spins" [15,30].
Particles are added, h„~h +2, at local minima where
(o„„o„)= (

—1, 1), and the spins at sites x —1 and x are
exchanged by the addition. The total magnetization is
thus conserved by the dynamics. Periodic boundary con-
ditions are used for the spins. Let %=X+—X denote
the excess number of + spins, which is fixed by the initial
configuration. The tilt of the interface is then
u =(o„)=N/L and the height variables satisfy helical
boundary conditions, hz+, =h, +¹If the rate of add-

ing particles is chosen to be equal at all eligible growth
sites, it is straightforward to show [15] that all
configurations with the prescribed value of N have the
same weight in the steady state of the dynamics. This im-

plies that

A = (cr' ) —(o.„)'=I —u' . (25)

The density of growth sites is (1—u )/4 and, since the

pear only in the combination D/v. The nontrivial dy-
namic amplitudes (17) and (18) are governed by the single
scaling parameter

(22)

In particular, the nth cumulant diverges as (8t )"~ in the
transient regime, with a universal prefactor c„.

It is instructive to rederive this result from a simple ar-
gument developed previously [7,29] to demonstrate the
scaling relation g+z=2. At a given time t «L ~ the
interface is rough on all scales below the dynamic corre-
lation length g~~(t) A. t smaller scales the height fluctua-
tions are stationary, which implies that the asymptotic
form (11}of the height-difference correlation function can
be used to estimate the width as g = A g~~. We consider a
typical interface fiuctuation, which is a hump of width

g~~

and height g. It is readily shown [7] that such a hump
widens, under the action of the nonlinear term in the
KPZ equation (8), according to
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addition of a particle increases the height by two, the
inchnation-dependent growth rate is given in units of the
rate of particle addition by

boring spins o.„2and o. +&. Specifically, the rates cor-
responding to the various local spin configurations are
given by

v„(u)= —,'(1 —u ) (26}

so A. = —1 independent of u. Hence the simplest way to
vary the scaling parameter 8 is by tilting the surface.

Gates and Westcott [31] generalized the single-step
model by allowing the growth rate at a given local
minimum (o„&,o„)=(—1, 1) to depend on the neigh-

R (1,—1, 1, —1)=min(l, e~)

R( —1, —1, 1, 1)=min(l, e ~)

R( —1, —1, 1, —1)=R(1,—1, 1, 1)

=
—,'[R(1,—1, 1, —1)

+R( —1, —1, 1, 1}].

(27)

This choice of rates guarantees that the steady state of
the spin system is the Gibbs state of the one-dimensional
Ising model at reduced inverse temperature ~P~ [31,32).
The Ising model is ferromagnetic for P & 0 and antiferro-
magnetic for P&0. For large positive P the spins are
strongly correlated and the interface consists of large
stretches of constant slope, i.e., extended hills and valleys
[Fig. 1(a)]. Similarly for large negative P the interaction
makes the interface rather flat [Fig. 1(b)]. This is
reflected in the simple result for the stationary correla-
tion function amplitude at zero tilt [31]

(28)

The growth rate at zero tilt is given by [31]

e
—

IPI ~2

1+8
(29)

128 LATTICE UNITS

Using the Ising steady state the inclination dependence of
both A and v„can be worked out [33]. The resulting
variation of A, with P is shown in Fig. 2. It should be not-
ed that A, changes sign at P=P, = —21n(3). Similar be-
havior has been found in other growth models [34].

It is evident from Fig. 2 that the regimes of large posi-
tive and negative P are qualitatively difFerent in the sense
that A » 1 » A, for P» 1 while A « 1 « A, for P « —l.
On the other hand, the variation in the scaling parameter
8 is rather modest for reasonable values of P. In the limit
P~ —ac the dynamics reduces [31] to the polynuclear

A

CO

E
O
o
CL

4—

0—

128 LATTICE UNITS

FIG. 1. Interface structures obtained from small-scale simu-
lations carried out to illustrate the model of Crates and Westcott
[31]. (a) The strongly ferromagnetic case (P=4) and (b) the
strongly antiferromagnetic case (P= —4).

FIG. 2. Analytical results for the static correlation-function
amplitude A, the KPZ coeScient A, and the scaling parameter
8= A ~A,

~
of the Cxates-Westcott model. The transition point P,

where A. goes through zero is indicated by an arrow.
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growth (PNG) model [35], in which islands nucleate at a
rate p=e~&(1 and then grow sideways at unit speed.
The regitne of large negative P is therefore more
efficiently accessed by directly simulating a discretized
[36] PNG model. In the limit of small nucleation rate it
can be shown [36] that A =&2p and A, = I/&2p, hence

(30)

which can be made arbitrarily small. In practice, p is
limited by the requirement that the average step spacing
l = 1/A remain small compared to the substrate size.

IV. NUMERICAL RESULTS FOR GROWTH MODELS

In addition to the models discussed in the preceding
section, we have investigated the restricted solid-on-solid
(RSOS) model of Kim and Kosterlitz [20], and square-
lattice ballistic deposition with sticking at nearest-
neighbor (NN), and nearest as well as next-nearest-
neighbor (NNN) columns [15]. For these models A was
determined numerically from the stationary height-
difference correlation function (11), and A, was extracted
from the stationary velocity-correction amplitude (14) us-

ing the numerically determined value of A, i.e., the scal-
ing parameter (22) was defined through 8=2A Ib, I. Ex-
amples of the kind of data we have used are shown in Fig.
3. The results are summarized for future reference in
Table I. We also include estimates of A, obtained by
directly measuring the inclination dependence of the
growth rate [25]. The value of A can alternatively be
determined from the stationary width amplitude (13),
which gives identical results within the statistical uncer-
tainties.

These uncertainties vary substantially from model to
model. Quite accurate values for A and A, , which are in
excellent agreement with the analytical results presented
in Sec. 3, can be obtained from the Gates-Westcott model
for small values of P. For the RSOS model we estimate
that the uncertainties in A and A, are less than +10%.
For the NN and NNN ballistic deposition models it is
much more difficult to approach the asymptotic
(t ~ Oc, L ~ ac) limit and the uncertainties are larger than

10%, even for simulations in which as many as 5 X 10'
particles are deposited.

There is a subtle time-scale effect involved in measur-
ing the stationary velocity-correction amplitude for reac-
tion limited models [25) (such as the single-step models
and the RSOS model), which is discussed in the Appen-
dix. In general, however, the choice of time scale (which
is largely arbitrary for the models of interest here) does
not affect the estimation of the amplitudes (3) and (6), as
long as the choice is made consistently for all measure-
ments on a given model. The reason is that time t ap-
pears in the combination kt in all observable quantities
[cf. (17) and (18)]. Since )(. is the second derivative of the
growth rate with respect to inclination, cf. (15), any re-
scaling of time rescales the growth rate and hence A, as
well, leaving A,t invariant.

The cumulant amplitudes (3) were measured in simula-
tions on very wide substrates (up to L =2 '=2097 152) in
order to avoid saturation effects. In some cases better

scaling was achieved by using many (typically 200) in-
dependent runs on smaller substrates (L =10000). The
number of particles added during a simulation ranged
from 2X 10 for the PNG model up to 5 X 10' for NNN
ballistic deposition. We have taken care to only use data
that were as far as possible within the asymptotic scaling
region, since otherwise large uncertainties in the ampli-
tudes result. In particular, this has prevented us from ex-
ploring the region close to the critical point P=P, of the
Gates-Westcott model (cf. Sec. III), where A, vanishes and
therefore the time required to reach the asymptotic re-
gime diverges. An example of the data used to determine
a2 and a& is shown in Fig. 4(a). In determining the
finite-size correction amplitude (6) we have used the fact
that the asymptotic growth rate U „ is known exactly for
the single-step models (cf. Sec. III). For the other models
a„ is determined by adjusting the asymptotic growth rate
U „ to optimize the expected scaling (5) of the correction
[Fig. 4(c)]. Alternatively a linear fit of the time-averaged
growth rate ( h ) /t versus t ~ can be used [Fig. 4(b)].

Our results for the Gates-Westcott model are shown in
Fig. 5. The second-cumulant amplitude was measured in

0.9
I I I I I I

I
I

0.48

0.46—

O
QJl

0.42 =-

(b)
0.40

0.00 0.02 0.04 0.06
1 L

0.08 0.t 0 0.12

FIG. 3. Measurement of the static amplitude A and the
coefficient A. for the restricted solid-on-solid model [20] with a
maximal nearest-neighbor height difference of unity. (a) The
determination of A from the height-difference correlation func-
tion Cz (x) defined in Eq. (11), on a substrate of size
2' =262 144. The asymptotic behavior CI, -x has been divided
out. The correlation function is shown at six stages during the
deposition process. The dashed horizontal line indicates the
value estimated for A. (b) The stationary growth rate as a func-
tion of the inverse system size. The dashed line indicates a
linear least-squares fit to the data, the slope of which yields our
estimate for b, = —Ak/2. Each data point corresponds to be-
tween 2 X 10 and 2 X 10 attempted depositions.

08 ———————————————————————————
0.7

0.6

0.5
U

0.4
X

0.3

0.2

0.1

0.0
0

In (x)
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TABLE I. Numerical estimates of model parameters. A was determined from the stationary
height-difference correlation function, A,

"' is an estimate using the stationary growth-rate correction
amplitude, and A.

' ' was obtained from the inclination dependence of the growth rate. v„ is the asymp-
totic growth rate at zero tilt, in units of one (attempted) deposition per substrate site.

Model

Restricted SOS
NN ballistic deposition
NNN ballistic deposition

0.419
2.14
4.06

0.81
2.46
6.76

—0.81
1.54
1.21

—0.75
1.30
1.36

0.53
9.37

55.4

10 '

,'-(o)
6-
5

A
C

2
A

I &O-&--2

V 7
6

C 5
I 4

5-

10-'

0 05
(b)

0.04—

0.03
A

0.02

0.01—

200 400 600 800 1000

cz =0.404+0.013 . (31)

Figure 7 shows the actually measured values of az, ~a3 ~,

and ~a„~ in a log-log plot to demonstrate the scaling with
8 predicted by (17) and (18). From the data shown we es-
timate

I c. I
=0.193+0.013 (3&)

yielding cz~c„~ =0.077 in close, but possibly fortuitous,
agreement with the approximate relation (21). The sign
of c3 is observed to be equal to the sign of A, in all cases,
and the magnitude is

[c [=0.071+0.005 . (33)

Finally we quote an estimate of the fourth-cumulant am-
plitude obtained from a simulation of the single-step
model at zero tilt,

the range —4 ~ P ~ 4, while reliable estimates for the
correction amplitude a„could be obtained only for
—1 ~P ~ 1.5. Figure 6 summarizes all our simulation re-
sults for cz. We find strong evidence for universality over
almost four decades in the scaling parameter 8= A ~A, ~,

and we estimate

0.00
0.00 0.05

0.00

-0.05—

-0.165

A~
R -0.25—

0.10
)-2/3

0.15 0.20
c4 =0.02+0.002 . (34)

~ ~

Since A. &0 for the single-step model, this implies that the
sign of c4 is the opposite of the sign of A, in general.

A useful measure of the asymmetry of the height fluc-
tuation distribution is the skewness [37,38]

0.6

~ C2 o Cy

-0.30—

-0.35
1

I I

9 10

In (t)

FIG. 4. Examples of simulation data used to estimate tran-
sient amplitudes. (a) Results for the second and third height
fluctuation cumulant of the discrete time PNG model [36] with
a nucleation probability of p =0.001. The predicted time
dependence has been divided out. The data were obtained by
averaging over 250 independent runs on a lattice of size 10000.
(b) The integrated growth rate (h )/t vs 1/t~~', obtained from
the same set of simulations. The dotted line indicates a linear
least-squares fit used to estimate the amplitude a„. (c) The mo-
mentary growth rate for the restricted solid-on-solid model on a
lattice of size 2'

~ The asymptotic growth rate v„ is adjusted to
optimize the t scaling of the correction, and the estimate
a, =0.165 is indicated by the dashed line.

0.4

CL
E

o 0-2 OM Q. ~0

0.0
—6

FIG. 5. Numerical results for the reduced amplitudes c& and

c, obtained from simulations of the Gates-Westcott model at
various values of P. The dashed lines indicate our best estimates
for the amplitudes, obtained by averaging the results from all

models. We have not included data from the neighborhood of
the transition point P, due to the strong crossover effects ob-

served there.
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0.50

~ 0.45

~ 0.40

E
~ 0.35
D

e 0.30

0.25
10 10 ' 10

o GW

~ SS
~ BD

v RsOs
~ PNG

101 10

&(h —&h ) )')
& (h & h ) )2)3/2

which we estimate from (31) and (33) to take the value

Isl =0 28+0.04 (36)

in the transient regime. We noted in Sec. II that the
height fluctuations are Gaussian in the stationary regime,
and hence the skewness (as well as all higher cumulants)
is expected to vanish for t))L . It is then natural to
conjecture a scaling form

s(t, r ) =f, (t /L'"), (37)
FIG. 6. Numerical results for the reduced amplitude of the

second curnulant, obtained from simulations of the Gates-
Westcott (GW) model, the single-step model at various values of
the tilt u (SS), two versions [15]of ballistic deposition (BD), the
restricted solid-on-solid model with unit maximal height
difference (RSOS), and the discrete time PNG model with nu-

cleation probability p=0.001 and 0.0001 (PNG). The dashed
line is our best estimate for c2.

where
I f, (0)l is given by (36) and lim~ „f,(y) =0. Simi-

lar behavior was found previously in a deterministic
growth model [38]. In Fig. 8 we show numerical data for
the skewness in small systems. In spite of severe finite-
size effects which prevent the skewness from reaching the
predicted short-time maximum value (36), there is clear
indication of the dynamic-scaling form (37).
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FIG. 7. Summary of numerical estimates for the cumulant
amplitudes a2 and la3 I, and the finite-size correction amplitude

la„l, plotted as a function of 8= A'IA, I. The dashed lines indi-
cate the predicted power laws a„=c„8"', a„=c„.8' with our
best values for c„and c, .

V. DIRECTED POLYMER AMPLITUDES

Closely related to the dynamic scaling properties of the
stochastic-growth models discussed above are the equilib-
rium statistical mechanics features of finite-temperature
directed polymers in random media (DPRM) [1,8]. In its
discrete realization [39] for one transverse dimension
(d = 1), which we have used in the numerical simulations
discussed below, the finite temperature DPRM involves a
directed walk that commences at the origin of a square
lattice and proceeds upwards into the half plane t) 0,
one step at a time. The vertical bonds have uncorrelated
random energies Itt(x, t) drawn from a uniform distribu-
tion of width b, and variance cr =b, /12, while the hor-
izontal bonds have a fixed energy cost EQ, with associated—Eo
Boltzmann weight y =e ' (both Fc and p are measured
in units of kT). Consequently, a transverse step to the
left or right to take advantage of a particularly favorable
vertical random bond incurs a penalty y & 1. For reasons
of numerical convenience, we operate under the assump-
tion that the temperature, though finite, is relatively low
so that only single steps are allowed. The transfer-matrix
method permits us to investigate numerically the full par-
tition function of the DPRM by calculating recursively
the Boltzmann weight Z(x, t) of paths running from the
origin to the point (x, t) in the time slice t,

Z(x, t+1)=e ""'[Z(x,t)+yZ(x —l, t)+yZ( xi+, t)]
—0.1—~4&, O ~S

—0.2

~ L=100

L=200

L=400

(38)

assuming the initial condition Z(x, 0)=5„c. The full par-
tition function 2(t) is then obtained by summing over x,

—0.3
0.0 0.1 0.2 0.3 0.4 0.5

2(t)=QZ(x, t) . (39)

FIG. 8. Skewness of the height Auctuation distribution in the
single-step model for small system sizes. The data constitute an

average over 10000 independent runs. The arrow indicates the
value of the skewness in the limit L ~ I) .

The quantities of immediate physical interest are the
geometric and free-energy fluctuations. The former con-
cern the disorder-induced transverse fluctuations exhibit-
ed by the directed paths as they meander through the
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random energy landscape. These fluctuations are charac-
terized by the wandering exponent [14] (Dp, through the
relation

( 2(t) )1/2 t DP (40)

Our convention here is that thermal averages with
respect to the Boltzmann weights are implicit and done
first, while angular brackets denote disorder averages tak-
en over many realizations of randomness. It is well estab-
lished [9,19] that (Dp= —,

' for the case of one transverse di-

mension. The free-energy fluctuations, given by the dis-
order average of P= —lnZ, scale with a different ex-
ponent,

( [P(t)—( P(t) ) ]')'"-t (41)

where it is known [8,16,40] that co=2(Dp —1. The rms
fluctuations (40) and (41) were first studied numerically
by Huse and Henley [40], as well as Kardar [39]. Recent
work by Halpin-Healy [42] has addressed the much
broader question of the full geometric and free-energy
probability distributions responsible for these and higher
moments. A surprising feature of this recent work was
the uncovering of an asymmetric free-energy distribution
[43] that underlies the unique third-cumulant scaling as-
sociated with the d =1 DPRM. Predicted by Kardar [9]
and observed by Halpin-Healy [42], this third-cumulant
scaling lies at the heart of the matter, fixing the free-
energy fluctuation exponent at co= —,'. In an effort to test
the predictions made by Kardar [9] and more recently by
Bouchaud and Orland [41] (BO), to be discussed in detail
in Sec. VII, and to explore issues of amplitude universali-
ty, we have performed a series of finite-temperature simu-
lations for various values of y and 4, studying paths of
length 500 steps and typically averaging over 10 realiza-
tions of the random-energy landscape.

In contrast to the discrete microscopic model just del-
ineated, the continuum formulation of the DPRM
centers on the path-integral statement of the partition
function,

normalized and microscopic parameters was a secondary
interest of the present work. To establish the connection
to the KPZ equation, recall that the restricted partition
function Z(x, t) obeys a Euclidean-time Schrodinger
equation with a time-dependent random potential V. A
simple substitution [1,19] then reveals that it is the re-
stricted free energy F(x, t)= —lnZ(x, t) that satisfies the
KPZ equation (8), with the parameters

v —I, A, = —2I, D=V (44)

and the exponents defined in (40) and (41) are related to
those of the interface (cf. Sec. I) by (Dp=1/z ct)=glz.
Note that the sign of A. is fixed to be negative for the
DPRM. The central scaling parameter (22) is given by

V
2I (45)

a result derived by BO directly from the partition func-
tion (42}.

The major difference between the height h (x, t) « the
growing interfaces discussed in the preceding sections
and the restricted free energy F(x, t) lies in the initial
condition Z(x, O)=5(x) for the DPRM, which corre-
sponds to a deep narrow groove in the interface [44].
Conversely, the substrate initial condition h (x,O) =0 cor-
responds, in the context of the DPRM, to an ensemble of
paths emanating from all points x rather than just from
the origin [45). Let Z(x, t) =exp[ —h (x, t)] denote the re-
stricted partition function for the DPRM with substrate
initial condition. Z(x, t) gives the total weight of all
paths with end point (x, t) and arbitrary starting point.
Clearly this quantity is identical, in a statistical sense, to
the weight of all paths with arbitrary end points and fixed
origin, i.e., the full partition function Z(t) [Eq. (39)].
Hence we conclude that the height fluctuations studied
earlier in this paper should correspond quantitatively to
the fluctuations of the full free energy 7 of the DPRM
[46]. In particular, we expect a finite-size correction to
the average free energy per unit length (cf. Sec. II)

Z(x, t)= I 2)y(s)exp —J ds y
y(0) =0 0 4r ( &(t) ) /t =f&+ t'" (46)

—V(y(s), s )

(42}

where one sums explicitly over all directed paths emanat-
ing from the origin and ending at the point (x, t). The
pinning potential V has zero mean and variance

(V(x, t)V(x', t')) = V 6(x — )5x(t t') . —(43)

Here I is a macroscopic diffusion constant and V mea-
sures the strength of the quenched randomness. In a
sense to be made clear below, these parameters are renor-
malized versions of y and o, respectively. The partial
unraveling of the precise relationship between these re-

with c, & 0. A similar correction, however with the oppo-
site sign, was derived by BO [41,47].

The diSculty that forces itself upon the simulator
desiring to test the concept of amplitude universality in
the DPRM concerns the "correct" values of V and I to
substitute into (45). BO were, of course, aware of this
subtlety, but they assumed a very simple relationship be-
tween these renormalized quantities and the microscopic
input parameters of the numerical simulation, viz. ,
I =y/3 and V =u, which gave, rather fortuitously in
retrospect, very heartening results for some early simula-
tions. Nevertheless, it is clear that such an assumption,
though perhaps natural, is unlikely to be correct —a fact
that is made apparent in the more extensive simulations
that we have done.

The proper extrication of the renormalized diffusion
constant I and disorder strength V necessitates numeri-
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P(x, t)= Z(x, t)
Z t

As pointed out by Parisi [48], and then by BO, this distri-
bution has the properties that

and

x(1n[P(x, t)/P(O, t)])=-
4It (48)

cal scrutiny of the logarithm of the positional probability
distribution

thus determined for our particular simulation, we find
that the scaling parameter has the value
8= V /2I = 1.71. This number in hand, we can now dis-
cuss properly the issue of free-energy amplitude univer-
sality in the one-dimensional DPRM.

In Fig. 10, we plot (7)/t versus t ~, which shows
the effects of finite size upon the free energy per unit
length, cf. Eq. (46). In the thermodynamic limit we ob-
serve fo

= —0.49 for y =0. 1 and u =0.833. Kardar [9)
has invoked the replica trick to compute the quenched
averaged free energy from the continuum partition func-
tion (42). He finds

( jln[P(x, t)/P(O, t)]j )
V2 V4f,=(p) —2r — +
2 48I

(50)

V2—(In[P(x, t)/P(O, t)]) = ~x~ . (49)
2I

In fact, these relations follow rather naturally from
the mapping to the KPZ equation. Recall that
ln[P (x, t)/P(0, t) ]= —[F(x,t) —F(0, t) ], where the re-
stricted free energy F can be viewed as an interface evolv-

ing according to (8). The "groove" initial condition
P(x, t) =5(x) evolves, under the action of (8) with a nega
tiue value of A, , into a parabola given precisely by (48)
[50]. Moreover, since F(x, t) —F(O, t) is constrained to
vanish at x =0, its Auctuations increase linearly with x,
as predicted by the KPZ height-difference correlation
function (11) [note that V /2I =D/2v= A according to
(44)j. It is also clear from the scaling properties of the in-
terface [2] that the linear increase of (49) only persists on
length scales less than the dynamic correlation length,
x &&t, a fact that was noticed numerically by Mezard
[49], who has already provided qualitative confirmation
of relations (48) and (49). Here we will rely upon them in
a quantitative sense to determine the macroscopic param-
eters of the continuum model.

Consider, for example, the finite-temperature DPRM
numerical experiment that we performed with input mi-
croscopic parameters y=0. 1,0. =0.833. In Fig. 9, we
collect the plots which allow us to ascertain the renor-
malized quantities I and V, the latter being the more
stubborn of the two to pin down precisely. Figure 9(a)
shows data collapse to a parabola for the time slices
t =100, 200, and 500, as expected, where we have used
the scaled variable x/2t' as the abscissa. With this
choice, it is a simple matter to bracket the collapsed data
by appropriately scaled curves. The inner parabola cor-
responds to a value of I =0.09, while the outer has 0.10.
Thus, we estimate I (y=O. l, o =0.833)=0.095+0.005,
in rather strong disagreement with the BO assumption
that I =y/3. In fact, our simulations show a distinct
dependence of I on cr at fixed y (cf. Table II), indicating
that no such simple proportionality holds. Figure 9(b)
examines the second moment for the same three time
slices. From Eq. (49) we see that the anticipated behavior
is that of the absolute-value function. For values of x
that are not too large, the data conform to this notion,
and the tangent line yields the slope A =3.0, so that
V =2I"A =0.57. With the renormalized parameters

leading to fo = —0.40 for the case of Fig. 10. A look at
the results for other parameter values collected in Table
II reveals no correlation between the numerical estimates
for fo and the formula (50). This is not entirely surpris-
ing, as the replica calculation involves [41,48,49] renor-
malizing the free energy by a cutoff-dependent, additive
constant which arises from the self-interaction of repli-
cas. While fo, therefore, does not carry any universal in-

formation, the data shown in Table II do provide some
insight into its general parameter dependence.

Returning to Fig. 10, we note that the free energy ap-
proaches its thermodynamic limit from above, consistent
with the fact that A, & 0 in the equivalent KPZ equation
but in disagreement with the prediction of BO. The
drawn tangent has slope 0.60+0.01, providing us with an
estimate of the amplitude of the finite-size correction.
Similar data collected in Table II reveal that this ampli-
tude is universal for a broad range of microscopic input
parameters (8 varies from 0.17 to 179), with a value
which we estimate to be

c, =0. 180+0.014 (51)

c 2
=0.400+0.057 (52)

for the universal amplitude of the second cumulant, in

in rather nice agreement with the numerical value (32)
obtained from the growth-model simulations.

Figure 11 monitors the behavior of the amplitudes of
the second and third cumulants of the free energy as a
function of path length for the numerical simulation dis-
cussed above, with @=0. 1 and o. =0.833. As is evident
from the figure, the quality of the data is such that it is
possible to estimate these coefficients with rather high
Drecision. For example, we find that asymptotically
((9—(7) ) )/t =0.581+0.002. Since this amplitude
is to be identified with a&=8 c2, while 8=1.71, we
have c2=0.406 for this particular set of microscopic in-

put parameters. A glance at Table II shows that runs
made for other values of y and o yield values consistent
with these, leading us to estimate
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TABLE II. Numerical results from 6nite-temperature DPRM simulations. See text for explanations.

O.G125

O-2

0.833
3.33
8.93

13.33

0.026
0.046
0.053
0.056

p2

0.395
1.84
2.86
4.48

3.00
36.8
77.2

179

—0.27
—0.94
—1.60
—2.68

C„

0.20
0.17
0.18
0.19

C2

0.50
0.35
0.37
0.35

—0.32
—0.29
—0.32
—0.28

0.1 0.208
0.833
3.33

0.086
0.095
0.105

0.17
0.57
1.68

0.168
1.71

13.44

—0.28
—0.49
—1.16

0.16
0.17
0.19

0.45
0.41
0.37

—0.27
—0.33
—0.26

0.0
y=0. 1 a =0.833

—4.0

H

Q„

—6.0

—8.0

—10.0
—1.0 —0.5 0.0 0.5 1.0

80.0
y=0. 1 cr =0.833

60.0

H

Q„

V
40.0

A

H

Q

20.0

~ t=100
~ t =200

5=500

(b)

0.0
—100.0 100.0

FIG. 9. (a) Disorder average of the logarithm of the spatial probability distribution P(x, t) for the DPRM in d =1 (500 steps, 10
realizations of the random-energy landscape) with microscopic parameters @=0.1 and o. =0.833; data collapse for the three time
slices t =100, 200, and 500. The inner parabola corresponds to I =0.090, while the outer has I =0.10. We estimate
I (y=0. 1,o =0.833)=0.095+0.005. (b) Second cumulant of lnP(x, t) for the same time slices. The solid line corresponds to the
function 3~x~, which implies A =3.0, so that V =0.57. Together, the figures permit us to estimate 8=(V /2I')=1. 71 for the given
microscopic input parameters.
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0.00
y=0. 1 o =0.833

I

—0.ZO

—0.40

—0, 60
0.0 0.4 0.6

FIG. 10. Finite-size correction to the free energy per unit length of the one-dimensional DPRM vanishes as t '. The slope of
the asymptotic tangent line is our estimate of the finite size eQ-ect amplitude a„ for the particular simulation done here, with y=0. 1

and 02=0.833.

good agreement with the growth-model result (31).
Returning to Fig. 11, we note that the third curnulant

is negative, in accord with the general relation between
the sign of c3 and the sign of the KPZ coefficient A, found
for the growth models. The data for the third curnulant
are a bit noisier than for the second. Nevertheless, we
find that for large t, ((V—(9') ) ) jt = —0. 145
+0.005, which yields the estimates c3= —0.085 and
s = —0.33 for the skewness (35) of the free-energy proba-
bility distribution. In the Anal column of Table II, we
collect our results for this skewness parameter. Figure 12

s = —0.296+0.028 . (53)

We have also included in Fig. 12 data for a typical zero-
ternperature simulation of the DPRM, which exhibits a
skewness of similar magnitude in the distribution of the
ground-state energy.

actually illustrates the behavior of this quantity as a func-
tion of path length for these runs as well as some addi-
tional ones that we made for the express purpose of pin-
ning down s. Overall, our estimate for the skewness is

0.8
y=0. 1 a =0.833

0.6

0.4

O. Z

V

V
0.0

~ 7L=2
'ft =3

—0.4
0.0 100.0 ZOO. 0 300.0 400.0 500.0

FIG. 11. Amplitudes of the second- and third-order cumulants of the free energy as a function of path length for the DPRM.
Same microscopic input parameters as in previous figures. Asymptotically, ( (7—( 7) )2) /t ~ goes to 0.581+0.002, which is our es-

timate for az. Dividing by 8 gives =0.406, which is our estimate for the second cumulant universa-l amplitude cz. Note that the

third-order cumulant has a smaller amplitude, with ((V—(Vl) )/t approaching —0. 145+0.005 for large times. The relative sizes

of the cumulants provide a measure for the skewness of the free-energy probability distribution.
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FIG. 12. Skewness of the free-energy probability distribution for the finite-temperature DPRM as measured by the parameter
s = ((7—(9))3)/( (9—(9) ) )3~, for simulations done with various values of y and o . We estimate s = —0.296+0.028. The up-
permost curve, which is dot-dashed, shows data for the zero-temperature version of the model [8].

VI. DYNAMIC CORRELATIONS
IN THE STEADY STATE

—(h(x, t+s) —h(x, s)) ]"),
and in particular their reduced amplitudes

c„= lim lim (A ~A. ~t) " C„(t),t~ oo L, ~ oo

(54)

(55)

cf. (3) and (17). Obviously, the growth-rate corrections
(5) are absent here. We have determined cz and c3 from

The nontrivial scaling properties of the KPZ equation
(8) manifest themselves both in the roughening of an ini-
tially flat interface and in the dynamic correlations of an
interface with fully developed roughness which has been
growing for a time t ))L'. This latter case has received
much less attention, mainly due to the numerical
difficulties associated with reaching the stationary regime
for large systems; it may also be of somewhat question-
able physical relevance. However, the dynamic correla-
tions in the stationary state are more easily accessible to
analytic approaches starting from (8) than transient
correlations involving the flat initial state, and some non-
trivial amplitudes can be predicted by mode-coupling and
renormalization-group calculations [27,28,51]. We have
therefore performed simulations of stationary interfaces
using the single-step model [15,30], where the generation
of stationary configurations is trivial: Indeed, since the
height di8'erences are independent in the stationary state
it is sufficient to randomly distribute spins 0;=+1 on the
lattice such that the total magnetization takes on a
prescribed value (cf. Sec. III). There is no need to actual-
ly simulate the relaxation into the steady state.

The objects of interest are height fluctuation cumulants
of the form

C„(t)= lim ( [h (x, t +s ) —h (x,s)

200 runs in which a single-step interface of length
L =10000, at zero tilt, was grown for 1000 time steps,
and we estimate

and

c2 =0.712+0.003 (56)

c3 = —0. 199+0.004 (57)

C (t)=iv' iAt+6(t i
) (58)

and the nontrivial scaling behavior appears only as a sub-
leading correction. The leading behavior of (58) in fact
does not depend on the presence of the nonlinearity in
the KPZ equation (note that the amplitude is indepen-

(recall that A, = —1 for this model). The skewness of the
distribution is thus close to the value found in the tran-
sient case, ~s~ =0.33. The fact that cz &c2 is easily un-
derstood: The stationary average includes fluctuations in
the initial conditions in addition to those generated in the
growth process, and therefore the distribution of height
fluctuations is expected to be broader. For the linearized
KPZ equation a simple calculation shows that the ratio
of the stationary to the transient amplitude equals &2.

The presence of fluctuations in the initial conditions
has dramatic consequences if the interface is tilted. The
gradient expansion of the inclination-dependent growth
rate v„(u) leading to the KPZ equation (8) gives, in gen-
eral, a linear term v'„(u)Vh where v'„(u)= —u for the
single-step model. This term causes slope fluctuations to
drift laterally along the interface. It is irrelevant, and
therefore commonly transformed away, in the transient
situation, but in the stationary case the drift allows the
initial fluctuations to completely swamp those generated
by the growth process [52]. As a consequence the second
moment grows linearly in time,
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FIG. 13. Height fluctuations in the stationary state for the
single-step model on an inclined substrate. The squared fluctua-
tions increase linearly in time. The system size was L =100000,
the tilt u =0.6, and the data are an average over 20 runs. The
dotted line is the prediction (58) for the prefactor.

dent of A, ), and can easily be derived from the linearized
theory. We have checked the prediction (58) in a simula-
tion at u =0.6 (Fig. 13).

VII. DISCUSSION AND CONCLUSION

The central result of this paper is the demonstration of
amplitude universality for a large class of stochastic mod-
els of interface growth and directed polymers in random
media. We reemphasize that the same values of the ap-
propriately normalized amplitudes where found for all
models we investigated. In this last section we summa-
rize the current state of affairs regarding quantitative pre-
dictions of these amplitudes. Before doing so we discuss
related numerical work on the subject.

In a study of crossover behavior in kinetic roughening,
Guo, Grossmann, and Grant (GGG) [53] measured the A.

dependence of the width prefactor, a2, for a discretized
version of the KPZ equation. They found a2-A,
in contrast with the scaling result a2-k . Our results,
displayed in Fig. 7, clearly support the scaling prediction
(17). For comparison it should be noted that GGG
varied A, by a factor of 2, while our work covers four or-
ders of magnitude in the scaling parameter. Moreover,
GGG used the bare value of A, , neglecting a possible re-
normalization due to the discretization scheme. Hence
we expect that subsequent studies of the discretized KPZ
equation will find agreement with our results.

Several very recent papers address questions concern-
ing the probability distribution of height fluctuations, or
free-energy fluctuations for the directed polymer
[42,54—56]. Havlin et al. [54] presented numerical re-
sults for height fluctuations in ballistic deposition, and
claimed the scaled distribution to be Gaussian both in the
stationary (t ))L') and the transient (t ((L') regime. It
is clear from our work that this can be true only in an ap-
proximate sense, for the simple reason that the transient
distribution is skewed, as was observed by Halpin-Healy
[42] and previously noted by Nattermann and Renz [43].
Kirn, Moore, and Bray [55] studied the distribution of the

ground-state energy in a zero-temperature directed-
polymer simulation. They estimate the skewness
s = —0.29+0.02 and the ratio c4/cz =0.16, both in good
agreement with our estimates. Amar and Family [56] ob-
tained cz =0.45+0.05 from simulations of various
growth models and cz=0.37 from a numerical solution
of the KPZ equation, both consistent with our results.
They also estimated the static amplitude ratio
b„/(Ab2 ) =6.5+0.2, in reasonable agreement with the ex-
act value h„/(Abz) ,=6 [cf. (13) and (14)].

Summarizing these remarks, we conclude that a
coherent picture appears to be emerging on the numerical
side. The theoretical situation is much less clear. In the
context of the KPZ theory of kinetic roughening the only
analytic amplitude predictions were made for the steady-
state dynamic correlations discussed in Sec. VI [57]. Van
Beijeren, Kutner, and Spohn (BKS) [27] derived a self-
consistent integro-differential equation for the two-point
correlation function within the mode-coupling approxi-
mation. Assuming a Gaussian shape for the universal
scaling function, this leads to the prediction [36,29]
c2 =&2/nm', w. here w is the width of the Gaussian. A
self-consistent determination of m gives c2 =0.686, while
a perturbative calculation of the scaling function for
small arguments [28] gives can=0. 74+0.01, both rather
close to our numerical estimate (56) [58]. Very recently
Hwa and Frey [51] have argued that the BKS equation is
an exact consequence of the dynamic renormalization
group. They solved the equation numerically and ob-
tained the estimate c2=0.69+0.01, in good agreement
with the earlier predictions [27,28] and our numerical
value.

A different calculation of the stationary dynamic corre-
lations was presented by Yakhot and She [59]. Their re-
sult implies c2=(2/n. ) I ( —,')=0.924, which is clearly
ruled out by our numerics. This is not surprising, as the
proposed form of the scaling function [59] is singular at
the origin and hence is expected to be valid only for
sufficiently large arguments.

A number of predictions for the universal amplitudes
arise from the work of Kardar [9] and Bouchaud and Or-
land [41] in the context of directed polymers. These au-
thors employ the replica trick, which means that aver-
aged moments (Z") of the polymer partition function
(42) are evaluated and then analytically continued to
n =0. (Z" ) is related to the propagator of a quantum-
mechanical system of n particles interacting through a
pair potential given by the noise correlator (43). As the
length of the polymer (the time t in the interface model)
becomes large, the propagator is dominated by the
ground-state energy, which takes a simple form for 5-
function interactions. Expanding the asymptotic form
for (Z") in n then yields expressions for the cumulants
of the free energy, —lnZ.

Proceeding along these lines, Kardar [9] found that the
third cumulant is extensive (proportional to t), and con-
cluded therefore that the free-energy exponent
co=//z= —,', in agreement with the KPZ result [1]. His

prediction for the reduced amplitude of the third cumu-
lant, in our units, is c3 = ——„which is clearly inconsistent
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with our numerical estimates (though it does predict the
correct sign). Moreover, the replica calculation implies
that all higher cumulants vanish in the thermodynamic
limit, c„=0 for n ) 3, whereas we (as well as Kim,
Moore, and Bray [55]}find evidence that c4 )0.

Bouchaud and Orland [41] (BO) refined Kardar's treat-
ment by including the center-of-mass motion of the parti-
cle system in the evaluation of the quantum-mechanical
propagator. Following a transformation to an equivalent
toy model [60] of a Hookian spring subject to potential
energy of Gaussian random slope, which is readily simu-
lated, they arrive at the predictions c2 =0.28 and
c„=—0.32. Again, these values are nowhere near our
numerical estimates. Halpin-Healy [42] found similarly
poor agreement with the predictions [41] concerning the
positional fluctuations of the polymer. Thus the claim of
BO that their toy model "contains the full physics of the
original problem" does not hold up to closer scrutiny.

While we hope that these discrepancies will be clarified
by future work, we may tentatively attribute them to the
breaking of replica symmetry [12,61] in the disordered
polymer problem. It should be clear from our previous
remarks that the replica calculations imply a nontrivial
exchange of the limits t~ ~ and n ~0. Parisi [48] has
recently argued that these limits do not commute in gen-
eral, and that their failure to do so may change the values
of amplitudes. Hence the amplitudes that we have deter-
mined could be useful in uncovering rather deep notions
in the statistical mechanics of disordered systems. In
that sense, they seem to carry much more information
than the scaling exponents themselves, which appear to
be rather robust with respect to such subtleties.
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APPENDIX: TIME-SCALE FLUCTUATIONS
AND FINITE-SIZE EFFECTS

The following considerations apply to models in which
the inclination dependence of the growth rate is due to a
variation of the density of growth sites with inclination
[25]. If the eligible growth sites are filled independently
at unit rate, the growth rate is then proportional to the
number of growth sites per projected substrate area. We
use the single-step model [15,30] as an illustration, but we
have observed similar effects in simulations of the re-
stricted solid-on-solid model [20] and we expect them to
occur in, e.g., the Eden model [62] as well.

We have shown in Sec. III that the density p of growth
sites in the single-step model at zero tilt (u =0}equals —,

'

in the thermodynamic limit. Here we are concerned with
the leading correction to this value for a system of L sites
with periodic boundary conditions. We will argue that

and the result p= —,
' follows from the independence of

spins in the thermodynamic limit. In a finite system it is
still true that all configurations with fixed magnetization
(tilt) have the same weight in the stationary state [15].
For u =0 there are L/2 spin of each sign to be distribut-
ed on the lattice. A growth site is given by a pair
(cr„ i, o'„)=(—l, l). For the first spin o„,= —1, there
are L positions available. However, once the first spin is
fixed, there are only L —1 positions available to place one
of the L /2+spins. This implies a negative correlation

1

(L —1)
(A2)

for xAy, which is in fact independent of the distance be-
tween the spins. Thus

1
p 1+ (A3)

Using (25) and (26) this is verified to agree, to leading or-
der in 1/L, with the general expression (14) [24].

To correctly generate the stationary state of the con-
tinuous time stochastic process which defines the single-
step model, it is important that time in a simulation be
counted as the number of attempted depositions per site.
In an elementary simulation step a site is picked at ran-
dom, deposition is attempted, and time is increased by
1/L independent of the success of the attempt. On this
time scale the deposit thickness (number of successful
depositions per substrate site) becomes a fluctuating
quantity. From the point of view of computational
efficiency it is natural to avoid unsuccessful attempts by
keeping a list of eligible growth sites and making a ran-
dorn choice only among these. Time is then equal to the
deposit thickness which does not fluctuate. A moments
thought reveals that this procedure, referred to as the list
algorithm in the following, defines a new dynamical en-
semble in which configurations with many growth sites
carry more weight [63]. To investigate this effect quanti-
tatively we introduce the number C(L,M ) of
configurations with zero tilt and M growth sites in a sys-
tem of size L [64]. Here M= 1, . . . , L/2 and the total
number of configurations is

L/2
C(L)= g C(L,M)=

M=1
(A4)

In the ensemble where each configuration has the same
weight the probability distribution for the number of
growth sites is simply P(M)=C(L, M)/C(L), the first
moment of which is (M ) =pL. In contrast, the dynamic
ensemble generated by the list algorithm is readily seen to
give rise to the distribution

the correction depends on the ensemble in which the
average growth rate is evaluated, an effect which is im-
portant to take into account in numerical simulations.
For simplicity we restrict ourselves to the case u =0. In
terms of the spin representation introduced in Sec. III,

(Al)
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P(M) = P(M),M
(A5)

i.e., the probability to find M growth sites is multiplied by
M. %'hile we have not been able to explicitly calculate
the C(L,M), we observe by exact numerical enumeration
up to L = 16 that the distribution (A5) is symmetric for all
L. Its first moment is therefore (L/2+1)/2, and the
density of growth sites evaluated in this ensemble is

2 2&M&

L(1/M) L
(A7)

with a leading correction term that differs from (A3). We
note that it is possible to incorporate the correct time-
scale fluctuations into the list algorithm by increasing
time by the inverse of the actual number of growth sites
at each deposition step [65]. The growth rate measured
in such a way is

2
p
—1 l+4 (A6) where ( ) and ( ) denote averages obtained using the

distribution P and P, respectively.
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