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Relativistic R-matrix calculations for electron —alkali-metal-atom scattering: Cs as a test case
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We have reformulated the Dirac R-matrix method for low-energy electron scattering by (effectively)
one-electron, alkali-metal-like systems and developed an independent computer program for this special
purpose. A highly accurate and relativistic representation of the target was used to perform a mul-

tichannel close-coupling calculation of cross sections for electron scattering. Our results include the
negative-ion aSnity and elastic, inelastic, and total cross sections for incident electrons with 0 to 2.8 eV
kinetic energy. We find that core-polarization and relativistic effects lead to multiplets of very narrow
'PJ, J=0,1,2 shape resonances: the effect of the induced core polarization on the electron-electron
correlation leads to 6s6p'P& resonances in contrast to previously predicted bound states of Cs, and rel-

ativistic interactions are responsible for the autoionizing decay of 6p 'Pz states below the first excitation
threshold.

PACS number(s): 34.80.Dp, 34.80.Bm, 31.20.Lr, 31.20.Tz

I. INTRODUCTION

Alkali metals are an attractive common subject for
both theory and measurement of low-energy electron-
atom collisions. Being rather simple one-electron-like
systems they are conceptually uncomplicated and, to a
fair approximation, accessible to an effective-potential ap-
proach, in which the dynamics of the atomic system is re-
duced to the motion of the valence electron in a suitably
chosen model potential for the noble-gas-like core. Such
models turned out to be particularly successful in con-
junction with semiempirical core potentials that take the
static polarizability of the core into account [1].

Heavy alkali metals, in particular, can be used to probe
relativistic effects deriving from the atomic structure of
the target and of relevance for the electron-atom interac-
tion. An element handled with relative ease in the labo-
ratory, and of some technological interest, cesium ap-
pears to be a good candidate for the study of low-energy
electron-atom interactions including scattering, the for-
mation of stable negative ions, and photodetachment. It
has been the subject of numerous experimental studies
spanning more than 50 years [2—8] and has been featured
in various theoretical approaches [9—21].

Of particular interest are persistent suggestions that
cesium may be the only atom known to have an excited
negative-ion state that is both bound relative to the
ground state of its parent atom and of a different parity
than the ground state of the negative ion [16,18,19,21].
Fabrikant [16] used effective-range theory (ERT) to show
that earlier calculations [20] predict a 6s6p P' state
bound by 27 meV. Krause and Berry [18] also predicted
binding of this state of about 11 meV in a study of corre-
lation in two-electron systems. However, Fabrikant, and
Krause and Berry, expressed reservations about the cred-
ibility of this particular conclusion. An elaborate
multiconfiguration Hartree-Fock calculation [19], in
which relativistic effects were considered, yielded an es-

timated binding energy for this state of between 1.2 and
11 meV. In a recent theoretical study [21] of alkali-metal
negative-ion photodetachment spectra, the PJ' states of
Cs were also found to be bound by an energy (J-
averaged) of 18 meV relative to the ground state of Cs.
Fabrikant [16] and Greene [21] also cited the absence of
any resonance structure in these symmetries in prior
[10,17] calculations (both of which included some relativ-
istic effects) of very-low-energy electron-Cs scattering as
evidence in support of the hypothesis that these states are
bound.

On the other hand, there is a considerably body of evi-
dence that the P' state of Cs is a resonance (at very low
positive energies relative to the Cs ground state). This
evidence is somewhat indirect [22—24], the result of
analysis of the perturbation of Cs Rydberg levels by
ground state Cs, and of the electron transport properties
of weakly ionized Cs vapor. Nevertheless, the contradic-
tion between theoretical prediction and experimental ob-
servation is clear and provocative.

Another bound state of Cs, labeled 6p P', has also
been predicted [12] above the ground state of Cs. Bound
relative to the first excited state of Cs, it is strictly forbid-
den to autoionize in LS coupling. It has never been ob-
served. Its existence has been confirmed in one theoreti-
cal study [18], but other calculations [17] suggested that
it is unbound relative to the first excited state of Cs.

We revisited this problem as part of a larger effort to
develop an alternative program for relativistic electron-
atom or -ion scattering calculations and to perform a rel-
ativistic multichannel close-coupling calculation for elec-
tron interactions with an open-shell neutral atom, based
on a highly accurate and fully relativistic representation
of the target. There have been no such calculations, to
our knowledge, for neutral targets using the Dirac for-
malism explicitly since the pioneering efforts of Chang
[13,15] and Walker [25], even though some relativistic
R-matrix calculations have been carried out for ionic tar-
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gets [26—28]. Results for the P' and P' resonances
have already been reported [29]. The present paper pro-
vides details of the calculations and extends the discus-
sion to additional resonance features and scattering cross
sections.

This paper is organized as follows. In Sec. II we out-
line the relativistic R-matrix theory for electron scatter-
ing with alkali-metal-like targets. Numerical results for
Cs targets are given in Sec. III. Section IV contains our
summary and conclusions. Unless otherwise stated, we
use atomic units.

II. THEORY

In this section we formulate a relativistic R-matrix
theory for two electrons in an effective core potential.
An R-matrix theory of electron-atom scattering based on
the Dirac Hamiltonian has been given before by Chang
[14]. Chang's theory is general in the sense that it applies
to electron scattering by an arbitrary atom or ion. It is
further an ab initio treatment that includes the full dy-
namics of all atomic or ionic electrons and the scattered
electron. We accept the essentials of this approach and
specialize it to the case of electron scattering by alkali-
metal atoms. We modify Chang's theory with respect to
the choice of the interaction potentials (pure Coulomb
potentials in Chang's work as opposed to effective poten-
tials including core-polarization corrections in our treat-
ment) and the formulation of relativistic R-matrix bound-
ary conditions, which in our formulation tend to the stan-
dard nonrelativistic boundary conditions in the nonrela-
tivistic limit.

The description of the many-electron problem within a
two-electron model is known to yield excellent results for
the interaction of slow electrons with alkali-metal atoms
if the effective potentials that represent the interaction of
the scattered and valence electron with the noble-gas-like
core are adjusted to reproduce the atomic spectrum [1].
The reason for the success of such relatively simple mod-
els is that the scattered electron of not more than a few
electron volts incident energy primarily interacts with the
valence electron of the alkali-metal atom, whereas the
ionic core is only slightly perturbed by the scattered elec-
tron. For the special case of electron-Cs scattering this is
nicely illustrated by the large difference in the static di-
pole polarizability of the Cs+ core (=15 a.u. ) and the Cs
atom (=400 a.u. ). The perturbation of the core by either
the valence or the scattered electron is sufficiently de-
scribed by the induced multipole moments of the core-
electron distribution (in practice only dipole and quadru-
pole moments need to be considered} without taking the
detailed dynamics of each core electron into account.

The key feature of the R-matrix theory is the division
of the configuration space into two (or more) subspaces in
which the many-particle problem is treated at different
levels of approximation. In our case there are two re-
gions which are separated by a sphere (the "R-matrix
sphere") or radius R (the "R-matrix radius"). In the fol-
lowing subsections we will first treat the two regions sep-
arately and then combine the results of these separate
considerations in formulating the matching condition for
the two-electron wave function at the surface of the R-

matrix sphere. The solutions of the matching equations
are closely related to the reactance E and scattering S
matrices and therefore quickly lead to scattering cross
sections. The matching equation will also be useful in
determining the negative-ion energies, since bound states
of negative ions may be determined by formally allowing
for negative energies of the scattered electron.

3

H, =cg a,p;+(P—1)c +V„„ (2)

in which a;, p, and c are the usual Dirac matrices and the
velocity of light. The interaction of each outer electron
with the noble-gas-like core is taken to be

V„„=Vr„D~(i, r}+Vr, ,)(ad, aq, r„r), (3)

where A, is a scaling parameter in the Thomas-Fermi-
Dirac-Amaldi potential VTFDA, and ad, aq, and r, are
the static dipole and quadrupole polarizabilities of the
core and the cutoff radius of the core-polarization poten-
tial

V &(ad, a, r„r ) = — W6(r„r ) — W&0(r„r )
ad a

with the cutoff function

W„(r„r) = 1 —exp[ —(r lr, )"] .

The parameters A, , ad, a, and r, in V, „are determined
by fitting to the neutral alkali-metal-atom spectrum, such
that the eigenvalues of H reproduce the (lowest) en.ergy
levels of the alkali-metal atom. Zhou and Norcross [32]
have obtained a complete set of parameters for use in (2)
and (3) for cesium.

The interaction between the two outer electrons is tak-
en to be

A. Inner region

In the inner region both electrons are confined to the
finite volume inside the R-matrix sphere. In this region
of space the two-electron problem will be solved at a
rather high level of accuracy. Exchange effects and all
one-body relativistic effects, such as spin-orbit coupling,
the variation of mass with velocity and the Darwin term,
are included. With respect to the relativistic two-body
effects only the mutual spin-orbit coupling, i.e., the cou-
pling of spin and orbital angular momenta of one electron
due to electrostatic interaction with the other electron
and due to the dielectronic correction to the electrostatic
electron-electron interaction, is taken into account. Oth-
er relativistic two-body effects, such as spin-spin and
spin-other orbit coupling as well as retardation are not in-
cluded. These effects are approximately described by the
Breit or Mdller [30] correction to the electrostatic
electron-electron interaction and are not likely to be of
importance for the interaction of slow incident electrons
with alkali-metal-like targets [31].

The total Hamiltonian of the system is given by

H =H)+H2+H)2,

where H is the one-electron Dirac Hamiltonian
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1
H, ~

= + Vd;,((r„r„r2),
12

where the dielectronic polarization correction to the
electron-electron interaction is

Vm, ((r„ri, r2)

[W6(r„r&)W6(r„rz)]' P&(cos8&2)
~1~Z

3 3 [W]0(r„r&)W&0(r„rz)]' P2(cos8&z), (6)
T 1P'2

with the angle 812 between the two electrons and the
Legendre polynomials PI. The dielectronic polarization
correction (also referred to as the "dielectronic term") as
well as the core-polarization potential are artifacts of the
two-electron model, i.e., the "averaged" treatment of the
noble-gas-like core. The dielectronic term describes the
interaction of the core dipole and quadrupole moments
induced by one outer electron on the other outer elec-
tron. This model was introduced by Chisholm and Opik
[33] and later applied to the calculation of alkali-metal
negative-ion bound states by Victor and Laughlin [34]
and Norcross [12]. For the applications of interest in this
paper the quadrupole contribution is of little significance
and higher induced multipoles do not need to be con-
sidered. Further, at low scattered-electron energies, the
polarizabilities may be assumed as energy-independent
constants. The cutoff radius r, was determined by fitting
the calculated to the measured negative-ion ground-state
energy (all negative alkali-metal ions have stable ns 'S
ground states [19]).

In order to diagonalize the Hamiltonian (1) within the
R-matrix sphere we generate a basis of antisymmetrized
two-electron states with given total angular-momentum
quantum numbers J and M. These states are obtained by
j-j coupling either one bound orbital pb with one contin-
uum orbital P„or two bound orbitals Pb. Bound and
continuum orbitals may be written as

P, (r)=&rln k m ) =r
qgk —km

and

P, (r)=&rlekm ) =r
~qgk +—km

respectively, where p and q refer to the large and small
radial components of the wave function. Bound orbital
quantum numbers are underlined and c designates the
continuum-orbital energy. The spinor spherical harmon-
ics are

1/2

+k~ = g & Im a ,'alI2'j—m &—&t
o = —1/2

with the usual spherical harmonics Yi, the Pauli spin
functions

p
q „o Z/[c(k —a)] (10)

where Z is the nuclear charge and

a=[k —(Z/c) ]'~

The bound and continuum orbitals are solutions of the
coupled inhomogeneous radial Dirac equations

r

k 6 V 1p'+ —p — 2c+ ———
q

= ——gA, „q, ,
P C C C

q' ——„q+ —,
——, p= —,X~,p, .k c, V 1

V
L

The bound orbitals satisfy the usual boundary condition
(i.e., vanishing wave function) at infinity. The R-matrix
radius should be large enough to ensure that the bound
orbitals effectively vanish at R. The continuum orbitals
are subject to the boundary condition

b+k
p r =R 2Rc

(12)

The Lagrange parameters A,„are introduced to ensure
that the continuum orbital (p, q) is orthogonal to all
bound orbitals (p„,q„) of the same symmetry, i.e., with
the same value of k. This leaves some freedom in the
choice of the potential V and takes into account that
bound and continuum orbitals may be derived from
different effective core potentials. Clearly, no Lagrange
parameters need be introduced for k values for which
there are no corresponding bound orbitals. This happens
if the orbital angular momentum of the continuum orbit-
al is large enough to prevent coupling with any bound or-
bital to a given J (usually only a few bound states with
the lowest energies and orbital angular momenta are tak-
en into account). The core potential may only be avail-
able numerically and in this case a further simplification
may be achieved by using an analytically given Thomas-
Fermi potential,

V= VTF . (13)

In contrast to the bound orbitals the continuum orbit-
als satisfy boundary conditions at R which are not neces-
sarily physically meaningful and which depend on the ar-
bitrary constant b in (12). This constant is usually set to
zero. The unphysical choice of the boundary condition
justifies the use of a simple approximation to the core po-
tential in (13). As pointed out previously [26] the bound-
ary condition (12), unlike the one given by Chang [14],
agrees with the usual nonrelativistic expression

and the relativistic angular-, momentum quantum num-
ber

k =+(j+ —,
'

) for j= l + —,
' .

Both bound and continuum orbitals satisfy the boundary
conditions at the origin

1/2+ 1/2

1 0—1/2
0

L p r=z R
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1, k
s' +

ch oo 2C T
(14)

in the nonrelativistic limit. This is easily verified by using

8;» g—c;,»p„(R ), (16)

space calculation can now be summarized in terms of the
surface amplitudes

and

[0b(r — ) '((}g(rp)]JM = g &j ~~~ jIjJM )Pb(r —p)P, (r, )

m, m

Similarly, basis functions made up of two bound orbitals
are given by

& r&, r&ln k, n' k') =A [Pb(r&), Pb(rz)] JM

An orthonormal set of "R-matrix eigenfunctions"

+»(r, , r~)=pc„„»&r( rpln, k

+gd„„»&r„rzln k„n„.k„)
V, V

(15)

with corresponding eigenvalues E» (also referred to as
"R-matrix poles" ) is now obtained by diagonalizing (1)
within the finite volume of the R-matrix sphere, such that

& q'» lH q'» ~ I .. ., (a =E» 5»»

The coefficients c „z together with the eigenvalues Ez
contain all the inner-region information needed to com-
plete the scattering calculation for any incident energy of
the scattering electron (within a reasonable energy range,
as discussed below).

Before continuing the analysis it is appropriate to
change the product notation in the bound-continuum
part of the expansion (15) to a scattering-channel nota-
tion. A scattering channel is defined as a target state cou-
pled to the spin-orbit angular momentum of the scattered
electron for a given total angular momentum JM. Each
channel i is specified by the quantum numbers

(n kkJM) or (n j 1 jlJM) .

Therefore, in the nonrelativistic limit, the choice b =0
corresponds to imposing a zero logarithmic derivative at
the surface of the R-matrix sphere.

Having constructed bound and continuum orbitals, we
can combine them in two-electron basis states

& r„r,Ln k, «) =~ [Pb(r, ),P, (r~)]JM

2

[Pb( —p) 0 ( p)]JM2
p

—
$

where A stands for antisymmetrization,

I'l, P=2
r

r2, P=1

where p, is the large component of the jth continuum or-
bital in channel i, and the R-matrix with elements

~x ~'sc
2R» E» E— (17)

with the total energy (of valence and scattered electron)
denoted by E.

For all practical applications only a finite and manage-
able number of continuum states can be included in each
channel. This lack of completeness with respect to the
scattered electron states can be corrected for to a large
extent by the Buttle correction [35] to the diagonal R-
matrix elements. The relativistic version of this correc-
tion, consistent with the aforementioned relativistic R-
matrix boundary condition, is

q; (R) n (R)8 ttl

p; (R) 2R Eij E'i

—b —k

(18)

where p, . and (p, , q, ) are solutions of the homogeneous
analog of (11) and (10) with energies E; and E;, respec-
tively. The solutions p; also satisfy the R-matrix bound-
ary condition (12) and equal in number the inhomogene-
ous solutions p; . The solutions (p;, q; ) are obtained for
every given energy c,; of the scattered electron in channel
i. We note that (18) differs from the Buttle correction
given in [14] due to the different R-matrix boundary con-
dition imposed by Chang. With the help of (14), it is easi-
ly seen that the nonrelativistic limit of (18) agrees with
the standard nonrelativistic formulation of the Buttle
correction (see, e.g. , [36]).

B.Outer region

In this region (r )R) exchange can be neglected and
the large and small components of the scattered electron
radial wave function satisfy the coupled radial differential
equations of the Dirac theory. We envision applications
to the scattering of slow electrons with not more than a
few electron volts incident kinetic energy. For such slow
collisions, the fully relativistic radial equations can be
simplified by neglecting terms of the order 1/c, as
shown by Chang [14]. In this subsection we will neglect
these terms when convenient. As a result of this
simplification we find a set of second-order coupled
differential equations for the large component of the radi-
al wave function

The first sum in (15) can now be rewritten as d2 bA,

+2(c,, +V) p;+g g z, p; =0,
dI' i' l, =l

(19)

where the index j (not to be confused with the angular-
momentum quantum number j ), labels two-electron
states lij ) within a channel i The result. s of the inner-

that are of the same form as the nonrelativistic radial
differential equations (cf. [36,37]). The monopole part of
the target potential, V, vanishes identically for a neutral
target. The coupling matrices
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b,~, = —2a,~' —k, (k;+1)5;; 5i„,

include angular-momentum terms [note
k,.(k,. + 1)= I,.(I,. + 1)] and the symmetric matrices

a... =K(i~r Pz(cos8, z)~i'),

that
a,. ' sing, .5,", j=1, . . . , N,

v;. =. a, ' cosP;5; z, j=N, +1, . . . , 2N,
p —+ oo 0

exp( —
~a,. ~r)5, .N, j=2N, +1, . . . , N+No

which describe the long-range channel coupling between
channels i and i'. The symbol 5 means that only integra-
tions over the angular variables of both electrons and the
radial coordinate of the valence electron are included.
Using the labels U and s for valence and scattered electron
in channel i and i', and decomposing the Legendre poly-
nomials P& in spherical tensors Cz,

the solutions p; can be rewritten as

N+N

p,"= g vixi, i=1, . . . , N, r)R .
1=1

The expansion coefficients are

(20)

P~ =[Ci(&.)Cd&. )]

=g( —1)"Ci„"(r„)C~q(r,),
we find (using the same technique as Grant [38] and to
order 1/c )

5ij, l=1, . . . , N,

+Ij= .KI —N J', l =No+1, . . . , 2N0

Kl-N ), l=2N. +1, . . . , N+N.

with j =1, . . . , N, . (21)

a,,'=(M(j,„,j,, )~ ~Ci„(r„)C~(9,)~M(j;.„,j;,)~ )

X f drvrv pivpi'v

where ( ) indicates integration over the angular variables
of both electrons, with

ji,j2)l =[Xk XX„]J

where [A, XBb]J is the Mth component of the rank-J
tensor obtained by multiplying a tensor A, of rank a with
a tensor Bb of rank b. Similarly, the spin-orbit tensor is
obtained by multiplying a spherical harmonic with the
spin tensor,

The matrix K is not needed for the scattering calculation
or for the determination of negative-ion bound-state ener-
gies. The solutions U; may be obtained by using AsYFCK2

[39], a program for calculating asymptotic solutions of
the coupled equations (19).

C. Matching of inner- and outer-region solutions

At total energy E, the two-electron wave function
satisfies

H%E=E%E .

In the inner region it can be expanded in the basis set (15)
as

X„—[Y,Xx,q2]„.

This definition was given before (for its components) in
(9).

We assume that for a given symmetry (i.e., given J and
parity of the two-electron system) there are N channels,
N, of which are open. Each channel i then contains N,
independent solutions of (19), labeled by the index j, with
the asymptotic behavior

x, '(sing;5;J. +cos.P;K~ ), E; )0.
exp( —

~~,. ~r)E, , e; (0

where i =1, . . . , N, j =1, . . . , N, and

q'E =X"Ercq'sc
K

As shown for the nonrelativistic case by Burke and Robb
[36] and in the relativistic case by Chang [14], the expan-
sion coefficients AEz and the matching condition for the
wave function at the R-matrix boundary may be obtained
by evaluating (%z~H VE). Without repeating this
derivation, we give the results of our relativistic calcula-
tion, which slightly differ from Chang's results due to the
difFerent boundary condition (12),

Azz= g W;z[2Rcq, (R) (b+k)p;(R.)]—1

and

P; =a.;r l, n. /2 . —2= p;(R)=JR;;.[2Rcq;.(R)—(b+k)p; (R)], (22)

Channels with c; &0 are called "open;" those with c.; &0
"closed." The matrices K and K are the "K matrix" and
its closed-channel extension.

In terms of solutions v, of (19) that satisfy the bound-
ary conditions

where Ez, 8'.z, and R;; are defined in Sec. II A and p;
and q; are the large and small components of the
scattered-electron radial wave function in the outer re-
gion. The matching equations (22) combine the results of
the inner-region calculation (condensed in the R matrix)
and the outer-region solutions. Expressing the small
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component in terms of the large component and its
derivative,

q, (R)=d; '
p, (R)+ p, (R)

dr ' R

+—g g, q(R)c, ~,.~

1 a;,.
d =2c+—e —V(R) —gI I R 1+1

A, =1

(23)

and neglecting the o6'-diagonal radial coupling of the
small components in the right-hand side (rhs) of (23) as
terms of the order I/c, we see that Eq. (22) reads

The "channel-related" partial cross section (27) is of
primarily theoretical interest. Of more physical interest
are the elastic, inelastic, and superelastic cross sections.
They are "state related" (i.e., related to specific atomic
states before and after the collision). The partial state-
related cross section is obtained by adding all the partial
cross sections (27) for initial and final channels, i and i',
which include the initial and final atomic states of in-
terest, n I j and n'l'j' (alternatively labeled as n k and

Jm
~n 1j ~n'1'j'

i with n, l,j
i' with n', I',j'

The total (state-related) cross section is now given by

d
p;(R) =JR;;. e; p; (R) f, p; (R)—

dr
(24)

Jm.
+n lj ~n'1j'' ~~n Ij ~n'Ij'' '

J, n.
(29)

e;= 2Rc f b+ 1
2c

d
' ' d

In the nonrelativistic limit (25) agrees with the result of
Burke and Robb Ref. [36], Eq. (140)]. Using (21) the sys-
tem of equations (25) can be written as an inhomogeneous
system of algebraic equations for the K matrix,

If we again use the index j, to label the», independent
solutions p; and insert the expansion (20) into (24), we ob-
tain the homogeneous system of equations for the
coefficients xl.
N+N

M, ,x,, =0, i =1, . . . , N, j=1, . . . , N, , (25)
1=1

where the matching matrix is defined by

N

M, i= g R;; e;. f; —5;; —U;.i(R) .
dr

D. Negative-ion bound states

As mentioned before, the R-matrix method can be used
to determine binding energies of negative-ion states. For
the case of no open channels the set of equations (25)
reads

N

g M;ixi =0,
1=1

lp ~ ~ ~ s» s (30)

An approximate value for the binding energy is usually
given by one of the lowest R-matrix poles, say Ek (sup-

0

posing there exists a bound state of the negative ion). For
technical reasons it is convenient to remove the singulari-
ty of the matrix M at Ek by first analytically multiplying

0

The binding energies of the negative ion are given by the
total energies E for which a nontrivial solution of (30) ex-
ists, i.e.,

detM =0 .

N

g Mi, i+N xi+N,j Mij
1=1

M'=M(E Ek )— (31)

(26)

with

Kjl=xl+N j for l N, .

The S matrix is now given by

l+iK
1 —iK

The partial cross section for a given symmetry (i.e., given
total angular momentum J and parity vr) and for transi-
tions from channel i to channel i' is related to the S ma-
trix by

cr,-;= ~$,,' —5,,'~ (in units of m.ao), (27)2

2k; (2j;+ I)

where k; is the momentum of the scattered electron in
channel i and j, is the angular momentum of the valence
electron in the initial channel.

and then numerically determining the zeros of detM'. In
an energy interval around Ek, which is small compared

0

to the spacing of successive R-matrix poles, detM' has
two zeros. One zero, which does not correspond to a
change of sign of detM', is located at Ek,' the other gives

0

the energy of the negative-ion bound state and does cor-
respond to a change of sign.

III. APPLICATION TO ELECTRON-Cs SCATTERING
AND THE CALCULATION OF BOUND STATES OF Cs

In this section we apply the theory outlined in Sec. II
to the special case of Cs targets. We try to follow the ac-
tual calculation closely in leading the reader to successive
parts of the numerical application. Starting from careful-
ly chosen Cs+-core potentials, we obtain bound and R-
matrix continuum orbitals, which we j-j couple into a set
of two-electron R-matrix basis states. The eigenvectors
and eigenvalues obtained by diagonalizing the Hamiltoni-
an for the electron-Cs system will then serve as a key to
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the interpretation of resonances as they manifest them-

selves in phase shifts and partial cross sections. With
respect to very low scattered-electron energies our discus-
sion will focus on the intimate relationship between shape
resonances and bound states of the electron-Cs system.
In particular we will explain the transition from weakly
bound 6s6p Po ~ p states of Cs to shape resonances at
very low scattered electron energies, as the level of ap-
proximation is increased. Finally, we will summarize our
results in converged total, elastic, and inelastic cross sec-
tions for scattered-electron energies below 3 eV and com-
pare our total cross sections with previous calculations
and experiment.

A. Bound and R-matrix continuum orbitals in the field
of the Cs+ core

Recent results of accurate energy measurements by
Weber and Sansonetti [40] for nS, nP nD, and nG states
of neutral cesium have been used by Zhou and Norcross
[32] to obtain reliable model parameters for the core po-
tential V„„(3).Zhou and Norcross derived the static di-

pole and quadrupole polarizability of the Cs+ core by ad-
justing the energy expectation value calculated from V„„
and relativistic wave functions to the experimental ener-
gies of the (nonpenetrating) nG7&z, n =7, ... , 11 states of
cesium. Their results, obtained from a linear least-
squares fit and reasonable values for A, and r, are
a& =15.644+0.005 and a =33.6020.66. These polari-

zabilities were then used to obtain state-dependent values
for A, and r, by nonlinear least-squares fits. The results
for the I- (orbital angular momentum of the valence elec-
tron) and j- (spin-orbital angular momentum} dependent
and n-independent parameters of the (penetrating}
valence orbitals are A, =1.06028, r, =3.3487 for ns»2,
A, =1.06904, r, =4.10707 for np&&z, A, =1.07447,
r, =4.30942 for np3&2, A, =1.05194, r, =2.97633 for

nd3/2 and A, =1.00006, r, =2.301 85 for nd5&2.
In Fig. 1 we show the negative core potentials obtained

with the above parameters for valence electrons in ns,

np3/2 and nd orbitals. The plots show the I and j
dependence of the potentials. The induced dipole and
quadrupole potentials in (4) increase the attraction of the
total core potential (3) as compared to the Thomas-
Fermi-Dirac-Amaldi potential VEDA at intermediate dis-
tances from the nucleus (by "intermediate" we mean dis-
tances of the order of the mean radius of the 6s orbital,
which is about 6 a.u.). In Fig. 2(a) we compare VT„D" for
nd5&2 orbitals with a simple Thomas-Fermi statistical po-
tential VT„. At small and intermediate distances VTFD~
is more attractive than VTF due to the approximate treat-
ment of exchange effects and the correction for the elec-
tron self-interaction incorporated in VT„D" [41]. Com-
parison of the induced dipole and quadrupole potentials
in Fig. 2(b) shows that the dipole component of the core
polarization dominates the quadrupole component. The
latter slightly increases the attraction of the total core po-
tential.
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8 10
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8 10
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0 4 6
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FIG. 1. Effective Thomas-Fermi-Dirac-Amaldi potentials representing the Cs core without ( ) and with ( —~ —~ —.) induced
dipole and quadrupole polarization. The potentials including the induced polarization of the core are obtained by Stting energy ex-
pectation values to experimental energies of the ground and excited states of Cs: (a) 6s, (b) 6p3&2, (c) 5d3/f, (d) Sdgg2.
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orthogonal (as is usually the case for solutions to different
eigenenergies) due to different boundary conditions. To
calculate the discretized continuum orbitals we defined
the energy-dependent function

and

[f(e)/ ~x

f(E)=-q b+k
r =R 2Rc

on the given energy mesh. This function vanishes at the
discretized continuum eigenenergies. For all calculations
we used b =0, which in the nonrelativistic limit corre-
sponds to a vanishing logarithmic derivative of the wave
function at r =R. In a second step the zeros of the
spline-interpolated function f(e) are used as starting
values for a Newton iteration. The iteration is stopped if
energies are found for which integration of (11) leads to
solutions that satisfy R-matrix boundary conditions to a
user-specified accuracy, such that

5d 5&2

4 6 8
r(a. u. )

fo

FIG. 2. {a) The Thomas-Fermi-Dirac-Amaldi potential of
Fig. 1(d) ( —.—~ —~ ) in comparison with a simple Thoma, s-

Fermi potential { ). (b) Comparison of the induced polar-
ization potentials used in Fig. 1(d). , induced dipole po-
tential; ——.—., induced quadrupole potential.

On the basis of the core potential (3) and with parame-
ters as given above we numerically solved the coupled ra-
dial Dirac equations for the large and small radial com-
ponents of the bound and continuum orbitals (7) and (8)
introduced in Sec. II. For this purpose we wrote a new

computer program that integrates the coupled differential
equation (11) using the Bulirsch-Stoer extrapolation
method [42] starting at r =0 with the boundary condition
(10). Our program generates large and small components
of bound and R-matrix continuum orbitals for r &R,
essentially following the strategy of Robb's nonrelativistic
program [43]. Bound orbitals are generated without
orthogonality constraints by integrating the homogene-
ous analog of (11) (all the Lagrange parameters are set to
zero) and by imposing vanishingly large and small radial
components at large distances.

As for the bound orbitals, a "shooting method" is used
to determine the R-matrix continuum orbitals. In a first
step (11) is integrated outward at different trial energies
of a user-defined energy mesh. For the continuum orbit-
als, Lagrange parameters are used to guarantee ortho-
gonality with respect to bound orbitals of the same sym-
metry (same value of k and k). As one would expect, the
Lagrange parameters are very small (typically of order
10 ) if continuum orbitals and bound orbitals contained
in the rhs of (11) are obtained from the same potential.
We note, however, that even for the same potential,
bound and R-matrix continuum orbitals are not exactly

As tolerance parameters we chose x =x'= 10 ' and ob-
tained convergence for all orbitals after a few iterations.

The lowest ten energy levels of the Cs valence electron
(with respect to the ionization limit) and the correspond-
ing excitation energy are listed in Table I. For the diago-
nalization of (1) the bound orbitals Pb in the expansion
(15) are restricted to 6s, 6p, /z, 6p&/2, 5d3/p and Sd5/z or-
bitals. For these orbitals the parameters in V„„have
been adjusted such that their calculated energies exactly
match the measured energies of Ref. [40] and references
therein and Ref. [44]. For our five-state R-matrix calcu-
lation, R =40 a.u. was found to be large enough to assure
that the bound orbitals are practically contained in the
R-matrix sphere. This can be seen by either looking at
the mean radii or the ratio of the large component radial
wave function at R and its maximum p,„ in the radial
interval [0,R ].

We calculated 24 R-matrix continuum orbitals for each
value of k. For k = —1, 1, —2, 2, and —3 (corresponding
to s, /2, p]/2 3/2 and d3/2 5/2) we used the same potential
as for the bound orbitals and Lagrange parameters to en-
sure orthogonality with respect to bound orbitals of the
same k value. For k values without bound orbitals no
Lagrange parameters are necessary. For this case we re-
placed the numerically given core potential by a simple
Thomas-Fermi potential knowing that (1) this change is
of little infiuence on the nonpenetrating orbitals and (2)
the electron-electron correlation mostly destroys the
physical significance of the short-range part of the con-
tinuum orbitals.

It is interesting to note that for —8 ~ k & 8, i.e., for or-
bital symmetries below j = —", , and an R-matrix radius of
40 a.u. , the lowest R-matrix continuum orbitals become
bound. In this case the description "continuum orbitals"
does not seem appropriate. However, we stay with this
notation which may be justified by the fact that these or-
bitals are used to describe the scattered electron.
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TABLE I. Valence-orbital energies of the ten lowest states of Cs. For the five lowest bound orbitals

used in our calculation, the amplitude of the large component radial wave function p at the R-matrix

boundary relative to the maximum of p(r) inside the R-matrix sphere is given. The energies are taken

from Ref. [40] when possible, otherwise from Ref. [44].

Energy levels Excitation energies ~p (40 a.u. l~

6s
6p &/2

6p3/2
5d 3/p

5d 5/p

7s

7p &/2

7p3/2
6d 3/p

6d5/~

(a.u.)

—0.143 10
—0.092 17
—0.089 64
—0.077 04
—0.076 59
—0.058 65
—0.043 93
—0.043 10
—0.040 18
—0.039 98

(eV)

—3.8939
—2.5080
—2.4393
—2.0963
—2.0842
—1.5958
—1.1953
—1.1729
—1.0932
—1.0879

(a.u. )

0.0
0.050 93
0.053 46
0.066 06
0.066 51
0.084 45
0.099 17
0.10000
0.102 92
0.103 12

(eV)

0.0
1.3859
1.4546
1.7977
1.8098
2.2981
2.6986
2.7211
2.8007
2.8060

IP max I

5.3 X 10
5.2X 10
6.9 X 10
1.2X10-'
1.2X 10-4

Some properties of the four lowest continuum orbitals
in the five lowest orbital symmetries are shown in Table
II. For the lowest-lying orbitals the energies are in good
agreement with the experimental energies. This is in gen-
eral true as long as the radius R * where the wave func-
tion enters the classically forbidden region is smaller than
the R-matrix radius. As soon as R * exceeds R the ener-
gies disagree. By moving from the lowest-lying orbitals
within a given symmetry towards the continuum, the re-
sults in Table II further show that the higher-lying part
of the bound-state spectrum is completely omitted due to
the constraint of nonphysical boundary conditions at R.
In each of the shown symmetries three bound orbitals are
found, and the higher-lying part of the spectrum starts
with the discretized continuum orbitals e,s, . .., e&d5&z at
positive energies. In order to be sure that none of the or-
bitals is "missing" within the 24 lowest orbitals in each
symmetry, we examined the number of nodes n& and n, of
the large and small component radial wave functions and
ensured that nI increases by 1 as we go from one level to
the next higher level. At the same time we checked on
the change in sign of the large component radial wave
function at R for successive energies.

The number of continuum orbitals that need to be pro-
vided depends on the kinetic energy of the scattered elec-
tron. In Sec. III B we will see how the Buttle correction
takes care of the lack of completeness induced by the
finite number of continuum basis functions. The number
of necessary continuum orbital symmetries depends on
the highest total angular momentum J that needs to be
included in order to obtain converged total cross sections
at a given scattering energy. This maximal value of Jwill
be determined numerically by adding partial cross sec-
tions until convergence is obtained within the energy
range of interest (Sec. III E). At this point we will limit
ourselves to a simple semiclassical estimate of the rnaxi-
mal value of J. This value will be found to agree with the
numerical results for scattered-electron energies up to 2.8
eV.

The bound valence electron orbital with the largest
spatial extent used in our calculation (5d~&2) enters the
classically forbidden region of its effective potential at

b = 15. For scattered electrons with no more than
E =2.8 eV energy, a minimal angular momentum of
j=J—5/2, and corresponding minimal orbital angular
momentum l has an impact parameter
b'~1/&2E =1/0. 45. For J=9 we have j= —", , l =6
and b'=13.2. The incident electrons only scratch the
"surface" of the simplified atom in its excited final state
and only small contributions to the cross sections are ex-
pected from symmetries with J=9. For J =10 we find

j = —", , 1=7 and b'=15.4) b such that, within this sim-

ple model, no substantial contributions to the cross sec-
tions are expected for J & 10.

For a maximal total angular momentum of J =9 and a
highest bound-orbital angular moment of j=

—,', continu-
um orbitals with j —", (or

~
k~ & 12) have to be calculated.

This amounts to 24 different orbital syrnrnetries k.

B. Scattering calculations and convergence with respect
to the number of included continuum orbitals

We adjusted the cutoff radius r, in the dielectronic po-
tential (6) to fit the measured binding energy, 471.5 meV.
of the Cs negative-ion ground state given by Slater
et al. [6j. This results in r =5.109 a.u. for cutoff func-
tions (5) and (6).

For practical applications, only a finite number of con-
tinuum orbitals ~E„k„) can be included in the expansion
(15) of the R-matrix eigenfunctions. This leads to a lack
of completeness in the representation of the scattered
electron inside the R-matrix sphere, which is easily seen
by studying the energy dependence of eigenphase sums
and partial cross sections as a function of the number of
continuum orbitals included in each channel. In Figs.
3(a) and 3(b) we show such a convergence study for the
partial elastic and inelastic cross sections in the J =0'
symmetry. The results for 15 and 24 continuum orbitals
per channel display nonphysical oscillations that decrease
in amplitude if more continuum orbitals are included.
Further, corresponding cross sections in Figs. 3(a) and
3(b) coincide at certain energies of the incident electron.
This means that the convergence properties are strongly
energy dependent. This energy dependence can be most
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easily understood by looking at a simple one-channel il-
lustration of the R-matrix theory, as given, e.g., in [36].
In this case the surface amplitudes (16) become identical
to the amplitudes of the continuum orbitals at the R-
matrix boundary, whereas the R-matrix poles are given
by the continuum-orbital energies. For total energies
close to R-matrix poles, the one-channel analog of the R-
matrix (17) gets an overwhelming contribution from only
one continuum orbital. Therefore, as long as the spec-
trum of included continuum orbitals covers the range of
total energies of interest, convergence is most rapid near
R-matrix poles and is slowest in between two poles.

The Buttle correction [35] provides an effective tool to
approximately include the influence of the omitted con-
tinuum orbitals, i.e., the influence of the terms omitted in
the R-matrix (17) by truncating the sum. Figure 4(a)
shows that all nonphysical oscillations in the elastic and
inelastic partial cross sections of Figs. 3(a) and 3(b) vanish

by using the Buttle correction in the J =0' calculation
with 24 continuum orbitals per channel.

In order to obtain total cross sections a certain number
of partial cross sections has to be added [cf. (29)]. We
therefore looked at the convergence properties (with
respect to the number of continuum orbitals) in all the J
symmetries required to obtain converged (with respect to
the number of included symmetries) total cross sections.
For J=0, . . . , 9 and both parities we found similar conver-
gence properties as for the J =0' symmetry, even
though, for higher J values, the convergence is a little
slower. Figures 3(c) and 3(d) show unphysical oscillations
in the eigenphase sum and partial cross section for J =5'
and 24 continuum orbitals per channel. Comparison
with Fig. 4(k) shows that the oscillations disappear after
the Buttle correction has been included. In all sym-
metries, 24 continuum orbitals and the Buttle correction
produce results free of the above-mentioned nonphysical
oscillations in both eigenphase sums and partial cross sec-
tions.

In a further convergence test we varied the number of
continuum orbitals in the Buttle-corrected calculation.

TABLE II. Eigenenergies of the lowest R-matrix orbitals for the three lowest orbital angular mo-
menta (l =1,2, 3) in comparison with experimental orbital energies. The number of nodes of the calcu-
lated large and small component radial R-matrix orbitals and the radius where the large component ra-
dial wave function enters the classically forbidden region are denoted as ni, n„and R . The amplitude
of the large component radial wave function at the R-matrix boundary is p(R ). All entries are in a.u.

7$

8$

9$

10$

E'iS

7P i/2

8P i/2

9P i/2

LP &/2

713/2

8p

9P3/2

1013/2

&P3/2

6d 3/2

7d 3/2

Sd 3/2

9d3/2

6 Id 3/2

6d 5/2

7d 5/2

8d 5/2

9ds/2

5/2

Theory

—0.058 85
—0.032 95
—0.021 04

2.5401 X 10

—0.04400
—0.027 37
—0.013 80

0.01063

—0.043 19
—0.027 06
—0.013 18

0.011 55

—0.040 21
—0.025 72
—0.013 19

0.091 73

—0.04000
—0.025 62
—0.01300

0.094 83

Expt.

—0.058 65
—0.032 30
—0.020 48
—0.014 53

—0.043 93
—0.025 59
—0.017 18
—0.012 21

—0.043 10
—0.025 83
—0.01697
—0.012 09

—0.040 18
—0.024 16
—0.016 33
—0.011 75

—0.039 98
—0.024 32
—0.016 33
—0.011 71

ni /n,

6/6

7/7

8/8

9/9

5/7

6/6

7/7

8/8

5/5

6/6

7/7

8/8

3/5
4/4
5/5

6/6

3/3
4/4

5/5

6/6

19.8
30.5
47.6
70.4

22.5
36.4
72.4
81.6

23.1

36.9
75.5
82.5

24.8
38.9
75.8
85.0

24.9
38.9
76.9
85.2

p(R )

3.08 X 10-'
—0.126

0.297

—0.274

—1.99X 10-'
0.220

—0.290

0.263

—2.25 X 10-'
0.226

—0.289

—2.25 X10-'
0.219

—0.282

0.257

—2.33 X 10

0.221
—0.282

0.257
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Again, for all symmetries we found converged eigenphase
sums and partial cross sections with 24 continuum orbit-
als per channel. For the lower symmetries, convergence
was obtained with even fewer continuum orbitals. For
the special case J =0', 15 continuum orbitals per chan-
nel in combination with the Buttle correction were
enough to produce converged partial cross sections for
scattered-electron energies below 3 eV.

The convergence tests on the Buttle-corrected partial
cross sections are also interesting from a different point of
view. Since all channel coupling is neglected in the But-
tle correction, the question arises of how fast partial cross
sections without and with the Buttle correction converge.
In other words, it might be asked if we have left out a
relevant part of the channel coupling by including it only
through the 24 continuum orbitals per channel which are
explicitly taken into account in the diagonalization of the
Hamiltonian (1). However, since the Buttle-corrected
partial cross section converged we can conclude that the
omission of channel coupling in the Buttle correction is
justified.

We mention parenthetically that the Buttle correction
may lead to numerical errors if the scattered-electron en-
ergy c.; in channel i approaches one of the continuum-
orbital eigenenergies E;~. In this case both terms in (18)

diverge even though their difference, E.;; "'"', must remain
finite. Therefore, in general, we discard all points of a
given energy mesh for which ~e;.—E;~ is smaller than an
upper limit hc of the order of 0.5 meV. If the desired en-
ergy resolution of the calculated cross sections is below
b, E, neglecting (at the most a few) mesh points does not
restrict the applicability of our method, since the level
spacing of the continuum orbitals is much larger than hc..
Only if the desired energy resolution is very high (typical-
ly less than 1 meV) and only if an eigenvalue e;J happens
to lie within the considered ranges of channel energies,
more care must be taken. We encountered this situation
in calculating highly resolved partial cross sections for
J =0' and 1'(cf. Fig. 6 below). At a scattered-electron
energy of -0.7 meV these partial cross sections original-
ly showed a narrow peak accompanied by a local n. /2
enhancement of the eigenphase sums. Mistakenly, this
feature could have been interpreted as a virtual state. In
reality, however, it originated in the limited numerical
precision in the difference of the two diverging terms in
(18) for e, close to the s-orbital eigenenergy
e; =2.5401 X 10 =0.68 meV (cf. Table II). In all the
subsequent results, we suppressed these numerical ar-
tifacts by interpolating the Buttle correction for
[e,, —

E, i
&bE.
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FIG. 3. Results without Buttle correction and with dielectronic term for two J symmetries: (a) partial cross sections for J =0'
and 15 continuum orbitals per channel; (b) partial cross sections for J =0' and 24 continuum orbitals per channel; (c) eigenphase
sum (modulo m) for J =5' and 24 continuum orbitals per channel; (d) partial cross sections for J =5' and 24 continuum orbitals per
channel. The partial cross sections are for elastic scattering ( ), 6s-6p&/& excitation ( —~ —~ —~ ), 6s-6p3/2 excitation ( —-—-),
6s-5d3/2 excitation ( ———) and 6s-5d5/2 excitation (. - - -). For converged results see Figs. 4(a) and 4 (k).
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C. Kigenphase sums, partial cross sections, and analysis of
resonances

5(E)=50(E)+ tan I I /2

r
(32)

where 5O(e) is a slowly varying background phase shift,
c, the position and I the width of the resonance. Clear-
ly, for the complex situation encountered in e -Cs
scattering, we cannot expect this simple formula to ex-
plain the variety of structures in eigenphase shifts and
partial cross sections (Fig. 4). Rather, we would expect
that the distinctive appearance of resonances according
to (32) is hidden or mutilated due to strong configuration
interaction, a strongly varying background phase shift,

Structures in electron-atom scattering cross sections
can be related to resonances, threshold effects, or a com-
bination of the two. These structures, largely averaged
out in converged total cross sections, strongly influence
angle-differential and partial cross sections and are most
conveniently analyzed in terms of eigenphase sums.
Their complexity explains the diSculties encountered in
analyzing measured angular distributions in low-energy
electron-Cs collisions [5,45].

In an attempt to better understand the complicated dy-
namics involved in low-energy electron-Cs scattering, as
well as to identify and classify resonances, we investigat-
ed eigenphase sums and partial cross sections. Figure 4
shows the eigenphase sums and corresponding elastic and
inelastic partial cross sections for the 12 lowest sym-
metries (J 5 5). In the calculation we included the lowest
valence orbitals, 24 continuum orbitals per channel, the
dielectronic term with r, as specified in Sec III B, and the
Buttle correction. For the same symmetries as in Fig. 4
a list of the bound-continuum and (square integrable)
bound-bound configurations included in the expansion
(15) is given in Table III. Each bound-continuum
configuration defines a channel in the J"symmetry under
consideration. For our five-state calculation the number
of channels increases in J for the lowest symmetries and
saturates at 18 channels per symmetry for J&3. Based
on the five lowest bound orbitals of the valence electron,
bound-bound configurations are possible for J &4, lead-
ing to a total of 35 square-integrable terms. Intuitively,
one might expect resonances to predominantly occur in
symmetries with bound-bound configurations. However,
one should bear in mind that (1) the electronic structure
of alkaline-earth-metal-like configurations is strongly
influenced by electron-electron correlation leading to
strong channel coupling and limited physical significance
of individual configurations, and that (2), as mentioned
before, the (energetically) lowest continuum orbitals with
small angular momenta have bound-state properties (cf.
Table II). The corresponding bound-continuum
configurations included in the first sum of (15) are there-
fore likely to contribute significantly to the formation of
resonances.

Near an isolated resonance the eigenphase sum, as a
function of the incident-electron energy c, can be written
as

threshold effects and overlapping resonances. In addi-
tion, on top of various other structures, broad resonances
might not be discernible. On the other hand, very nar-
row resonances, in principle good candidates to be
parametrized by (32), might not be resolved. The latter
will turn out to be true for the eigenphases as shown in
Fig. 4 and very narrow 6s6p PJ and 6p PJ resonances
to be discussed below. The resolution in Fig. 4 is limited

by a maximum of 150 energy-mesh points in each plot.
Resonances and negative-ion bound states may be

traced by investigating the lower part of the spectrum of
R-matrix poles Ez and the corresponding eigenfunctions
(15). Of particular interest are eigenfunctions with
bound-state character. These eigenfunctions are predom-
inantly built up by either square-integrable
configurations, included in the second sum in the expan-
sion (15) or by bound-continuum configurations, included
in the first sum, the latter containing the very lowest con-
tinuum orbitals. Since we use orthogonal configurations
the squared expansion coefficients in (15) correspond to
the probability for finding a certain configuration in the
R-matrix eigenfunctions. Large probabilities for bound
configurations provide evidence that the eigenvector is
related to a resonance or negative-ion bound state, and
the corresponding R-matrix pole can be an approxima-
tion to the exact resonance position or electron affinity.
Of course, care must be taken to eliminate "box eigen-
states, " that may occur as an artifact of the diagonaliza-
tion within a finite volume by either varying the R-
matrix radius or the value b in the boundary condition
(12) for the continuum orbitals.

The results of our eigenvector analysis for symmetries
with J+4 are shown in Table IV. Energies are given
with respect to the ground state of Cs. For each R-
matrix pole the dominant configurations together with
their probabilities (in percent) and a shorthand notation
for the configuration (e.g. , 6snd) are given. We first inves-
tigate even-parity symmetries. The lowest R-matrix pole
in the J =0' symmetry corresponds to the bound state of
Cs . This state is to 90.2' based on two configurations.
Since both configurations include only 6s and 7s orbitals
with a negligible amount of probability density outside
the R-matrix sphere, the energy of the R-matrix pole,—0.4715 eV, is most likely to be very close to the exact
value. Indeed, as will be shown in Table VI, this value is
practically identical with the electron affinity we obtained
after matching 40 exponentially decaying solutions at the
R-matrix boundary. We therefore conclude that the
ground state of Cs is well localized inside an R-matrix
radius of 40 a.u.

Two broad D' resonances occur for elastic scattering
at 0.119 and 0.422 eV. All levels in these multiplets are
exclusively linear combinations of 6snd-type
configurations. One of these multiplets most likely corre-
sponds to the 6s5d D' multiplet that was noticed at
scattering energies below 0.5 eV in a previous calculation
[17]. The rise in the eigenphase sums for J =2' and 3' at
low energies can be related to these D' resonances [cf.
Figs. 4(e), 4(g)]. Two 'D' resonances of 6snd character
occur at energies around 0.8 eV and enhance the rise in
the J =2 eigenphase sum, which leads to a broad bump
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TABLE III. Bound-continuum (Cs+ e ) and bound-bound (Cs ) configurations included in the ex-
pansion (15) of the R-matrix eigenfunctions for the 12 lowest J"symmetries. For the bound-continuum
configurations, each line refers to the same bound valence orbital and repeatedly occurring bound orbit-
als are denoted by "—".

Cs +e configurations Cs configuration

Oe 6$ 1/26$ 1/2

6P 1/2EP I /2

6P 3/2 &P 3/2

Sd3/26'd3/2

Sds/zeds/2

26$1 /2
26P 1/2

6P 3/z
2

Sd 3/2

5d 5/2

OO 6S1/2' 1/2

6P 1/26$ 1/2

6p3/zed3/2

Sd3/2 &p3/2

Sds/2~f 5/2

6$ 1/26P 1/2

6p 3/25d3/2

le 6s, /2 es 1 /» —ed 3 /2

6P 1/2' 1/2) GP3/2

6P3/2'%1, 2 &EP3/2& +f5/2

Sd3/2E$1/2, Eds/2& Efslz

Sds/zed3/2) wads/»
—eg7/2

6s 1 /2 5d 3 /2

6P 1 /2 6P 3 /2

Sd3/25ds/2

10 6S 1/2 &P 1/2) FP3/2

6p 1 /2 es 1 /» —ed 3 /2

6p3/2~$1/2) &d3/2) Gds/2

Sd3/2~71/2& ~p3/2& ~f5/2

Sds/zep3/2& f5/2& f7/2

6s 1 /2 6P 1 /z, 6s 1 /z 6P 3 /2

6P 1/2 3/2, 6P3/2 3/2

6p 3 /2 5d 5 /2

2e

20

6S 1 /2 Ed 3 /2 ) ed s /2

6p1/26P3/zr Ef5/2

~P3/2Epl/2& EP3/zr ~f5/2& ~f7/2

Sd3/26$1/2) Ed3/2) Eds/2) Eg7/2

S/2 1/2) 3/2) 5/2) g7/2) g9/2

65'1/2 P3/2& Efsl2

6p, /zed3/2) wads/2

6P3/2 1/2, 3/2, 5/2, g7/2

Sd3/2'EP1/2& 'V3/2& ~f5/2& ~f7I2

Sds/zeP, /2&
—

ep3/2 fsn, f7/2 9/2—

6s 1/z Sd3/2, 6s 1/2 5ds/2
2

6P 1/26P 3/2) 6P 3/2

Sd 3/2 ) 5d3/25d, /,
d s/z

6$ 1 /2 6P 3 /2

6p 1/25d3/2) 6p 1/z 5ds/2

6p 3 /2 5d 3 /2 ) 6p 3 /2 5d s /2

3e 6$ 1 /2 6d s /2 ) 6g 7 /2

6P1n&fslzr &fzlz

6P3/2 ~P3/2& ~f5/2 &
'Ef7/2 r ~h 9/2

3/2 3/2) 5/2) g7/2) g9/2

S/2 1/2) 3/2) S/2) g 7/2) g 9/2) 11/2

6s 1 /, 5d s /2

5d 3 /2 5d s /2

30 6~1/z~f 5/2& ~f7/2

6p 1 /2 ed s /» —eg 7 /2

6p 3 /2 ~d 3 /2 ) ~d s /2 ) ~g 7 /2 ) 6g 9

3/2 P3/2& f5/2& f7/2& 9/2

Sdslz p1n, psn, fsn, f,n, ,n—, —h—„/2——
6p 1 /z 5d s /2

6p3/2 3/2, 6p3/z ds/z

6$ 1 /2 Cg 7 /2 ) Cg 9 /2

6P1/2~f7/2& Eh9/2

6P1/2 f5/2, f7/2, 9/2, Eh 11/2

Sd3/25ds/2

5d s/2
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TABLE III. (Continued).

Cs+ e configurations Cs configuration

5d 3/2 5/29 g7/2 9 g9/2, 6l » /2

5/2 3/29 5/29 g7/29 g9/29»/29 13/2

40 6SI/2Ef7/2& EJI9/2

6P 1/2 Gg 7/2, 6g 9/2

6p3/2 Ed 5/29 Gg7/29 Gg9/29 E'l
1 1/2

~d3/2Ef5/2& Ef7/2& E~9/2& E~ 11/2

Sd5/2EP3/2& —f5/2& Ef7/2» 'E 9/2& I I/2& J13/2

6p3/2 5d 5/2

5e 6$1/26g9/2, El » /2

6P1/2 9/2p eh»/2

p3/2Ef7/2& E 9/2& Eh 11/2& EJ13/2
i

3/2 g7/2& 89/2~ »/2~ 13/2

5/2 5/2 ~ g7/2 ~ g9/2 ~ » /2 ~ 13/2 ~ 15/2

50 6$1/2eh9/2, —eh )in
P1/2~g9/29»/2

6P3/2&g7/2& &g9/2, &l 1 1/29 &l 13/2

5d3/2Ef 7/2 JEI29/EJI I I/2 JE13 /2

Sd 5/2 Ef5/2 & Ef7 /2 & E~ 9/2 & E~ I I /2 & EJ 13/2 & EJ 15/2

TABLE IV. Result of an eigenvector analysis of the lowest R-matrix poles. The five-state calcula-
tion includes 24 continuum orbitals per channel and the dielectronic potential. The R-matrix poles are
given relative to the 6s Si/2 state of Cs. For every eigenvector the dominant configurations together
with their weight (in % probability), a term assignment, and a shorthand notation (first column) are
shown. Only configurations that contribute to at least 10% are listed.

$2

6snd

6snd

6snd

Se

3De

—0.4715

0.119

0.119

0.119

De 0.422

0.422

0.422

'D' 2 0.785

1De 0.842

Term J (Ez —~E6, ~) (eV) Configurations (% probability)

Even parity

6s 2(69.8),6s7s(20. 4)

6s 6d 3/2(19. 5),6s 7d 3/2(72. 3)

6s6d3/2(13. 7),6s7d3/2(50. 9),6s7d5/2(21. 4)

6s 6d 5/2(20. 0),6s 7d 5/2(72. 1)

6s6d3/2(48. 9),6s Sd3/2(34. 2)

6s 6d 3/2(31. 1),6s 8d 3/2(21. 7),6s 6d 5/2(17. 8)

6s 6d 5/2(48. 9),6s 8d 5/2(33. 6)

6s 8d 3/2(23. 4), 6s 5d 5/2(14. 1)6s Sd5/2(14. 4)

6s Sd3/2(16. 2)96$8d 3/2(22. 1)96$5d 5/2(10. 4) 9 6$ Sd 5/2(14. 3)

6p 2

6pnp

6pnp

6pnp

3pe

1De

1Se

3D e

1.244

1.255

1.279

1.441

1.455

1.455

1.494

1.503

6p 1/2 (43.3),6p 3/2(16. 8),6p, n 7p 1/2(23. 1)

»n p3/2(60. 3)96p i/27p3/2 (17.1),6p3/27p 1/2(12 3)

6p 3/2(45. 5)96pi/26p3/2( 13.5),6p3/27p3/2( 18.8)

6p1/27p 3/2(21. 5),6p1/28p 1 /2(60. 1)

6p 3/2(8. 9),6p 1/27p 1/2(11.9),6p 1/28p 1/2(58. 9)

6p i/27p3/2(12. 7),6p 1/28p3/2(66. 7)

6p3/27p i/2(20. 7),6p3/28p 1/2(39. 1)96p3/28p3/2(13. 5

6p3/27p3/2(25. 6),6p3n Sp3/2(60. 7)
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TABLE IV. {Continued).

5dns

Sdns

Sdnd

Sdnd

Sdng

5dng

1De

3De

1 ~ 836

1.848

1.854

1.864

3Fe 1.907

1.909

1.921

1.940

2.110

2.114

Term 1 (E„—~E6, ) (eV) Configurations (%%u& probability)

5d3/z 8s(38. 1),Sd3/z9s(11. 3),5ds/z 8s(21. 1)

5d3/z 8s(50.0),Sd3/z9s(22. 2)

5d3/z 8s(15.7), 5ds/z 8s(32.4),Sds/z9s(11. 5)

Sd s/z 8s(48.0),5d s/z9s(24. 1)

Sd 3/2 6d 3/2( 19.9),5d 3/2 7d 3/2 (40' 9)

Sd3/z6ds/z(19. 4), 5d3/z7ds/z(41 5)

Sd s/z 6d s/z (26.9),5d s/z 7d s/z (49.4)

Sd3/z6ds/z(12 1)p5ds/z6d3/z(18. 6), 5ds/z7d3/z (44.8)

Sd 3/z Sg7/z (70.0),Sd3/z 6g7/z(22. 9)

Sd3/z5g9/z(66. 0),5d3/z6g9/z(22. 8)

Sd7i

6s6p

6snp

6pns

6pnd

6pns

3pO

3PO

3pO

Fo

3pO

2.124

—1.224 X 10-'

3.187X 10-'

1.011X 10-'

0.106

0.110

0.118

1.390

1.451

1.449

1.589

1.609

1.629

1.597

1.629

1.650

Sd s/27i, & /z( 89.7)

Odd parity

6s6p»z(43. 2), 6s7p»z(36. 7),6s 8p )/z(14. 9)

6s6p &/z(27. 4), 6s7p &/z(25. 5),6s 8p 1/z(11.5),6s6p3/z

(13.2), 6p&/z7s(12. 0)

6s6p3/z(35. 5),6s7p3/z(39. 1),6s 8p3/z(20. 8)

6s6p &/z(25. 4), 6s 8p &/z(64. 5)

6s6p i rz(18.7),6s 8p &/z(42. 4), 6s 8p3/2 {20.2)

6s6p3/z(31. 4), 6s8p3/z(58. 8)

6p &/z7s(18. 6),6p &/z8s(62. 7),6p &/z9s(11. 7)

6p3/z 7s(17.6),6p»z 8s(52.9),6p3/z 9s(10.2)

6p3/z7s(19. 4), 6p3/z 8s(58.4)

6p i/zSd3rz(28. 7),6p i rz7d3/z(27. 6),6p3/z7d3/z (13.2)

6pi/zSd3/z(13. 1),6p3/zSdsrz(13. 4), 6p3/z7d3/z(35. 8)

6p3/z7ds/z(47 6)

6p i/z7s(34. 1),6p», 9s(48.9)

6p3/z7s(25. 7),6p3/z9s(32. 3)

6p 3/z 7s(32.6),6p3/z 9s(47.9)

6pnd

6pnd

DO

Do

1.784

1.784

1.809

1.824

1.825

1.845

6p, rz6d, rz(35. 5),6p, rz 8d 3/z(25. 9)

6p &/26ds/2(31. 4), 6p i/z Sdsrz(22. 7)

6p &/z 6d s/z (18.8),6p i rz 8d s/z(17. 5),6p3/26d s/z(14-1)

6p3/z5d3/z(16. 3),6p3/z6d3/z(29. 0),6p, rz8d3/z(19. 5)

6p3/z6d3/z(18. 9),6p3/z6ds/z(14. 2), 6p3/z 8d3/z(12. 4)

5d3/z7p3/z(11 9)y6p3/z6ds/z(16 1)y5d3/z8d3/z

(11.4), 6p3/z8ds/2(13
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FIG. 5. Highly resolved eigenphase sums (modulo a, left)
and partial cross sections for the 6p PJ' shape resonances: (a)
J=O, (b) J=1, (c) J=2. The calculation includes the Buttle
correction and the dielectronic term.

in the partial elastic cross section. For these resonances
the assignment of the singlet terms is tentative. As is true
in general for triplet terms, the assignment of the D' is
much more reliable, since it is based on three symmetries.

Of particular interest is the multiplet of narrow 6p P'
resonances below the first excitation threshold. These
resonances are not resolved in Figs. 4(a), 4(c), and 4(e).
They have also been identified in the calculation of Scott
et al. [17],where, however, in the J= 1 and 2 symmetries
the resonances were predicted to be above the first excita-
tion threshold. Fully resolved, the P' resonances are
displayed in Fig. 5.

The sudden rise of the eigenphase sums in the J =0',
1', 2', and 3' symmetries above the 6p, /2 and 6p3/2
threshold is related to 'S', 'D', and D' resonances with
6pnp-type configurations [Figs. 4(a), 4(c), 4(e), and 4(g)].
Again, the assignment of the singlet terms is tentative.
At about the same energy a D' resonance has been
identified in the calculation of Scott et al. [17], where it
was attributed to the capture of the incident electron in
the long-range field of the excited target. Near the 6p»2
threshold several overlapping resonances and structure
due to the opening of new channels have been predicted
in transmitted-current measurements [45], where, howev-
er, no clear configuration assignment was made. As
Gehenn and Reichert [5] pointed out, a D' resonance
might contribute to a distinctive structure at 1.39 eV in
their measured angle-differential elastic cross sections.
%ithout having calculated angle-differentia cross sec-
tions, we are not able to test very conclusively the conjec-
ture of Gehenn and Reichert. Our calculated partial
cross sections for the J =1', 2', and 3' symmetries [cf.

Figs. 4(c), 4(e), and 4(g)] are inconclusive with respect to
possible resonance structures close to the first excitation
threshold.

Above the 5d5/2 excitation threshold the eigenvector
analysis reveals candidates for 5dns 'D', 5dns D', and
5dnd F' resonances. However, these resonances could
not be related to any discernible feature in the eigenphase
sums. To be of physical significance, they have to be very
broad. The continued rise of the eigenphase sum in the
J =4' symmetry above the 5d5/2 threshold occurs also
in the result of Scott et al. [17]and can be explained by a
series of resonances with configurations of 5dnl, l &2
type, which, possibly, are due to the temporary capture
of the scattered electron in the Geld of the excited atom in
a 5d3/2 D3/2 or 5d5/2 D, /2 state.2 2

%e now turn our attention to the odd-parity states.
The most interesting, and, at the same time the most con-
troversial features in the odd-parity spectrum of Cs, are
6s6p P' resonances a few meV above the ground state of
neutral Cs. Several authors [16,18,19,21] suggested that
this multiplet of states may be bound states of Cs, even
though some experimental evidence exists [22—24] that
these P' states of Cs are indeed resonances. In our cal-
culation part of this controversy is rejected in the spec-
trum of R-matrix poles: the pole corresponding to the
lowest state (6s6p Pz) of the multiplet lies below the
6s S,/2 threshold of Cs, whereas the poles corresponding
to the 6s6p 'P', and 6s6p P2 states occur above the same
threshold (Table IV). The three 6s6p 3'' states have no-

ticeable contributions from 6s 8p configurations and
therefore are expected to extend beyond the R-matrix
sphere [note that the 8p orbitals are subject to the R
matrix boundary conditions (12) and have nonvanishing
amplitudes at r=R (cf. Table II)]. This means that the
R-matrix poles cannot be expected to be good approxi-
mations (on a milli-electron-volt scale) to the exact reso-
nance positions. Actually, as we will discuss in more de-
tail below, a11 6s6p Pz states appear above the 6s S&/2
threshold when the dielectronic term is included (note
that the notation "6s6p" is somewhat arbitrary and could
as well be replaced by "6snp" due to the strong admixture
of configurations with 7p orbitals). The 6s6p Pg reso-
nances are not resolved in Figs. 4(b), 4(d), and 4(f), but
their strong enhancement of the partial elastic cross sec-
tion at very low energies can be distinguished. Fully
resolved eigenphase shifts and partial cross sections for
these resonances are shown in Fig. 6.

The possibly very broad 6snp P' resonances at approx-
imately 0.1 eV are of questionable physical significance
and are shown in Table IV mainly for the sake of com-
pleteness.

As in the work of Scott et al. [17]we find several reso-
nances above the first (6p, &2 P, &z) and second

6p3/2 P3/2) excitation threshold of Cs (in the detailed
resonance assignment however, we disagree with Ref.
[17]). All of these resonances are related to 6pns or-
6pnd-like configurations. The coupling scheme in Table
IV (two P' and one I"multiplet) is tentative. The sud-
den rise of the eigenphase sum in the J =0' symmetry is
due to the 6pns Po resonance with R-matrix pole at
1.390 eV and is cut short by the onset of the 6p3/2 P3/2
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threshold [Fig. 4(b}]. Similarly, the 6pns P' and
6pnd F' resonances lead to sudden rises in the eigen-
phase sums in the J =1', 2', 3', and 4' symmetries. The
distinct peaks of the partial cross sections in the J"=3'
and 4' symmetries is one of the few features of the partial
cross sections that is also seen in the converged inelastic
and total cross sections [cf. Fig. 7 and Fig. 10(b)]. In fair
agreement with the interpretations given by other au-
thors [10,17] our calculations suggest this structure to be
a 6pnd F' resonance. (Note: here we use the notations
"6pnd" and "6pSd" interchangeably. The latter is
chosen by the other authors. ) In the transmitted-current
measurement of Johnston [45] a F' resonance was con-
jectured at 1.49 eV and tentatively assigned to 6s4f and
6p5d configurations. Also, Gehenn and Reichert [5]
found a resonance structure at 1.49 eV in their measured
angle-differential elastic cross sections, which they related
to a F'resonance.

Finally, near the 5d3/2 D3/2 and Sdsy2 Dsz2 thresh-
olds the eigenvector analysis indicates the existence of
two multiplets of 6pnd D' resonances. These resonances
may be too broad to show up as distinct features in Figs.
4(d), 4(f), and 4(h), and are only mentioned for the sake of
completeness. We did not find any evidence for a struc-
ture at 2.25 eV, tentatively assigned to a D resonance in
[45], possibly because this is just below the threshold for
excitation of the 7s state, which we did not include in the
first term of the expansion (15).

D. Comments on the polarization potentials and inhuence of the
dielectronic potential on the 6s 'So, 6s6p P&,

and 6p 'PJ'states of Cs

In Sec. III B we investigated the convergence of the ex-
pansion (15) with respect to the number of included con
tinuum orbitals P, . For low-energy incident electrons we
applied a close-coupling approximation in restricting the
number of bound valence orbitals to those of the ground
and the four lowest excited states of the alkali-metal
atom. Energetically inaccessible target states that would
correspond to virtual excitations are not included in the
close-coupling ansatz per se. However, it can be shown
[46] that the formal inclusion of the infinity of virtually
excited target states in the scattering equations gives rise
to induced polarization effects, which are described by
the polarization potentials (4) and (6). Therefore, as the
Buttle correction is introduced to correct for the incom-
pleteness of the finite expansion (15) with respect to the
incomplete set of continuum orbitals, the induced polar-
ization potentials cure the lack of completeness in the
finite set of bound valence orbitals.

We also investigated the influence of the choice of
W„(r„r) and of the radius r, on negative-ion bound
states and shape resonances in an interval for r, similar to
the one given by Zhou and Norcross [32] for r, . The
affinities obtained for the same value of r, but different
cutoff functions differ by a few percent. If we modify the
somewhat arbitrary analytical form of the cutoff func-
tions by dropping the square-root exponents in (6},we ob-
tain r, =4.467 a.u. . The sensitivity to the two cutoff
functions and their corresponding cutoff radii for the

6s6p PJ states of Cs is illustrated in Table V, demon-
strating that the two-electron results are insensitive to the
explicit form of the function (5). The affinities shown are
determined directly from the R-matrix poles. Except for
the lowest J value all the affinities are negative. Attempts
to match the odd-parity states to linear combinations of
exponentially decaying solutions at R failed for all J
values and both forms of the cutoff functions, i.e., all
three states are unbound at this level of approximation.

Table VI shows results for our five-state
(6s 1/2, 6p 1/2, 3/2, Sd3/2, 5/2} Dirac R-matrix calculation in-
cluding 24 continuum orbitals per symmetry and the But-
tle correction at different levels of approximation in com-
parison with other theoretical predictions
[12,16,18,19,21] and with the experimental values
[6,22 —24]. The approximate affinities, E(,trI are calculat-
ed without the dielectronic term as the difference of the
eigenvalues we obtained by diagonalizing the full Hamil-
tonian within a finite volume given by the R-matrix ra-
dius of 40 a.u. , and the energy of the neutral atom ground
state. To satisfy physical boundary conditions, the
negative-ion states must be matched to linear combina-
tions of exponentially decaying states outside the R-
matrix sphere. For this purpose we looked for zeros of
the modified determinant (31), again without including
the dielectronic term. The affinities thus obtained, Elf"',
were found to be smaller than E ff'. The difference be-
tween E ff' and E',ff"' is negligible for the Cs ground
state. The negative-ion ground state therefore fits into
the R-matrix box of radius 40 a.u. , as was already pointed
out in Sec. III C from a different point of view.

Next we included the dielectronic term, and found that
it changes the negative-ion spectrum dramatically. The
6s6p Pz multiplets are shifted by 20—30 meV into the
continuum, where they appear as shape resonances in the
partial elastic cross section for the J =0', 1',2' sym-
metries (Fig. 6). Within the multiplet, the energy and
width of the resonances increase from J=O to 2 (Table
VI). The J-averaged location of the resonances is 9.14
meV above the ground states of Cs. For the 6p PJ reso-
nances, the dielectronic term shifts the resonance ener-
gies about 20 meV. Their widths amount to a few meV
and increase with J (Fig. 5 and Table VI). The resonance
positions E,ff and width I in Table VI were obtained un-

00
10

20

(a)
r, =5.109

1.2
—3.2

—11.0

(b)

r, =4.467

1.1
—3.3

—11.2

TABLE V. Approximate negative-ion affinities of the
J =0', 1', and 2', (6s6p PJ) symmetries of Cs as obtained
from the diagonalization of the total Hamiltonian within the R-
matrix sphere including the dielectronic polarization correction
for two cutoff functions with radii r, obtained by fitting the ex-
perimental ground-state energy of Cs: (a) as in Eq. (6); (b) as in

Eq. (6), but with ( W„)'/ replaced by W„. Negative entries cor-
respond to energies above the 6s&&2 threshold.

Electron affinity (meV)
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TABLE VI. Negative-ion energies and resonance positions E,ff and widths I in meV for Cs with

respect to the 6$&/2 threshold (for 6s 'So, 6$6p PJ ) or the 6p&/2 threshold (for 6p PJ). E',& is the ap-
proximate affinity obtained by diagonalizing H without the dielectronic term within the R =40 a.u. R-
matrix sphere. E',ff"',I' "' are obtained after matching at R to solutions outside R. E,ff, I are the final

results including in addition the dielectronic term. Negative values indicate states not bound relative to
the given threshold at the given level of approximation. The J-averaged affinities are given by
E=g(2J+ 1 }E,~(J)/g(2J+ 1).

Dominant
configuration

$2 lee

6$6p PJ

6p 2 3pe

J7r

0e

00

10

20

J-av.

0e

le
2e

J-av.

Reference

[29]
[16]
[18]
[12]
[6](expt)
[29]
[21]
[29]
[21]
[29]
[21]
[29]
[21]
[16]'
[18]'
[19]
[22](expt)
[24](expt)
[29]
[29]
[29]
[29]
[29]'
[18]
[12]'

Eaff

521.843

31.21

24.59

12.35

18.53

E(—d)
aff

521.836
430
513
511

28.35
32
21.39
25
8.60
11
15.06
18
27
10.97

159.68
148.02
126.13
137.15
182.56
315.5
183

I ( —d)

0.005
0.19
1.12
0.69

E.ff
471.5

470
471.5
—1.78

—5.56

—12.76

—9.14

1.2 —11
—12.6
—0.75
141.24
129.71
108.11
118.99
164.40

166

0.42

2.43

9.32

6.03

9.1

0.3
0.009
0.15
1.33
0.79

'The authors do not expect this state to be bound were their calculations to be further refined.

Relative to the center of gravity of the 6pj states.

der the assumption of a constant background phase shift
5p by a two-parameter nonlinear least-squares fit of the
derivate d5(E)/dE of (32) to the numerical derivative of
the calculated phase shift.

Agreement between the present results for the parame-
ters of the P states and those of previous calculations
[12,16,18,21] at a similar level of approximation is gen-
erally quite good (Table VI). The J-averaged position and
width of the P' resonances also agree reasonably well
with the prediction of a 6s6p P' resonance, based on
analysis of experimental data [22,23].

E. Converged elastic, inelastic, and total cross sections

Converged total scattering cross sections for incident
electrons with energies up to 2.8 eV mere obtained by
summing over 20 symmetries (J=0, . . . , 9 and both pari-
ties) and including elastic and inelastic contributions for
excitation to the final 6p &/2 6p3/2 5d 3/2 and 5d 5/2
states of Cs (Fig. 7). Our results, which include the
dielectronic term (6), are in qualitative agreement with
the two-state nonrelativistic calculations of Karule and
Peterkop [20] and Burke and Mitchell [10]. Except near
thresholds and resonances, the effect of the dielectronic

term is to reduce the total cross section by 5 —10%. The
discrepancy between the results of the five-state calcula-
tion by Scott et al. [17] and ours is puzzling and cannot
be ascribed either to the dielectronic term or to addition-
al relativistic interactions included in our calculation.
Together with the results of Karule and Peterkop [20]
and Burke and Mitchell [10] our results follow the trend
of the measurement [4]. At energies below 20 meV the
6s6p PJ, J=0, 1,2 shape resonances can be identified in
the converged elastic-scattering cross section (Fig. 8).

These features might be the explanation for the
discrepancy between previous calculations and experi-
ments as originally suggested [16]. The collision
broadening of Rydberg states and the total cross section
below 0.1 eV are in good qualitative agreement with the
prediction [22,23] based on analysis of experimental data
if one a11ows for the absence of fine-structure splitting of
the P' resonances in the latter. The scattering lengths
we obtain for J =0' ( —0.79) and 1' (—19.0) are also in
fair agreement with the ERT predictions [22] of —2.40
and —22.7 for (in I.S coupling) 'S and S scattering, re-
spectively.

The multiplet of narrow 6p PJ resonances as it ap-
pears in the converged elastic cross section at high reso-
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(a)
1.0 8000

lution is displayed in the inset of Fig. 7. In the main plot
it is not resolved and appears as a "spike" below the erst
excitation threshold. The very narrow widths of these
resonances (cf. Table VI) are due to the purely relativistic
autoionizing decay into a 6sel continuum. As is easily
seen, these resonances are not allowed to autoionize in LS
coupling for conserved total orbital angular momentum
L =1, decay could only occur into the 6sep continuum,
which, however, would violate parity conservation.
Therefore, in a nonrelativistic approach, the autoioniza-
tion widths of the 6p PJ resonances are predicted to
vanish and the decay is predicted to be radiative and into
the 6s6p PJ multiplet or the 6sep PJ continuum.

A structure associated with a Ramsauer-Townsend
minimum in the J =1' symmetry is displayed in Fig. 9.
It is due to the destructive combination of the repulsive
p-wave centrifugal potential and the attractive polariza-
tion potential, that results into a vanishing (modulo m. )

phase shift [cf. Fig. 4(c)]. The Ramsauer-Townsend
minimum is also related to the large value of the J =1'
scattering length.

The converged elastic and inelastic contributions to
our total cross section in Fig. 7 are shown in Fig. 10. In
Fig. 10(b) the inelastic cross sections are shown separate-
ly. The peaks in Fig. 10(b) correspond to the peak at
=1.53 eV in our total cross section (Fig. 7). As men-

tioned before (Sec. III C), these peaks originate in a multi-

plet of 6pnd FJ resonances. In Fig. 7 the same feature is

seen in the results of Burke and Mitchell [10]and Scott et
al. [17]. In the calculation of Burke and Mitchell [10]
the F' resonance occurs at 1.7 eV, whereas in the more

700

500—

O
lU 1.29

300—

100 I

0.8 1.6

ENERGY (ev)

2.4 3.2

recent calculation of Scott et al. [17) it is predicted below
the lowest excitation threshold of Cs. Gehenn and
Reichert [5] found experimental evidence for a F' reso-
nance at 1.49 eV, which they relate to a F' resonance at
1.6 eV.

FIG. 7. Converged total cross section for low-energy e -Cs
scattering compared with published results. Theory: present
work ( ), Ref. [10] ( —~ —.—), Ref. [17] ( —-—-), Ref. [20]
(~). Experiment: Ref. [4] (X). The 6p, /p3/p and 5d3/25/p
thresholds are marked by the small triangles. The inset (same
units as main plot) shows the 6p' 'PJ, J=0, 1,2 resonances,
which are not fully resolved in the main plot. The large cross
sections we obtain at the lowest shown energies correspond to
the strong resonance enhancement of the elastic cross section
close to threshold due to the resonances shown in Fig. 8. Our
calculation includes the Buttle correction and dielectronic term.
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IV. SUMMARY AND CONCLUSIONS

In this paper we formulated the Dirac R-matrix theory
for electron scattering on alkali-metal atoms or alkali-
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FIG. 6. As Fig. 5 for the 6s6p PJ multiplet.
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FIG. 8. Converged total elastic cross section for e -Cs

scattering. The peaks from left to right correspond to the

6s6p 'PJ, J=0, 1,2 shape resonances, respectively.
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1 02

CU O

10

metal-like ions. We described the noble-gas-like-target
core within a semiempirical effective potential allowing
for induced dipole and quadrupole core polarization. For
both ionic and neutral targets, we developed an alterna-
tive computer program and applied it to a relativistic
multichannel close-coupling calculation for electron in-
teractions with Cs. The calculation, based on a highly
accurate and fully relativistic representation of the target
[32], includes long-range channel coupling in the field of
the polarized target [37,39] and yields negative-ion
a%nities, as well as elastic, inelastic, and superelastic
cross sections.

From the detailed analysis of eigenphase sums and par-
tial cross sections within a given J symmetry we have
obtained deeper insight into the scattering dynamics and
could identify several resonances. We have shown that
both core polarization and relativistic effects are respon-
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FIG. 10. Converged elastic and inelastic cross sections for
e -Cs scattering: (b) The inelastic cross sections of (a) shown
separately. Solid and interrupted lines as in Fig. 3.
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FIG. 9. Partial elastic cross section associated with a
Ramsauer-Townsend minimum in the J = 1' symmetry.

sible for new resonance structures in electron-Cs scatter-
ing. The former converts the highly correlated
6s6p PJ Cs states from bound states to very narrow
resonances and strongly enhances scattering cross sec-
tions at very low energies. The latter gives fine-structure
splitting and finite autoionization widths to 6p Pz states
that in I.S coupling are strictly uncoupled to the adjacent
continuum. We confirmed that 6p PJ states are bound
relative to the first excitation threshold of Cs as predicted
in an earlier [12] nonrelativistic calculation. In the par-
tially relativistic calculation of Scott et al. [17] however,
for J=1 and 2, these states were found above the
6p ] /2 P ]/2 threshold, therefore allowing for autoioniza-
tion by other than purely relativistic effects. Resolution
of this disagreement could have important implications
for relativistic effects on dielectronic recombination in
highly ionized highly charged systems. It might be possi-
ble to observe transitions between these P multiplets by
free-free absorption or emission. Such extremely narrow
shape resonances are quite rare in electron-atom scatter-
ing, and neither multiplet has yet been confirmed experi-
mentally.

Converged cross sections for elastic scattering and tar-
get excitation to 6p 1/2 1/2, 6p3/2 P3/2 5d3/2 D3/2
5d5/2 D5/2 final states were obtained by summing over
20 J symmetries and are in fair qualitative agreement
with previous calculations [10,20] and experiment [4].
The rather poor agreement on a quantitative level is in-
terpreted as due to an increased number of channels in
our calculation, relativistic effects, and refined model as-
sumptions in the descriptions of the Cs+ core. Further,
with respect to the measured total cross section, one has
to bear in mind that the only measurement [4] in the
modern era is more than 20 years old and was a result of
pioneering technology for absolute cross section measure-
ments in electron-atom collisions. The experimental un-
certainty of +20% cited by Visconti, Slavin, and Rubin
[4] is not quite enough to overlap the results of our calcu-
lation over the entire energy range measured and we
therefore anticipate that most readers would entertain
the thought that a new measurement is in order. There is
a very large and as yet unexplained discrepancy between
our results for the total scattering cross s..ction and that
of the only other recent calculation, by Scott et al. [17),
that included only first-order relativistic interactions.
The difference approaches 50% at 1.3 eV.

In view of the unexpectedly poor agreement for our to-
tal cross sections with the only other relativistic calcula-
tion [17], the much better agreement of our results with
nonrelativistic calculations [10,20] and experiment [4],
and to further extend our investigation of relativistic
effects we intend to perform a separate nonrelativistic cal-
culation under model assumptions that are as close as
possible to the ones underlying this paper.

We plan further investigations of both electron-Cs
scattering, including differential cross sections, orienta-
tion and alignment parameters [47], spin-dependent
effects [48], and photoprocesses [49] involving Cs and
Cs . We also intend applications on other heavy alkali
metal-like targets, first of all Ba+. In the meantime we
hope for an improved experimental investigation of the
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fascinating P" resonance structures elucidated in the
present work.
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