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We discuss a nonperturbative treatment of lepton-pair production caused by the strong and sharply
pulsed electromagnetic fields generated in peripheral relativistic heavy-ion collisions with an emphasis
on the capture process into the atomic K shell. We calculate, in a field-theoretical framework, impact-
parameter-dependent probabilities and cross sections for such processes by solving the time-dependent
Dirac equation on a three-dimensional Cartesian lattice using the basis-spline collocation method. We
give a full discussion of the stationary states used in computing S-matrix elements. Use of the axial
gauge for the electromagnetic potentials produces an interaction easier to implement on the lattice than
the Lorentz gauge. Preliminary calculations are given for muon-pair production with capture into the K

1 MAY 1992

shell in collisions of '’Au-+'%’Au at collider energies per nucleon of 2 and 100 GeV.

PACS number(s): 11.80.—m, 13.10.+q, 12.20.—m

I. INTRODUCTION

The prospect of colliding-beam accelerators capable of
producing collisions of highly stripped high-Z ions, at
fixed-target energies per nucleon up to 20 TeV, has
motivated much interest in lepton-pair production from
the QED vacuum. The electromagnetic fields involved in
such collisions contain large Fourier components which
give rise to sizable pair production [1,2]. These collisions
provide an opportunity to study nonperturbative QED in
an entirely new energy regime. The electromagnetic pro-
duction of lepton pairs using heavy ions is fundamentally
different from the production mechanisms using light
particles, since in the former the coupling constant is
strongly enhanced, e.g., for very heavy systems
(Au+Au,U+U) Za=0.6, where Z is the atomic number
of a participant heavy ion and «a is the fine-structure con-
stant. Applying perturbation theory to this process at
high energies results in probabilities which violate unitar-
ity and cross sections which violate the Froissart bound
[3,4]. This evidence, along with nonperturbative model
studies, clearly suggests that higher-order QED effects
will be important at the relativistic heavy-ion collider
(RHIC) [2,5].
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In addition to the fundamental questions regarding
lepton-pair production and nonperturbative QED, an ac-
curate description of electromangetic lepton-pair produc-
tion is important for both detector design and collider
performance at new experimental facilities such as
RHIC. Hadronic lepton-pair production has been widely
discussed as a possible tool for probing the formation and
the decay of the quark-gluon plasma phase of matter
which is to be produced in extremely relativistic heavy-
ion collisions [6]. Suggestions by several authors indicate
that other sources of lepton pairs might possibly mask
the leptonic signals originating from the plasma phase
[7-9]. Electromagnetic lepton-pair production caused by
highly stripped heavy ions in relativistic motion is es-
timated to be a major contribution to this physical back-
ground [1,2]. In addition, bound-free lepton-pair produc-
tion in peripheral collisions changes the charge state of a
participant heavy ion, leading to a decrease in the lumi-
nosity lifetime of the collider [7]. Accurate predictions of
the cross sections for this process are important for the
new generation of high-energy colliders, as cross sections
for electromagnetic lepton-pair production with capture
increase with energy.

There is a long history of the use of perturbative
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methods in studying the electromagnetic production of
lepton pairs, and this topic is recently reviewed in Refs.
[10,11]. However, as mentioned above, we plan to study
nonperturbative effects in lepton-pair production, since
the applicability of perturbation theory is doubtful at
high Z and high energy. Recently, coupled channel cal-
culations have been performed at moderately relativistic
energies which suggest that perturbative approaches
greatly underestimate electron-pair production with cap-
ture into the K shell at moderate impact parameters [12].

In this paper, we outline a nonperturbative approach
to electromagnetic lepton-pair production, which is ap-
plicable over a wide range of relativistic energies. Begin-
ning with the QED Lagrange density, we make reason-
able assumptions about the nature of the lepton and radi-
ation fields in peripheral relativistic heavy-ion collisions
which simplify the equations of motion to the time-
dependent Dirac equation and Maxwell equations. In do-
ing this, we maintain the field-theoretical tools for calcu-
lating particle production. We implement the solution of
the Dirac equation using the lattice basis-spline colloca-
tion method [13,14] in which quantum-state vectors and
coordinate-space operators are given by expansions in
terms of basis-spline functions and represented on a
discrete spatial grid. This method is very efficient and al-
lows us to avoid notorious difficulties such as the
fermion-doubling problem and to preserve the basic con-
servation laws on the lattice [13]. Our preliminary calcu-
lations are limited to muon-pair creation with capture
into the K shell, neglecting, for now, the more probable
and more nonperturbative electron-capture process. We
do this because the necessary 1s bound state of the target
is easier to compute for the muonic atom than for the
electronic atom with our lattice methods. In our calcula-
tions, we neglect free-pair production, since this process
requires the time evolution of many states, whereas the
capture process requires the time evolution of only a few
states.

In developing our approach to nonpeturbative lepton-
pair production, we have performed time-dependent
model calculations in one and three spatial dimensions
[8,13,15]. In the three-dimensional calculation for the
7Au+17Au system at collider energies of 0.2, 1.0, and
2.0 GeV per nucleon, we estimated the probabilities for
muon-pair production with capture into the K shell to be
several orders of magnitude greater than the standard
perturbation theory at grazing impact parameters [15].
This work gave the first clear computational indication
for the nonperturbative nature of lepton-pair production
in relativistic heavy-ion collisions, though it required
small lattice sizes and a screened projectile interaction to
make the size of the calculation manageable. Here, we
improve these three-dimensional calculations by using
the physical interaction, i.e., no screening is used. This is
made possible by taking advantage of the freedom we
have in choosing the gauge for our electromagnetic in-
teraction.

The plan for the paper is as follows. In Sec. II, we
derive the equations of motion and impact-parameter-
dependent probabilities for the creation of leptons from
the vacuum. In Sec. III, we discuss our numerical

6297

methods. Section IV describes the electromagnetic in-
teraction and our choice of gauge. The paper concludes
with a discussion of our preliminary results for muon-
pair production with capture.

II. THEORETICAL FRAMEWORK

Our formalism for nonperturbative lepton-pair produc-
tion in relativistic heavy-ion collisions can be derived
from a semiclassical least-action principle [13]. In the
following, we give an alternative derivation related to the
approach of Reinhardt and co-workers to e Ye ~ produc-
tion in nonrelativistic heavy-ion reactions [15-17]. The
main difference between this present treatment and the
derivation involving the semiclassical action is that here
we neglect the residual interactions among the leptons at
an earlier stage of approximation. Reference [18] gives a
similar derivation in first quantization. Throughout this
paper, we use natural units, i.e., i=c =my=1. This im-
plies that energies are measured in units of the lepton rest
mass myc’ and length, and time units are the lepton
Compton wavelength A-=%/m,c and Compton time
Tc=Ac /¢, respectively. In general, we denote quantum-
field operators by a hat over the mathematical symbol,
e.g., 1/) is the lepton-field operator.

A. Field-theoretical approach

Following the notation in Ref. [19] for the Dirac ma-
trices, we begin with the standard QED Lagrange density
operator

uv I
where
Jr=gt T =e D Oy T @

denotes the total four-current density operator consisting
of the lepton current and the conserved, external current
generated by the colliding heavy nuclei. The total radia-

tion field A is given by
/’1‘ :Alept+1f1‘;xt+2free , (3)

where we 1mP1y the obvious decomposition into the con-
tributions 4, and 4, 4o generated by the lepton current
]lept and the external current ]m of the moving heavy
ions, respectively. The term 4% free denotes the free radia-
tion field. By varying the action integral

Soep= [ d*x Logp 4)

with respect to the field operators ) and 4 x> We obtain

the Euler-Lagrange equations of motion for the quantum
fields

[v#(id,+ed,)—11d(x)=0, (5)

3, P (x)=7"(x) . ©6)

These equations of motion are difficult to solve and we

will make the following simplifying assumptlons First,
we choose to neglect the leptonic current ji, in Eq. (6)
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and the corresponding electromagnetic field 2 }fpt in Eq.
(5), in comparlson to the external current ;¥ L« and the
external field A”‘, respectively. This decouples the field
equations of motlon Neglect of the leptonic current is
justified, as it is much smaller than the strong, external
heavy-ion current. We also treat the contribution to A
from the external heavy ions classically by solvmg
Maxwell’s equations, ie, A5 —(45) =A%
Furthermore, we neglect QED radxatlve corrections like
vacuum polarization and self-energy effects arising from
interactions of the lepton field with the free radiation
field, i.e., A free —(0. The classical treatment of the radia-
tion field is reasonable since the strength of the external
field implies a large number of photons. The problem is
thus reduced to the solution of the tlme -dependent Dirac
equation, Eq. (7), for the lepton field ¥, interacting only
with an external, classical four-vector potential AZ’“
determined independently by Maxwell’s equations, Eq.
(8), i.e.,

[y(i8,+eAS)—1](x)=0, (7
3 Fi (x)=j¥(x) . (8)

We study the electromagnetic production of lepton
pairs in a reference frame where one of the nuclei, hence-
forth referred to as the target, is at rest. The target nu-
cleus and the lepton interact via the static Coulomb field
A9. The only time-dependent interaction Af(t) arises
from the classical motion of the projectile. Thus it is nat-
ural to recast the Dirac equation (7) into the Schrodinger
form

[HF+Hp(t)]$(r,t)=i%$(r,t) : ©)
where the static Furry Hamiltonian Hy describing the
lepton field in the presence of the strong external
Coulomb field of the target nucleus, is given by

Hp=—ia-V+B—eA}, (10)

and the time-dependent interaction between the lepton
field and the projectile is

Hp()=ea- Ap(t)—eAl(1), (1

where B=7° and a=7"y. In this way, binding-energy
effects to all orders in the coupling constant are taken
into account.

Following the usual practice, we expand the lepton-
field operator, defined in Eq. (9), in a complete, orthonor-
mal set of single- partlcle basis states. First, we consider
expanding 11/ r,t) in the Furry basis {x;(r)}, i.e., the sta-
tionary eigenstates of the Furry Hamiltonian H defined
in Eq. (10), given by

Hpxi(t1)=E;x (1), (12)

which are also proper in and out states for asymptotic
times || — oo, where the interaction Hp(t) is zero. The
index k represents the complete set of quantum numbers
for the single-particle state X,(r). Such an expansion
gives
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d(r,0)=3 @, (t)x,(r)exp( —iEg1) , (13)
k
where the @, ’s are operator-valued expansion coefficients.
From the anticommutation relations for the fermion field
operators t?? and 1’/7', one readily shows that 6,:' and @, re-
spectively, describe the creation and annihilation of lep-
tons in state k in the static Coulomb field of the target
nucleus. They define what one may call the mathemati-
cal vacuum |0) by @,;/0) =0, i.e., the state without parti-
cles of any kind. We also consider the time-dependent

basis of solutions to the full Dirac Hamiltonian
Hp+Hp(t),
.0
[HF+HP(t)]¢j(r,t)—z§¢j(r,t) . (14)

Expanding lz in this basis results in

Ir,1)= 2(1 6;(r,1), (15)

where the operator-valued expansion coefficients &; are
quasiparticle destruction operators. In the time-
dependent basis {¢;(r,?)}, the states are not stationary
and, in general, are linear combinations of the eigenfunc-
tions of the Furry Hamiltonian. Under the influence of
the interaction Hamiltonian Hp(?), the single-particle
states Y,(r) defined in Eq. (12) evolve into the time-
dependent states ¢;(r,?) according to the time-dependent
Dirac equation (14). Therefore the index j does not refer
to a set of good quantum numbers for ¢;(r,?), but refers
to the quantum numbers of the particular Furry state
X, (1) that satisfies the  — — oo boundary condition
tlll;anﬁ] r,t)—x;(r)exp( —iE;t) . (16)
The QED ground state |®,) in the presence of the un-
dercritical (i.e., Zya < 1), external field of the target nu-
cleus is a many-lepton state of time-independent one-
particle solutions of the Furry Hamiltonian where all
states with energies less than —m0c2 are occupied, i.e., a
single Slater determinant of the form

[®y(1—— o)) =|de) = [T (@))]0) , (17)
i<F
where i <F denotes states below the Fermi energy
Er=—m,c?. We have omitted the spatial coordinates
for simplicity. The time-evolved QED ground state is
[®o(1)) =0 (1,t— — 0)|®,) , s
U%(4,10)0(1,00)=1,

where U(t,t,) is the time-evolution operator defined in
the Schrodinger picture by

O(t,10)=T exp [—ifttdt’[HF—i-HP(t’)] . (9)
0

The quantity 7 denotes time-ordering which is necessary
in the general case.

Equations (13), (15), and (17) are consistent with the
particle-hole (Dirac sea) picture with both positive- and
negative-energy states. In order to work in the space-
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time picture with physical particles and antiparticles, we
now define antilepton creation and annihilation operators
with respect to the QED ground state |®,) via

b, EaiT ’

bl=a,, i<F. (20)
These new operators describe creation and annihilation
of antiparticles in the static Coulomb field of the target
nucleus. Also, the QED ground state is the Furry-
vacuum state for the creation of physical particles and
antiparticles

af|l®og) =Ix\"), 8,|l0))=0, p>F

~f (—) n @b
bq\q)o):\Xq ) ’ bq\®0>:07

g<F,

where [x,"’) and |x,~’) are particle and antiparticle
Furry states, respectively. Inserting the canonical trans-
formation Eq. (20), the lepton field operator of Eq. (13)
may be written in the form

r,t)=3 b/(t)x' (r)exp(—iE,t)
r<F
+ 3 a( (r)exp(—iEt) . (22)
s>F

In analogy with Eq. (20), we define a new set of quasipar-
ticle creation operators with respect to the time-evolved
Furry vacuum |®(¢))

ﬁfzéf, Eﬁ—-a ’

The expansion of the lepton field operator expressed in
this new set of operators is

i<F . (23)

dr,n=3 Bl r,0+ S &6 (r,1) . (24)

r<F s>F

We emphasize that the operators (ij, (i}, ﬁj, and B\j,
defined with respect to the time-evolved vacuum, do not
correspond to observable particle or antiparticle states,
but are mathematically convenient because they can act
directly on the time-evolved (or quasiparticle) vacuum.
Knowing the properties of the time-evolution operator

and how it acts on the Furry states, Eq. (21), we obtain

alleo(0)=16,"1) ,
Bhl@y)=16,7(0)) ,

a,|®y(1))=0, p>F

~ (25)
B:|®y(2))=0,

g<r,

where |¢(i)(t)) are the single-particle solutions of the
time-dependent Dirac equation, Eq. (14). The fermion
anticommutation relations are preserved for the &’s and
B’

Equating the two representations of the field operator,
Egs. (22) and (24), we establish the following transforma-
tion between the static and time-dependent representa-
tions of the Fock space operators

a,(1)= EF(I\S()((+)|¢§+)(t))exp(iEpt)
5>
At
+ 3 Bi{x,

r<F

g 1) YexplE,t), p>F  (26)
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blin=3 &(x, I\ 1)) expliE, 1)
s>F
+ 3 B8 (0) YexpiE, ), g <F . (27)
r<F

B. Observables

After obtaining all the necessary field-theoretical tools,
we now evaluate probabilities for lepton-pair production.
First, we calculate the expectation values of lepton num-
ber operators. Using Egs. (25), (26), and the anticommu-
tation relations for the &@’s, the inclusive number of lep-
tons created in state p > F'is

(#,(1)) = @y1)[a,(1)a, (1) @y(1))
=3 Kx,"1¢: ) I*, p>F . (28)

r<F

Likewise, using Eqs (25), (27), and the anticommutation
relation for the B s, the inclusive number of antileptons
created in state ¢ <F is

(R (1)) =(@u(0)|B(1)B,(1)|Do(1))
=3 Kxy 1oV )?, g <F . (29)

s>F

We evaluate the expectation value of a product of num-
ber operators using the anticommutation relations, as
well as Egs. (25)-(27) and the completeness relations for
the {|¢,(¢))} to find the number of correlated particle-
antiparticle pairs created,

(7, (DA, (6)) = (7, (1)) {n, (1))
> TN (BT X
r<F

g<F,p>F. (30

The first term in Eq. (30) describes statistical coin-
cidences, while the second contains coherent correlation
effects. Equation (30) holds also in the case of particle-
particle and antiparticle-antiparticle correlations if the
plus sign is replaced by a minus. One obtains the total in-
clusive number of leptons and antileptons created by
summing over the lepton states in Eq. (28) and the an-
tilepton states in Eq. (29), respectively,

No=3 3 Kx, e, 31
p>Fr<F

=3 3 Kxi It . (32)
q<Fs>F

The total number of leptons and antileptons must be
equal because of charge conservation. One can demon-
strate this identity explicitly in two ways. The first and
most direct way is to use the completeness relations for
the sets of basis states {|¢, )} and {[x,)}. Alternatively,
one may exploit the transformation properties of the
time-evolution operator and the Dirac spinors under time
reversal to show the equality of the total number of lep-
tons and antileptons produced.

Since the expectation value (#,(+ o)) in Eq. (28) is
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positive definite and normalized to unity as a conse-
quence of the Pauli principle and the unitarity of the
time-evolution operator, it is interpreted as the probabili-
ty P, that a lepton will be created in state p > F regard-
less of what happens to the associated antilepton. Like-
wise, PqZ(;T\q(-f-oo )) is the corresponding inclusive
probability for an antilepton to be created in state g <F.
The number of correlated particle-antiparticle paris pro-
duced in individual states, Eq. (30), also has correct nor-
malization to be interpreted as a probability, e.g.,

P,,=(#,(+=)A,(+ o)) forg <Fandp >F.
In many experimental situations, the quantity of in-
terest is the probability for producing a lepton of a
specific energy regardless of its angular momentum. Cal-
culating this requires the averaging of the probabilities
for all leptons produced with a specified energy. Howev-
er, if one is interested in pair production with capture, or
if the continuum is discretized on a lattice, there will be
no need for such averaging over the magnitude of the to-
tal angular momentum j, because of the discrete nature
of the spectrum. Only averaging over the projection of
the total angular momentum g, is required, e.g., the

probability of creating a lepton with energy E, is

P ! ¥ P ! 5 (A,(+o0))

i — s ——— [e s} .

E, 2u,+1 u,,=2—j,, Po2p,+1 up=2—jp P

(33)

From Egs. (28)-(32) we see that to compute probabilities
for lepton-pair production, we must first project time-
evolved single-particle states onto static Furry states, i.e.,
compute single-particle transition amplitudes. Measur-
able probabilities are the squares of the asymptotic
(t — oo ) limit of these transition amplitudes. With this in
mind, we identify these asymptotic transition amplitudes
with matrix elements of the scattering operator, defined
asS=0(+ o0, — ), in the Furry basis

One may use the time-reversal symmetry of the Dirac
equation to reduce the effort needed to compute some ob-
servables by applying the principle of semidetailed bal-
ance [20]

jﬂ jb jg jb
S OS IS, =S S ISl 39

ll’azvja fub:7jb 'ua=_ja ‘ub=_jb

For example, consider the probability for lepton-pair pro-
duction with capture into a bound state of the target.
Rewriting Eq. (33), using Eqgs. (28) and (34), we obtain

1

+i,
Po— IS, ., 1%, (36)
2u,+1 #pE 2 1S,

P. =
Ep = ~jp r<F

where p is the bound state. To compute Eq. (36), we must
time evolve all the negative-energy continuum states
Ix\”) and project these onto the bound state |x,"').
Using Eq. (35), we obtain instead an expression where
only 2j,+1 time-dependent solutions of the Dirac equa-
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x
+m
)%
n
0 -+
-m -
%
Y .

FIG. 1. Depicted is the stationary Furry spectrum consisting
of bound states (Y, ), positive (x' ™), and negative-energy (y'~’)
continuum states. Equation (37) is illustrated by showing transi-
tions of the 1s state to the negative-energy continuum.

tion are required,
+ jp

! 2
Pp = S , p>F. 37
5 2,41, 2 215,17 p (37

P =~ .
p jpr<F

Thus, for computational purposes, we view lepton-pair
production from the QED vacuum with K-shell capture
as an ionization process of a bound lepton in the 1s state
to unoccupied negative-energy continuum states. We il-
lustrate the probability defined by Eq. (37) in Fig. 1 by
showing transitions from the ls state to the discretized
negative-energy continuum. This application of semide-
tailed balance has been used extensively in similar calcu-
lations [16-18,21]. In the case of K-shell capture, one
needs to compute only two time-dependent Dirac states

=*1
|7 (t)). Currently, we are forced to assume that
both magnetic substates contribute equally to PE“, as our

method chosen to compute static bound states is unable
to distinguish eigenvectors of degenerate eigenvalues.

III. NUMERICAL IMPLEMENTATION

In the course of Sec. II, we reduced the problem of
electromagnetic lepton-pair production in relativistic
heavy-ion collisions to that of computing single-particle
S-matrix elements in the Furry basis. We perform all cal-
culations using a lattice approach through which we ob-
tain a discrete representation of all Dirac spinors and
coordinate-space operators on a three-dimensional Carte-
sian mesh. The use of Cartesian coordinates avoids the
disadvantages of rotating frames and the complicated
metrics of spherical coordinate systems. The time-
dependent electromagnetic fields exhibit no usable sym-
metry in any case. We implement our lattice solution us-
ing the basis-spline collocation method which is discussed
in detail in Refs. [13,14]. In Sec. III A, we give a basic in-
troduction to the basis-spline collocation method by ob-
taining a lattice representation of the Furry Hamiltonian,
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Eq. (12), in three Cartesian dimensions. We limit this dis-
cussion and our current calculations to the special case of
lattices inside cubic boxes with uniform spacing in all
three directions. However, the basis-spline collocation
method is well studied for nonuniform lattice spacing.
To construct the necessary S-matrix elements, we must
compute the stationary states of the Furry Hamiltonian
and then evolve these states in time. We discuss these is-
sues in Secs. III B and III C.

A. Lattice basis-spline collocation method

Splines of order M are functions S™(x) of a single real
variable belonging to the class @' ~? with continuous
(M —2)th derivatives. These functions are piecewise con-
tinuous, as they are constructed from continuous polyno-
mials of (M —1)th order joined at points in an ordered
set {x;} called knots. Basis splines are splines with
minimal support, i.e., they are zero outside the range of
M +1 consecutive knots x;,x; ., .. .,X; 5, and are pos-
itive definite. We label these functions with the index of
their first knot BM(x). The explicit construction of
basis-spline functions is explained in Ref. [14]; however,
we show a fifth-order example in Fig. 2.

Consider a region of space with boundaries at x_,;, and
X max and containing N +1 knots, including the knots on
the boundaries. For a set of Mth-order basis splines to be
complete, M of the functions must be nonzero on each
knot interval x;—x;; within the physical region. For
this to occur, M —1 basis splines must extend outside
each boundary. Therefore we require a knot sequence
from x, to Xy 1, in order to construct a complete set
of functions, where x,, and x,,,, correspond to the
lower and upper physical boundaries, respectively. The
basis splines for the region are naturally numbered as
BM(x),BM(x),...,B¥ ,,_,(x), as shown in the exam-
ple given in Fig. 3.

We generalize the procedure given above to construct a
complete set of functions in a three-dimensional region
by expanding in terms of products of basis-spline func-
tions, i.e., BM(x)BM(y)B(z). We expand each of the
four Dirac spinor components, denoted by the index p, in
such a basis (using covariant notation),

06 F 1
04 f :
S

02 | 1

00 ]

FIG. 2. Depicted is a fifth-order basis-spline function B(x),
which is constructed from continuous fourth-order polynomials

connected at the knots, x;, . ..,x; ;5.
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<— Physical Region —>

o
'S
T
)

B.3(x)

FIG. 3. Depicted is a complete set of fifth-order basis-spline
functions for the region x5 <x <x,, for homogeneous lattice

spacing. The functions are labeled from the left as
B3(x),B3(x),...,B3(x). The knot sequence is x;,X5,...,Xq,
and the collocation points for this region are placed at
Xo=(Xq44t+Xxq4+5)/2fora=1,...,5.

N+M—1 B
XPxy=" 3 BMxBMyp)BMcl

ij k=1

p=1,...,4, (38)

where we suppress quantum-number indices for clarity
and c{l§ denotes the complex expansion coefficients for
the pth component of the spinor. All state functions in
this paper are determined with periodic boundary condi-
tion which are easily imposed by renumbering
BY. \,....BM _, as BY ... BMf_ |, respectively,
without changing their location. Consequently, the
basis-spline index i will run to N instead of N +M —1.
The details of implementing nonperiodic boundary condi-
tions are discussed in Ref. [14].

We forsake the continuous description of the Dirac
spinor for a lattice representation of y(r) through the col-
location method, in which the spinor is known only at
each of the collocation points (xa,yB,z},), which define
the lattice, i.e., x(r)— Xa,B,y- Using an underline to
denote vectors and matrices in collocation space, the
Dirac spinor y will be a column vector of N X4 complex
numbers. To implement the lattice description of the
Dirac spinor using the basis-spline expansion, we create a
linear system of equations by evaluating Eq. (38) at the
collocation points

N
- ijk -
X&,= 3 BuBpgBchi, p=1,...,4 39)
ijk=1
where B; =BM(x,,); the order M is omitted for simplici-
ty. There are a number of ways to choose collocation
points. An optimal and simple choice when using odd-
order basis-splines is to place one collocation point at the
center of each equally spaced knot interval within the
physical boundaries,
x 1 t+x
xp=—2tMl_“otM  =1,...,N. (40)
2
The collocation points are denoted by Greek indices.
The essence of the lattice approach is to eliminate the
expansion coefficients ¢ 7% from the set of equations in Eq.

(p)
(39) using the inverse of the matrices Baj,BBj, and B,
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ijk —

N . .
cthi= X BUBPBYYE 41)

a,B,y=1

where the inverse matrix, denoted B'*=[B'],,, plays
the role of a metric in the discrete collocation space. The
choice of the collocation points given above in Eq. (40)
ensures that the matrix B;, is nonsingular.

We now discuss the collocation-lattice representation
of a linear, coordinate-space operator () by considering
its action on the basis-spline expansion of y(r) in Eq. (38),

N Iy
OxP(x,y,2)= 3 [OBMx)BMy)BM(2)]cll . (42)
Ljk=1
As before, we create a system of equations by evaluating
Eq. (42) at the collocation points,

N

S [0BMx)BM(y)BM(2)] ik

(p) —
[@X ]aB‘y X2y (p)
i,j k=1

(43)

We now eliminate the expansion coefficients cg,k) from Eq.

(43) using Eq. (41) to obtain

N
P =
(0XP)ugy= 3 O xbe (44)
wv,E=1
where we define the lattice representation of the
coordinate-space operator as

Bi*BIVBkS

X VprZy

N
ot =3 [OBMx)BM(y)BM(2)]
ijk=1

(45)

Consider the collocation lattice representation of the
gradient operator in Cartesian coordinates. Using Eq.
(45), its lattice representation is

N _ N ‘
Dif =e, 3 B.B"8;85+e, 3 BpB"85,

afy
i=1 j=1

N
+e; 3 B B*815), (46)
k=1
where B/, =dB;(x)/dx|, and e; is a unit vector in the
jth coordinate direction. In matrix notation, we denote
Eq. (46) as

D=e,D,+e,D,+e;D; (47)

with the obvious definition of the matrices D,, D,, and
D,. Using Eq. (47), the lattice representation of the
Dirac equation with the Furry Hamiltonian, Eq. (12),
may be written

where
Hy=—ia-D+B—eAd) . (49)

Notice that local operators like the target’s interaction
with the lepton 49 are diagonal matrices of their values
at the collocation points.
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In summary, the collocation points define a lattice on
which the calculations are performed; neither the splines
or the knots appear explicitly again once the lattice rep-
resentation of the operators has been obtained at the be-
ginning of the calculation. We have reduced the partial
differential equation Eq. (12) to a series of linear algebraic
equations which may be solved using iterative techniques.
As a consequence of eliminating the expansion
coefficients from the theory, Hy has a blocked, nonsparse
representation which is self-adjoint for periodic boundary
conditions.

B. Fermion-doubling problem

The lattice representation of H, given in Eq. (49), is
unsuitable for our purposes, as it exhibits the fermion-
doubling problem. This difficulty is present in all tran-
scriptions of the Dirac equation to the lattice using a
symmetric representation of the first derivative operator
and results in 2¢ times the number of fermionic stationary
states, where d is the number of dimensions of space-time
involved in the lattice formulation [22]. In dynamical
problems, fermion doubling causes high-momentum com-
ponents, which grow exponentially, to appear in the wave
function at random [13]. Different authors discuss the
causes of the spectral doubling in terms of the nontrivial
topology of the lattice momentum space [22-25], (i.e.,
the lattice imposes a maximum momentum on the lattice
states), the topology of the lattice coordinate space [26],
or the difficulties associated with the chiral anomaly of
fermionic quantum field theories [23,25]. In general, it
seems impossible to write a lattice Dirac equation in
more than 1+ 1 dimensions yielding the correct fermion
spectrum, involving only local couplings, and admitting a
continuous global chiral invariance in the massless limit
[26].

References [13,26,27] give a prescription for overcom-
ing the fermion-doubling problem for the special case of a
one-dimensional Dirac equation on a lattice. As this ex-
ample illustrates the nature of the fermion doubling and
serves as the basis for our strategy in attacking the
pathology with the basis-spline collocation method in
three dimensions, consider the stationary states of the
free Dirac equation,

hpd(x)=E(x) . (50)

In one dimension, the Dirac Hamiltonian is independent
of spin and it suffices to specify 4, in a two-component
representation as

+1 —id,
hp= . (51
b —id, —1
The state ¢ is a two component spinor
G
Y=g |- (52)

where G and F denote the upper and lower components
of 9, respectively. Therefore our problem is to solve two
first-order coupled differential equations
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G'(x)=i(E+1F(x), F'(x)=i(E—-1)G(x). (53)

Consider first implementing the solution of Egs. (53) by
discretizing the eigenstates of Eq. (50) on a simple finite
difference lattice x;=jAx, 1<j <N, using a symmetric
representation of the derivative operator,

With this approach, Egs. (53) may be combined into the
difference formula

G;+,+G;_,—2G;=(2Ax)*(1—E*)G, . (55)

A solution of this equation having periodic boundary
conditions is given by
G;=goexplikx;) , k=2mn/(N—1), (56)

with 7 taking on the values +1,£2,...,£(N—1)/2.
The energy eigenvalues of these solutions obey the disper-
sion relation,

’ (57)

where k)= /Ax is the maximum momentum allowed on
the lattice. This spectrum Eq. (57) is compared in Fig. 4
to the usual continuum result E>=1+k2. The energies
of the states on the lattice with small momenta k /k, <1
are in good agreement with the exact results. However,
for larger values of the momenta, marked deviations ap-
pear, and for k/k,> 4 and above, the lattice spectrum
develops an unphysical second branch having character-
istically low-energy eigenvalues associated with large mo-
menta.

Alternatively, consider using the elementary forward-
and backward-difference formulas to discretize the lower
and upper components of the Dirac spinor, respectively,

=iAx(E—1)G,

(58)

Fjt1—F;

4.0
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o

Energy (mucz)

—
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FIG. 4. Fermion doubling is illustrated by plotting the ener-
gy vs momentum in units of ko =1/Ax for the stationary states
of the free Dirac equation in one dimension, where Ax is the lat-
tice spacing: A, the exact relation; B, Eq. (57); P and Q label
two momentum solutions with the same energy; C, Eq. (60),
showing a single-valued, finite-difference dispersion relation.
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Using Egs. (58), Egs. (53) may be combined to form the
difference formula

G;4,+G,_,—2G;=(Ax)1—EG, . (59)

With the periodic solutions in Eq. (56), this difference
equation yields the modified dispersion relation,

wk

m (60)

4k
E}=1+—"sin’
T

which, as shown in Fig. 4, does not exhibit the doubled
spectrum.

We generalize the idea of employing forward- and
backward-difference formulas in representing the deriva-
tive operator to the more complex three-dimensional
basis-spline collocation method as follows. We first use
Eq. (45) to obtain a lattice representation of the Lapla-
cian operator in Cartesian coordinates,

N
At = 2 B, B"8;85+ 3 BjB/*548

aﬁ?’
i=1 ji=1

N
+ 3 B}, B*845), (61)
k=1

or in matrix notation
A=A+A,+A;. (62)

We factorize each A; into a lower- and upper triangular
form by Cholesky decomposition, A;=D,” D;*, in analo-
gy to backward and forward finite- dlfference formulas.
These D* matrices are uniquely specified by the condi-
tion D2~ =|D%"|. We implement the D,;" and D,” as
the lattice representation of the first derivative operator
for the lower and upper components of the Dirac spinor,
respectively,

l1—ed?}? —io-D*
}—IF-— _lU'D_ _1_942 ’ (63)
where D*=e,D{ +e,D5 +e;DT. This prescription

succeeds in avoiding spectral doubling while preserving
the hermiticity of the lattice Furry Hamiltonian and sim-
ple conservation laws on the lattice [13]. It does not ad-
mit continuous chiral invariance, which however, is not
important for our application.

C. Computation of stationary states

The complete eigensolution of Hy, providing its full
spectrum of stationary states, currently exceeds the state
of the art in computational capabilities due to Hy being a
rank N’ X4 complex matrix, where we desire N to be 100
or more because of the necessary balance between the lat-
tice spacing and lattice length. For this reason, we com-
pute the s state needed for calculating probabilities for
K-shell capture of leptons by a partial eigensolution of
Hy.

Standard methods for partial eigensolution of large
matrices which are designed to converge to the lowest-
energy eigenstate of the spectrum are not directly applic-
able for computing the 1s state of Hy because of its
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negative-energy continuum. In Ref. [15], the 1s state was
computed using the damped-relaxation method [28]. In
this method, the ground-state solution is determined by
repeated application of a damping operator to a trial vec-
tor which removes the high-frequency components from
the residual. The damping method does not depend on
the spectrum being positive definite. As we wish to per-
form calculations with larger lattice sizes, we now use the
more efficient iterative Lanczos algorithm [29,30] to com-
pute the 1s state. The Lanczos algorithm has features
which are attractive for our purposes; the memory re-
quirements are relatively small and the method approxi-
mates external eigenvalues in the spectrum very well.
However, the algorithm is limited in that it cannot distin-
guish eigenvectors of degenerate eigenvalues, i.e., the
solutions are not eigenstates of the projection of the total
angular momentum as noted in Sec. II B. Since the Lanc-
zos algorithm converges most rapidly for extremal eigen-
values, we apply the Lanczos algorithm to H2, which has
a positive-definite spectrum, and solve for the lowest en-
ergy eigenstate of HZ. Thus, in solving for the ground
state of H f, we obtain the lowest-energy bound state of
Hp. A description of the numerical details of our im-
plementation of both the damped relaxation and the
Lanczos algorithms can be found elsewhere [31].

We approximate the continuum states of Hy by modi-
fying the eigenstates of the lattice representation of the
free Dirac Hamiltonian H,= —ia-V + 3 to be orthogonal

to the bound states of Hp, i.e., Xl;‘:i ey Even though the

free Dirac continuum states are known analytically, we
cannot use these states in our lattice calculation by sim-
ply evaluating the continuous functions at the lattice
points, as such states would not be eigenstates of our lat-
tice Hamiltonian. To be consistent, we must construct
the eigenstates of H,, which we denote as £, , ;, on the
lattice

Eoga,)\,sz}"Eaéa,/\,s; A==l > (64)
where s is the helicity. This construct is described in Ap-
pendix A.

We construct approximate Furry continuum lattice
states following the projection operator techniques de-
scribed in Ref. [32]. We define the projection operator P
as

np
_ © 7
P=1— 3 X& «XE,'x, » (65)
b=1

and modified continuum states as

Xaps=P&ans » (66)

where n, is the number of bound states contained in the
spectrum of Hy. By construction, these modified contin-
uum states are orthogonal to the exact Furry bound
states

+
Xa,k,sx‘gz,xbzo . (67)

Therefore we impose upon the free Dirac continuum the
correct initial condition that transition S-matrix elements
between bound and continuum states are zero before
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switching on the interaction [33]. Currently, the sum in
Eq. (65) includes only the 1s bound state. Other methods
exist for constructing the Furry-continuum states on the
lattice which are numerically more difficult [34].

D. Time evolution

The formal solution of the time-dependent Dirac equa-
tion Eq. (14) is

Y ()=0(r,10)9,(1,) , (68)

where we have omitted the spatial coordinates for simpli-
city and the time propagator O, to) is given, as shown in
Eq. (19), by

0(1,t0)=‘Texp

—i [ 'dt'[Hp+Hp(t)] | . (69)
ty

In practical calculations, we begin and end time evolution
at large, finite times 7. We discretize time in the sense
that the electromagnetic interactions are taken as con-
stant in successive small intervals of potentially varying
size At

l
=3 At,, 1=0,1,2,...,L (70)

n=1

and express the evolution operator in successive

infinitesimal factors
Ot,t0)=0(t,t, _ Oty _,tp ), ..., Ult1,19) . (71

In this case the time-ordering operator T can be ignored.

A number of different methods have been employed in
the approximation of the infinitesimal time-evolution
operator

Uty pt)=exp{ —i[Hp+Hp(t; )AL 1}, (72)

particularly in studies of the time-dependent Hartree-
Fock method applied to atomic and nuclear collisions
[35,36]. The choice of a method usually depends on the
dimensionality and structure of the Hamiltonian matrix.
Several methods that work well in one- and two-
dimensional problems are inapplicable for unrestricted
three-dimensional problems because they require the in-
version of part or all of the Hamiltonian matrix [35]. In
our three-dimensional solution of the Dirac equation, the
exponential operator, Eq. (72), is implemented as a
Taylor-series expansion

K (Zif g [He+Hp(ty D
Q(Uﬂ,l‘,)z 1+ 3 1*1[——1]’(' plti41)] ’
k=1 !

(73)

where K is the maximum number of terms allowed in the
Taylor-series expansion.

In summary, all of the numerical procedures discussed
for implementing our lattice methods reduce to a series of
(matrix) X (vector) operations which can be executed with
high efficiency on vector or parallel supercomputers
without explicitly storing the matrix in memory. We im-
plement our numerical methods on the CRAY-2 super-
computers at the National Center for Supercomputing
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Applications in Illinois and the National Energy
Research Supercomputer Center at Lawrence Livermore
National Laboratory. Also, a version of our code has
been adapted to the parallel architecture of the Intel
i860/RX hypercube at the Oak Ridge National Labora-
tory. The Intel i860/RX is a distributed-memory,
multiple-instruction, multiple-data supercomputer with
128 processors and 8 Mbytes of memory per processor.
The peak speed of each processor is rated at 60 Mflops in
double precision leading to the aggregate speed of 7.6
Gflops. As with most parallel implementations, we face
the problems of limited memory per processor and the
optimization of the algorithm to minimize communica-
tion between processors. The description of our solution
to these problems can be found elsewhere [31].

IV. ELECTROMAGNETIC INTERACTION

In Sec. II, we saw that the physics of lepton-pair pro-
duction is defined by the electromagnetic fields of two
particles in relative motion, and that these fields enter the
Hamiltonian via the dimensionless interaction energy
A"=—e A" between the lepton and the colliding nuclei
in Egs. (10) and (11). We assume a spherical and homo-
geneous charge density for both the projectile and the
target, as finite-nuclear-size effects are important in the 1s
state for heavy leptons. Therefore the static Coulomb in-
teraction between the target nucleus and the lepton is

AXNr)=—(Zya)f(r,Ry), (74)

where Z; and R, denote the charge number and root-
mean-square charge radius of the target nucleus, respec-
tively, and

%, r>R
f(r,R) : 5 (75)
r
R | R R

The time-dependent interaction, Eq. (11), arises be-
cause of the classical motion of the projectile. We neglect
recoil effects. Therefore the projectile moves with con-
stant velocity B, along a straight-line trajectory, with im-
pact parameter b, in the fixed-target frame of reference.
We choose the projectile to move in the z direction and
the reaction plane to be the y-z plane, i.e., the classical
trajectory of the projectile is xp(£)=0,yp(¢)=b,zp(t)
=ﬁyn

A. Lorentz gauge

Since the Dirac equation is covariant under a gauge
transformation of the electromagnetic potentials, the
gauge may be chosen for convenience in any problem.
The most familiar gauge used in problems with electric
sources is the Lorentz gauge, defined by the condition
auA"=0. Since we assume a straight-line, constant ve-
locity trajectory for the projectile motion, the time-
dependent electromagnetic interaction between the pro-
jectile and the lepton in the Lorentz gauge can be gen-
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erated by a Lorentz boost of the static Coulomb field, Eq.
(74). This results in
Ap(r'(0)=—Zpay f(r'(t),Rp) ,
Ap(r'(1)=B,Ap(r' (1)), (76)
Ap=4:=0,

where Zp and R are the atomic number and root-mean-
square charge radius of the projectile, respectively. The
Lorentz factor in the fixed-target frame is v . The quan-
tity '(¢) is the distance between the lepton and the center
of mass of the moving projectile in the target frame

r(n=[p?+&0m1"”, (77)
where
PE[xP+y —bP1V?, L=y (z—B) . (78)

The beam energy for a given frame of reference is
Eyin=moc*(y—1), where y denotes the Lorentz factor
for the frame of interest. The Lorentz factors for the
fixed target and collider frames are related by
Y f=2y§ —1. Figure 5 shows the temporal component of
the muon’s interaction energy with the target and projec-
tile in the Lorentz gauge 4°(r'(¢t))= Ap(r)+ A3(r'(2)) in
a collision of '”Au+1"Au at the collider energy of 100
GeV per nucleon.

Certain features of the interaction in the Lorentz gauge
causes difficulties for our numerical methods. First, the
interaction is very large as it is proportional to y s and

X
RTRIENR
SRR §§s§§\§“\\“
RN

\

9

_§0

—e Ao (mc2)
120

FIG. 5. Depicted is a slice taken at y =0 of the temporal

component of the muon’s interaction energy with a finite target
L . —0 =0

amii_0 projectile in the Lorentz gauge A (r'(2))=Ap(r)
+ Ap(r'(2)), in a collision of "?Au+'""Au at a collider energy
of 100 GeV per nucleon. The projectile nucleus, which is mov-
ing in the positive z direction, is presently centered at the point
(0,bgra,, — 101, ), where b,,, =8.72A is the grazing impact pa-
rameter. The static target is located at the origin. A square
mesh with 51X 51 points is used to represent the interaction.
The narrow spike of the time-dependent interaction in this
gauge is not well represented by this lattice spacing. Actually,
the extremum of this interaction is —1.41X 10°m ¢
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sharply peaked in the boost direction e;. Its width is pro-
portional to ‘yf_l as a result of Lorentz contraction. Also,
the long-range nature of the Coulomb potential is evident
after the boost since the asymptotic dependence of the
Lorentz gauge interaction is |z —S,¢|~'. The large mag-
nitude of the interaction requires that the time step be
kept small so as to ensure a proper expansion of the
time-evolution operator, Eq. (73). The long-range depen-
dence of the interaction requires that we start numerical
calculation at large distances between projectile and tar-
get to avoid switching on the interaction when its magni-
tude is appreciable. Another major difficulty lies in
representing spiked functions with a finite lattice spacing.
These features combine to make realistic, three-
dimensional calculations of lepton-pair production too
demanding computationally without some ameliorating
methodology [15].

B. Axial gauge

Another gauge choice exists which, for relativistic en-
ergies, produces an interaction better represented on the
lattice [37]. We are motivated towards our choice of
gauge by the fact that the temporal component A p(r'(z))
and the component of the vector interaction in the boost
direction Zﬁ(r’(t)) are proportional in the Lorentz gauge
with proportionality constant B,. Therefore important
numerical cancellations occur between the vector and
scalar components of the interaction in the projectile
Hamiltonian Hp [38]. We attempt to remove the prob-
lematic behavior of the Lorentz gauge interaction on the
lattice by performing a gauge transformation with a
gauge function A designed such that the z component of
the interaction in the new gauge is required to be zero,
ie.,

Apr(0)— Ap(r'(1)=Ap(r'(1))+3,A(r'(1))=0 .
(79)

Therefore the definition of the axial-gauge function is
Ar(s20)= =B, [ AR(r'(0)dz (80)
20

where z, is an arbitrary integration constant. The pa-
rameter z, will affect the form of the interaction, but has
no physical significance. We discuss the details of the
axial-gauge interaction for a finite-size projectile in Ap-
pendix B. The important features of the transformation
are illustrated here by considering the pointlike projec-
tile, i.e., Rp=0. In this case, the gauge function A has
the simple form

é-(t)+[é-2(t)+pl2]l/2
Sol)+[&5()+p?1 2

A(r'(1);zg)=ZaBsIn (81)

where §o(1)=y ;(zo—B,t). The gauge constant z, is re-
stricted to be finite as

linl A(r'(t);zg)— F oo . (82)

zg—t oo

With such a finite choice for z, the axial-gauge transfor-
mation has no analytical effect on the static Furry states
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of the system, which are the asymptotic in and out states
of the problem, as
lirP A(r'(t);z4)—0 . (83)
t— T

However, in our numerical calculations, z, should be
chosen within the range —BfT <zy< +BfT for the limit
in Eq. (83) to be reached in practical terms.

The lepton’s interaction with the projectile in the axial
gauge is found by using A(7'(#);zy) in a gauge transfor-
mation,

Z;‘(r’(t))—> AB(r'(t);z9)= AB(r'(£))—3*A(r'(1);24) .
(84)

The temporal, x, and y components of the lepton’s in-
teraction with a point-like projectile are

Xg(r'(t);zo)zJ;Zg(r'(t))+3}22(r'(z))z=zo , (85)
Yy
Apr(0;20)=—Z B, =5 Z(r'(1);20) (86)
p
A2 (1hze)=—ZaB L2 Z (r (032) 87
P

where the time and z dependence of the x and y com-
ponents of the interaction are contained in the factor

&(e) B Sol1)
[E()+p]' % [Sa(0)+p2] 2

Z(r'(t)zy)= (88)

Notice that in the limit ,Bf —0, Egs. (85)-(87) return to
the static Coulomb interaction; in fact,

lim A(#r'(¢);z5)=0 . (89)
Br—0

By observing each component of the axial-gauge in-
teraction, we notice that the problematic behavior of the
lattice implementation of the Lorentz-gauge interaction
in the high-energy limit is removed and replaced with
structures which work well with our numerical methods.
The temporal component’s first term is proportional to
yf_l and, therefore, is negligible in the high-energy limit.
Its second term is a broad function, since it is indepen-
dent of z, and has a long-range |zo——Bft|'1 dependence.
In the limit {(¢)>>p’ (i.e., z7# Bt with high energies and
moderate impact parameters), the z-dependent factor in
the x and y components of the axial-gauge interaction has
the simple form

Z(r'(t);zo) =~ {sgn[&(t)]—sgn[&y(2)]} (90)

to order yf_l. Since z, is constrained to be inside the
range of the projectile during the numerical calculation,
the function Z(r'(2);z,) is initially zero. It switches on
to a value of 2 when zp(?) equals the minimum of z and
Zo, and turns off when z,(¢) equals the maximum of z and
zo. Therefore the axial-gauge interaction of a pointlike
projectile in the limit §(¢) >>p' is

*ZPaB}

, 91)
|Zo_Bft|

Eg(r’(t);zo)z
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[sgn(§)—sgn(&y)] ,

(92)

AN (1);20) =~ —ZpaB———
p(r( Zo) P fo2+(y—b)2

A‘;wm;zo)z—Zpaﬂfﬁ[sgn<§>—sgn<§o>]

+(y
(93)

to order yf_‘. The divergence of the axial-gauge interac-
tion for a pointlike projectile occurring along the trajec-
tory of the projectile is removed by including finite-size
effects. We emphasize that Egs. (92) and (93) apply to a
pointlike projectile and are presented here for illustra-
tion. We use the formulas presented in Appendix B for
finite projectiles in the calculations performed for this pa-
per.

In summary, the axial-gauge transformation removes
the numerical difficulty associated with the spiked behav-
ior of the Lorentz-gauge interaction, as A, ;(r’(t);zo)=0,
and Ap(r'(t);z,) is a broad function independent of z.
The switching on and switching off of the x and y com-
ponents of the axial-gauge interaction does not demand
extremely small lattice spacings, which are necessary
when using the Lorentz gauge, to enable a faithful repre-
sentation of the interaction on the lattice. Also, the nu-
merical difficulties associated with the large magnitude
and the long-range behavior of the Lorentz-gauge in-
teraction have been greatly eased in the axial gauge. We
see in Egs. (92) and (93) that the x and y components of
the axial-gauge interaction in the large y, limit [ie,
&(t)>>p'] are independent of ¥, to order y;', and the
extrema of these components of the interaction are on the
same order of magnitude as the minimum of the target
interaction A 2. These components are also clearly short

7,
l[';'l
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FIG. 6. Depicted is a slice taken at y =0 of the x component
of the muon’s time-dependent interaction energy with a finite-
size projectile in the axial gauge /T,l(r’(t);zo), in a 100 GeV per
nucleon collision of Au+!Au in the collider frame with
zo=100. A square mesh with 51X51 points is used to represent
the interaction. The projectile nucleus, which is moving in the
positive z direction, is presently at the point (0,b,,,,, — 10Ac),
where b,,,, =8.72A is the grazing impact parameter. Note the
step-function behavior of the interaction.
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ranged and allow the numerical calculation to begin with
smaller distances between the projectile and the target.
The scalar component of the axial-gauge interaction
maintains the long-range nature of the Coulomb interac-
tion; however, it is also independent of y, in the limit
§(t)>>p'. Also, Egs. (91)-(93) clearly show the leading
impact-parameter dependence to be b ~!. Similar results
have been obtained by a slightly different approach in
Ref. [39]. Here the authors perform two consecutive
gauge transformations in order to remove terms depend-
ing explicitly on y , or powers of b higher than b ~lin the
high-energy limit of the multipole decomposition of the
Lorentz-gauge interaction of the lepton with the projec-
tile. Both of the gauge functions chosen in Ref. [39] show
similarities to the axial-gauge function A(r(t);z,). Fig-
ure 6 shows the x component of the axial-gauge interac-
tion of the muon Ap(r'(2);z,) with a finite-sized projec-
tile for the same 100 GeV per nucleon collider-frame col-
lision shown in Fig. 5.

V. RESULTS AND CONCLUSIONS

As stated earlier, we present here preliminary results
for calculations of muon-pair production with capture of
the negative muon into the K shell of the target atom.
These results demonstrate the feasibility of solving non-
perturbatively, in unrestricted three-dimensional coordi-
nates, the lepton-capture problem for extremely relativis-
tic energies using physical interactions. Our results are
preliminary largely because of the small lattice sizes used
in performing the calculations. Also, in this paper, we
make no attempt to allow for long-range interactions be-
tween the projectile and the muon. That is, we do not al-
low for contributions to the capture probability from in-
tegrating Eq. (69) over times from —o to —T and +T
to + .

The first step in computing this K-shell capture proba-
bility is the calculation of the 1s state of the Furry Hamil-
tonian. The static Coulomb interaction between the tar-
get nucleus and muon is evaluated for a homogeneous,
spherical nuclear charge distribution with a radius
R =1.404'73 fm, where A is the atomic number. Using
the basis-spline collocation method with fifth-order basis
splines and the iterative Lanczos algorithm referred to in
Sec. III, we compute the muonic s state of *’Au on a
lattice varying in number of points from 16 to 64 and
with two lengths L, =L =40A, and L,=2L in the three
Cartesian directions (A-=1.87 fm for muons). We re-
quire for the convergence of each solution that the energy
fluctuation p=[(H?) — (H )?]'/? be less than 5.0 X 10",
For the lattice with 16 collocation points and length L,
in each direction, the lattice spacing is 2.5A, and the
Lanczos algorithm requires approximately 100 recursions
to converge consuming 1 min of CRAY-2 CPU time.
The number of recursions required for convergence de-
pends more on the lattice spacing than on the number of
lattice points, as we see by performing the static calcula-
tion using a lattice with 32 points and length L,. The lat-
tice spacing for this calculation is also 2.5A and, as be-
fore, approximately 100 recursions are required for con-
vergence. With the larger lattice length, the accuracy of
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the energy improves by 0.3% and the CRAY-2 CPU time
consumed increases to 5.3 min due to the larger vector
lengths. Similarly, calculations with 32 points in a length
L, and 64 points in a length L,, each with lattice spacing
1.25A¢, require approximately 500 recursions to con-
verge. The smaller and larger lattices consume 28 min
and 4.5 h of CPU time, respectively. The energy eigen-
values obtained for a varying number of lattice points and
sizes are shown in Fig. 7, where we fit the results ob-
tained wusing the smaller box to the formula
E;=0.911-5.16N ~2, where N is the number of lattice
points in each direction. The accuracy of our static solu-
tion is checked by performing an integration of the radial
Dirac equations giving an energy of Ex =0.9127mc? for
the muonic 1s state in '*7Au.

We perform the time development of the muonic 1s
state of '*’Au, i.e., solve Eq. (14), on the lattice with 16
points and length L, in each direction under the
influence of the time-dependent external fields produced
in the collision of ’Au+!Au. A maximum number of
15 terms in the Taylor series expansion of the time-
evolution operator is sufficient to preserve the norm of
the time-dependent wave function to less than 1 part in
10° throughout the calculation. Four or five terms in the
series are used on average. Conservation of the norm of
the Dirac spinor is an important indicator for the numer-
ical accuracy of the time development of the Dirac spi-
nor.

We use the axial gauge for the interaction of the muon
with the heavy ions. Initially, the projectile nucleus is
positioned at (0,b, —200A.), giving rise to a very small
interaction with the muon at the position of the target
nucleus which is fixed at the center of the cubic lattice.
For collider energies less than 10 GeV per nucleon, we

0.92 : , ‘ - ; ;
Egp= 09127
—~ 091} ]
& | o _.-g--""""0
o, [ 000 @® .
g &
< 090} , il
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/089 | o 2L
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0.88 t L I L 1 L L I
0 10 20 30 40 50 60 70

FIG. 7. Depicted are energies for the ls muonic state of
"7Au computed with the basis-spline collocation method as a
function of the number of lattice points N in each coordinate
direction. The computations are performed for a lattice length
L =40A. and 2L =80A,. The results for the smaller lattice
length are fit to the formula Eg =0.911-5.16N ~2. The results
for the larger lattice size are given to show that the accuracy of
the computed energies improves as we increase the lattice
length keeping the lattice spacing constant. We calculate the
energy of this state to be Er =0.9127mc? by integrating the ra-
dial Dirac equations.

J. C. WELLS et al. 45

evolve the wave function for 2000 time steps with
At=0.2/B; in units of Tu=6'2><10—24 s, stopping the
evolution when the projectile 1is positioned at
(0,0,200A). One such time-dependent run for a given
impact parameter requires 33 min of CRAY-2 CPU time.
For collider energies greater than 10 GeV per nucleon,
we allow the size of the time step to vary in such a
manner that At is inversely proportional to the maximum
of the projectile’s interaction with the muon. This en-
sures that the product At,[Hp+Hp(t;)] in Eq. (73)
remains less than one throughout the collision. Figure 8
shows the time dependence of the probability for capture
into the 1s state of the muonic atom following pair
creation from the vacuum for different choices of the
axial-gauge parameter z,. This figure numerically
demonstrates the independence of the capture probabili-
ties with respect to the gauge parameter.

We show the beam-energy dependence of the probabili-
ty for K-shell muon capture in Fig. 9 by varying the ener-
gy per nucleon between 0.1 and 100 GeV in the collider
frame of reference for the impact parameter b =16.0A.
Notice that the capture probability is independent of the
beam energy for E. > 12 GeV per nucleon. The energy
independence of the interaction of the muon with the
projectile in the high-energy limit was discussed in Sec.
IV in the context of the axial gauge.

We show the impact-parameter dependence of the
muon-capture probabilities at collider energies of 2 and
100 GeV per nucleon for a range of impact parameters in
Fig. 10. For peripheral impact parameters (i.e.,
bgra, b =b.,), the capture probabilities have a power
law impact-parameter dependence P, (b)=Ab "9, as
shown by the fits to the results in Fig. 10, with Q =3.7
and 2.1 for the 2 and 100 GeV per nucleon collisions, re-
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FIG. 8. Depicted are muon-capture probabilities into the 1s
state as a function of the projectile velocity times the time (in
units of A,=1.87 fm) for choices of the axial-gauge parameter
of A, zo=0; B, z,=+50; and C, zy=—20. The parameter z,
defines a particular axial-gauge transformation and has no phys-
ical effect on the calculation. Muon pairs are produced elec-
tromagnetically from the QED vacuum in collisions of
97Au+""7Au at a collider energy of 2.0 GeV per nucleon and
impact parameter of 16.0A.. The calculations are performed on
a uniform cubic lattice with 16° points.
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FIG. 9. Shown here are K-shell muon-capture probabilities
in collisions of ”Au+'""Au as a function of beam energy in the
collider frame at the impact parameter b =16.0A.. The axial
gauge is used for the electromagnetic interaction with z,=0.
The calculations are performed on a uniform cubic lattice with
16° collocation points. These results have yet to converge be-
cause of the use of the small lattice size.

spectively. The impact parameter b, is simply the larg-
est impact parameter used for a given energy. The proba-
bilities P (b, ) are on the same order of magnitude as the
degree to which normalization of the time-dependent spi-
nor is conserved. The grazing impact parameter is
bgra, =8.72A( for 197 Au+17Au collisions.

We calculate contributions to cross sections for muon
capture into the K shell of ®’Au in peripheral collisions
by integrating the capture probabilities in Fig. 10 over b,
using the formula

o, =27 [,” bP(b)db . 94)

graz

For E,=100 GeV per nucleon, we do not integrate to
infinity, but terminate  the integration at
b =7/f=2><104kc, which is a natural cutoff for the b

r\\ T T T
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FIG. 10. Depicted are probabilities for muon capture into
the K shell as a function of the impact parameter in units of A¢
for ' Au+'"7Au collisions at collider energies per nucleon of 2
and 100 GeV. The axial gauge is used for the electromagnetic
interaction with zo=0. We show power-law fits to the capture
probabilities for impact parameters greater than grazing.
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dependence of the probability. Therefore our preliminary
estimates of the cross section for muon-pair production
with K-shell capture in peripheral collisions of
197Au+'7Au are 0.033 and 1.05 b for collider energy per
nucleon of 2 and 100 GeV, respectively. We stress that
our nonperturbative calculations have not converged
largely due the small size of our lattice.
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APPENDIX A: EIGENSOLUTION
OF LATTICE-FREE DIRAC HAMILTONIAN

Following the example of Eq. (49), our lattice represen-
tation of the free Dirac Hamiltonian is the 4 X4 superma-
trix

Hy,=—iaD+B. (A1)
We proceed to construct the eigenstates of H,
Hobop,s =AEiqps » A=EL, (A2)

where s is the helicity quantum number, by first con-
structing the eigenstates of the lattice representation of
the Foldy-Wouthuysen (FW) transformed Hamiltonian
(19]

HfW =pH F'=pv2T+1, (A3)
where
BH,+E,
V2E,(E,+1)

As a result of the simple form of H{f™’, only the lattice
representation of the kinetic-energy operator T needs to

be diagonalized, which is a manageable procedure. Using

3 3

I=3XL=—3234:. (AS)
i=1 i=1

We diagonalize T}, giving all eigenvalues 7, with associ-

ated orthonormal eigenvectors 2

Iiga,.:Taifai’ a=1,...,N; . (A6)

Given the separability of the kinetic energy in Cartesian
coordinates, the eigenvectors of T are products of the
eigenvectors of T},
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3
Ifa = 2 Iifal£a2£a3:7'a£a ’ (A7)
i=1
with associated eigenvalues Ta=(ral+1-az+’ra3), where

a=1,...,N,N,N;. Therefore, the eigenstates of Hf ",
denoted @, ; ,, are the product states of ¢, and the eigen-
vectors of 3,

Pa1,s =Pa®U; , s=12, a=1,...,NN,N;,
- (A8)
Pa,—1,s =Pa®; , s=1,2, a=1,...,N|N,N;,
where the eigenvectors of 3 are
1 0
0 1
ul: 0l u2= 0]’
0 0
(A9)
0 0
0 0
LT 27 o
0 1

The spinors @,,, form a complete and orthonormal basis
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the lattice by applying the inverse Foldy-Wouthuysen
transformation in Eq. (A4) to the states @,;,

H,B+E,

V2E,(E,+1)

éals :—ETQGAS = Qa}»s .

The new eigenstates £, are by construction exact eigen-
states of H,

HOéakszkEagaks ’ A==l >

S (A11)
E,=V2r,+1.

Since the states @, are eigenstates of B, we can rewrite
Eq. (A10) as

2Ea 172

E, +1

a

H,
1+—-— (A12)

Qaks .

1
éaks— )

APPENDIX B: AXIAL GAUGE
WITH FINITE PROJECTILE

Here we present the axial-gauge transformation for the
case of a spherical, finite-size, homogeneously charged
projectile with radius Rp. As a result of performing the
integral in Eq. (80), which defines the axial-gauge func-
tion, three different cases exist for the A(7'(2);z,) since z,

and are helicity eigenstates. is required to be finite by Eq. (82). If
We now construct the free Dirac continuum states on  zo> Bt +yf1(R 2—p'H12, then
J
2 127172
A (1)2)=Zap, | In §(t)+[§2(t)+p 2]l '
o) +[55()+p1!
+O(Rp—p’) [B((R2—p)12—|£(1)])
R+R’=p™)'? 1|, p? (t
§(1)+[§2(I)+p/2]1/2 2 R12>
3 n 1173
(t3)+i I_LZ
6R} 6 R}
21212 ” 2 |172
+O(— LN —(R*—p)) [In R HRZpIZ g P72
R —(R*—p"?)!72 R} R}
2
+%[1—£7 ” (B1)
P
Ifzo<Bst—v; (RE—p'>)'?, then
2 27172
A (152)=ZaB, | In §(z)+[§2(t)+p 2]1 _
o)+ [£5(1) +p1Y
+O(Rp—p') | OURI—p)12—|E(1)])
172
_(RZ___p:2)l/2 1 2 ;(t) ”2
n§t)+[§2(t+ 27172 5 ~% Ry 1_%
Pl P P P
_8w 1,
6R} 6
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(Rz_p: )172 172

R+(R2 )1/2

S

+O(&(1)—(R2—p™)'?) |In

1

3

Ify (RF—p™)' 22 |zo—B/t|, then

, _ NI ) 2
A(r'(t);20)=2aBO(Rp—p") Rl 2K, 3—%2
1/3
_(p2_2\1/2 §(’)+[§2(”+P'2]1/2_l _ﬁ
+0O(5(t)—(R*—p"?)"%) |In R+(R—p)172 5 R
1172 ,
IR PG e N
2 R}, R}
3
+O((R2—p™)2— | (1)) 5—— P |
2R R,, 6R}
' , 1/3
+O(—&(0—(R2—p™)172) 1n¢’+[§2‘”+f’2]m+l - 22
R _(RZ_p'?.)l/Z 6 R12J
” 1/2 ”
. _'LZ 3—% . (B3)
2 R} R}

All factors in Egs. (B1)-(B3) which contain the step function ©(x) arise because of finite-size effects.
The interaction in the axial gauge is found by using each of Egs. (B1)-(B3) in a gauge transformation

AB(r'(£))— AB(r'();29) = AB(r' (1) —3*A(r'(2);2,) . (B4)
The results are the following. For the temporal component, the interaction is
A(r'(1);z0)= —12— Ap(r()+p3 Z}.’(r'(z)),:zo . (BS)
Ys

For the x and y components Ap(r'(t);z,) and A}(r'(1);z,), there are again three cases for z,. We list only the x com-
ponent. The y component of the interaction may be obtained from the x component by multiplying by the factor
(y —b)/x. For the case zo> Bt +v (R —p'?)!/?, the x component is

T10r(1): &(2) Sol?)
Ap(r (t))z()) Zan ,2 [é_z t)+p,2]l/2 ;é([)-‘l-p'z]l/z
(" &) n 1173
+e((R2 1/2 (t g / L s
P p |§ l RP [g—l(t)+p’2]1/2 R}Z,
n 1173
+20(—¢(t)—(RE—p'™H)'"?) 1—4;’(—2 I (B6)
P
For the case |zy—B,1] S'yf'(R}% —p'HV2if |z —Bftl > yfl(Rg —p'*)1/2, the x component is
_ 1) Eolt)p™ n |13
AN (th20)=—ZaB, U —e(L()—(RE—pH)?) [1-£-
Tp? | 180+p2) R} ’ R}
n 1173
+O(—¢5()—(Rp—p™)'"?) 1—% ]; (B7)
P
if |z —B,t| <y; (R3—p")'"?, then the x component is
/f;(r’(t);zo)=—ZPanyf%(z —zp) . (B8)
P

For the case z, <t -—yf_l(R,Z, —p'H)1/2, the x component is
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- Solt)
Apr'(1);20)=—ZaB, >~ ctt) -
S [T PR LR PR
" a2 1173
+e((R2__ '2)1/2__ () _C(t)P _ §(t) _ P
PP | s | TR
;1173
—20(L(1)—(Rp—p™)'7?) kl—ﬁ—z } (B9)
P
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