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The effect on the B spectrum of exchange between bound and continuum electrons is discussed for de-
cay of a many-electron atom. Results of calculations of the exchange distortion of the 8 spectrum are
presented using both a screened hydrogenic and a Hartree-Fock approximation for the electron wave
functions. The results of the two approaches agree well and show that the inclusion of exchange leads to
an enhancement of the 8 spectrum, particularly at low electron energy. This corrects an error in a previ-
ous calculation that found that exchange decreased the f3 intensity. For the low-energy B~ emitters
106Ru and ?*'Pu, the present calculation indicates that the enhancement due to exchange is of the order
of several percent over much of the spectrum, becoming larger at very low electron energy. Exchange
with 1s electrons dominates in the high-energy part of the spectrum, but exchange with ns (n >2) elec-
trons becomes significant in the low-energy region. The inclusion of exchange leads to an increase in the
phase-space integral by 6.4% for 'Ru and 7.5% for **'Pu. Results are presented for exchange effects in
other B spectra, including those of '“C and *S, in which experimentally measured distortions have been
interpreted as evidence for a heavy antineutrino of mass 17 keV. The distortions due to exchange are
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found to be significantly smaller than the measured distortions.

PACS number(s): 23.40.Bw, 31.20.Tz, 27.60.+j, 31.90.+s

I. INTRODUCTION

Interest in atomic effects on 3-decay spectra has been
revived recently because of the relevance to the interpre-
tation of experiments that attempt to measure, or set lim-
its on, the antineutrino mass from S spectra. Atomic dis-
tortion of the 3 spectrum has to be taken into account in
order to extract any further distortion which may be due
to antineutrino mass effects. Much theoretical work ini-
tially focused on the tritium S spectrum in the high-
energy region to test the suggestion that the electron neu-
trino might have a mass of a few tens of eV [1-5]. More
recently, attention has focused on the possibility of an an-
tineutrino of rest mass 17 keV that may be emitted in 1%
or 2% of B decays as first proposed by Simpson [6,7].
The effects of screening [8,9] and exchange [10] on the
tritium S spectrum have been proposed as factors con-
tributing to the experimentally measured distortion
though these effects do not seem to account completely
for the discrepancy. While the initial evidence for the
17-keV antineutrino came from distortions in the tritium
B spectrum, there have been more recent reports of dis-
tortions in the B spectra of other isotopes, specifically 3°S
[11,12] and 'C [13], that also have been interpreted as
supporting the heavy-neutrino hypothesis, though other
groups have found no evidence for distortion of B spectra
of *°S [14] and %Ni [15].

The principal atomic effects on the 8 spectrum arise
from screening of the B-particle wave function, exchange
effects between bound and continuum electrons, and the
distribution of electrons in final atomic states as a result
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of shakeup during the decay process. Screening effects in
decays of many-electron atoms have been discussed by a
number of authors [16,17]. In this article we examine ex-
change effects on the S spectra arising from decays of
multielectron atoms. It is well known that the nonortho-
gonality between initial- and final-state orbitals leads to
shakeup and shakeoff of atomic electrons in B~ decays.
From this fact it follows that it is possible for the S elec-
tron to be created into an orbital of the daughter atom
corresponding to one which was occupied in the parent
atom, without violating the Pauli principle. S decay to a
final state containing one continuum electron can then be
viewed as occurring both by creation of the 3 electron in
the continuum orbital (the direct process) or by creation
into a bound orbital with an electron simultaneously
making a transition to a continuum orbital of the
daughter atom (the exchange process).

The effect of exchange on the B~ spectra of some low-
energy B~ emitters has been estimated previously by
Bahcall [18], who found that the amplitude for the ex-
change process interfered destructively with the direct
process with the result that the inclusion of exchange be-
tween bound and continuum electrons led to a decrease in
the probability of B~ emission, particularly at low elec-
tron energies. For *Ni (end-point energy, E,=67 keV) it
was predicted [18] that this effect would decrease the con-
tinuum decay constant by 0.5% relative to that calculat-
ed ignoring exchange. For !®Ru (end-point energy,
E,=39.4 keV) and **!Pu (E,=21 keV) the exchange
effect was predicted to reduce the decay constant by ap-
proximately 2%. Haxton [10] has performed a calcula-
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tion of exchange effects for tritium decay. This indicated
that exchange with 1s electrons enhanced the low-energy
part of the B spectrum. This latter result would therefore
appear to be in contradiction to Bahcall’s earlier work
though this point was not addressed in Haxton’s article.
One aim of the present article is therefore to resolve the
discrepancy in the sign of the exchange terms. A second
aim is to consider the effect of exchange with electrons
other than ls electrons. Bahcall argued that exchange
processes involving 1s electrons should be considerably
larger than those involving other electrons on the
grounds that the size of the exchange process between a
bound and continuum electron scales with the value of
the bound electron wave function in the nuclear region
where the 8~ decay process occurs. However, this argu-
ment ignores the fact that the size of the exchange terms
involving two electrons should also scale with the overlap
integral between the bound and continuum wave func-
tions. This overlap should be significantly larger for
higher-lying bound s orbitals than for the 1s orbital. This
would tend to offset the fact that the wave function for
the 1s orbital in the nuclear region will be greater than
for higher-lying s orbitals. Thus it is not clear that ex-
change with occupied higher-lying orbitals can be ig-
nored. A secondary aim of this article is therefore to cal-
culate the contribution due to exchange with bound elec-
trons other than ls electrons in decays of many-electron
atoms. The exchange calculations in both [10] and [18]
were based on ignoring screening effects on the electron
wave functions. The validity of this approximation is not
clear, particularly in the case of many-electron atoms,
since the exchange terms which enter the expression for
the intensity of the B spectrum at a particular energy de-
pend upon overlap integrals between a bound electron
wave function and a continuum electron wave function.
J
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Here the operator b ),r; « Creates an electron in a continu-
*Te

um orbital of the final-state atom with kinetic energy E,
total energy W, momentum p, and kappa quantum num-
ber «,. The energy of the electron, E, differs from its to-
tal energy W, merely in the omission of the rest mass
term mc? so that W=E +mc? The quantity Uk, (R) is

one of the Dirac radial wave functions for this orbital and
is defined such that Ug,«,(R)=Pg(R)/R if k,=—1 and
Ug, (R)=Qp; (R)/R if k, =1, where Pgy(R) is the large
radial component of the Dirac wave function for an s-
wave electron of kinetic energy E and QE.p,(R) is the
small radial component of the Dirac wave function for a
P-wave electron with this energy, evaluated at the nuclear
radius R [19]. It should be noted that the U ,(r) factors
defined after Eq. (2.46) in Ref. [19] lack a factor of 7 in
the denominator. The subsequent equations in [19] con-
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These overlap integrals may receive significant contribu-
tions from regions of space in which screening effects
play an important role. Thus a further aim of this paper
is to evaluate the exchange effects on the spectrum using
more accurate wave functions which take account of elec-
tron screening. Since the exchange process involves
bound electrons there is a possibility that the process may
be sensitive to the chemical state of the decaying atom.
An additional aim of this paper is to estimate the magni-
tude of changes in the S-decay constant due to differences
in the magnitude of the exchange process in different
chemical states of the decaying atom.

II. THEORY

A. General formalism

We consider the 8 decay by an allowed transition of a
general atom of nuclear charge (Z —1) containing N elec-
trons which are defined by the state label ¥. The final
state is a nucleus of charge Z, an antineutrino and
(N +1) electrons whose state label will be denoted y'.
The B decay process may be represented

(Z—1,A)+Ne —(Z,A)+(N+1)e +¥v. (1)

In Ref. [19] we derived a general expression for the decay
rate of a multielectron atom to a given final ¥’ state by an
allowed B transition. In this work we focus on final states
composed of at least one continuum electron and N other
electrons. The dominant states produced in the B-decay
process are those in which all these NNV other electrons are
in bound states. If the different possible final states of the
N bound electrons are denoted ¥ and the total number of
electrons emitted with energies between E and E +dE is
denoted dI, then from Eq. (2.68) of [19], one has

[Wo(7) =W AN+ 1L7,E k., "B L IN,7, ) U, (R)

2
(2)

A(EY)

—
taining these factors are, however, correct as they stand.
The quantity U ,(R) is similarly defined as the appropri-
ate component of the wave function for the subshell 4
belonging to the final 7 state. The operator 5’[4 creates
an electron in a final-state orbital with quantum numbers
denoted by the label 4. The quantities J and J' are the
total angular momenta of the states ¥ and y’. The
reduced-matrix elements in Eq. (2) between the N-
electron initial state ¥ and the (N + 1)-electron final state
7' can be related to a matrix element between states of a
given magnetic quantum number according to the
Wigner-Eckart theorem as described in Ref. [19]. W(¥)
is the maximum f-particle energy (end-point energy) in
the decay leading to the final state ¥ and is determined by
energy conservation. The quantity J;,, the minimum
value of J', equals J — 1 if J70 and equals | if J=0. The
factor C is a constant for a particular isotope, indepen-
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dent of electron energy.

If the reduced-matrix element terms in Eq. (2) involv-
ing the quantities bl are ignored then Eq. (2) gives the
standard expression for the [ intensity ignoring exchange
effects. The term involving b E., is therefore called the

direct term since it is associated with the probability for

creating an electron directly into the continuum s and p

orbitals of energy E with the atomic electrons effectively
playing the role of spectators in the decay process. The
terms in Eq. (2) involving bL are called exchange terms
and are associated with the probability for an electron be-
ing created in the subshell 4 of the daughter atom with
an electron simultaneously making a transition from an
initial-state bound orbital (having the same quantum
numbers as the orbital in which the electron is created) to
a continuum orbital of energy E. The reduced-matrix
elements in Eq. (2) can be evaluated using the methods
J
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described in section j of [19] where the case of reduced-
matrix elements involving only bound states was con-
sidered. We consider two particular cases: an initial
state containing one electron and a general closed-shell
initial state.

B. One-electron initial states

As a simple test case we consider an initial state with
the configuration 1s!' in which case J =1. Orbital-
orthogonality considerations show that the only nonzero
contributions to the sum over ¥ in Eq. (2) come from
states having the electronic configuration ns’,E,k, so
that the label ¥ reduces to the principal quantum number
n. Each configuration ns’,E,k, gives rise to two final
states which differ only in the value of J’ which can be 0
or 1. The expression for dI /dE obtained from Eq. (2) by
considering all these possible final states is

)+Q,§,ﬁ,(R)]

—(Z,ns'|Z —1,1s){Z,Es'|Z —1,15 ) Pz (R)P,.(R)
+(Z,Es’'|Z—1,15)?P%.(R)} . 3)

This reduces to the result given by Haxton [10] for triti-
um decay if the nonrelativistic limit is taken, in which
case QE;?'(R) is zero.

C. General many-electron initial states
containing closed s and 7 subshells

In the following analysis we consider decay of an initial
state containing doubly occupied s or p subshells and pos-
sibly also containing partially filled subshells built from
orbitals of individual angular momentum (j) greater than
1. The initial and final electron states will be described in
the single manifold (a manifold consists of all the
different relativistic configurations that reduce to the
same nonrelativistic configuration in the formal limit that
the velocity of light tends to infinity) approximation.
These states can each be factorized into a product of two
kets, one describing the state of the s and p electrons and
one describing the state of electrons with j > 1. This fac-
torization then allows the sum over the many possible
final states which may be produced in the decay to be
performed using a closure relation for the final-state wave
functions, as described below.

In the following discussion the state labels u and v will
be used to define states of the s and p electrons while the

J
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Istate labels a and b will be used to define the states of the
electrons with j>1. An initial state |N,y,J,M ) can
thus be written as |y,,J,M)|y,) (=ly,v..J,M))
where the state |y, ), consisting of only filled subshells
each containing two s or two p electrons, necessarily has
zero total angular momentum so that the total angular
momentum (J) and its z component (M) for the state
IN,y,J,M) are the same as those of the state |y,,J,M )
of the electrons having j > 1. The only final states gen-
erated with significant probability by allowed B decays
are those containing the same number of electrons having
J >+ as are present in the initial state. Furthermore the
total angular momentum of these j > 1 electrons in the
final state must be the same as that (J) of these electrons
in the initial state. The state of all the s and p electrons
in the final state containing a continuum electron of ener-
gy E with angular momentum equal to § will be denoted
(y.,E,Kk,,J;,M,| with y, denoting the state of the s and
P electrons, excluding the continuum electron and J; and
M, being the total angular momentum and its z com-
ponent for all the s and j electrons, including the contin-
uum electron. Using the result of Eq. (AS5) in the Appen-
dix, the wave functions for the electrons with j > % can be
factored out of the reduced-matrix elements in Eq. (2).
After performing the sum over J' in Eq. (2) one obtains

WPV Eokon JUNIB o 174 ) Ug,i (R)

+ 3 YLEx LB Ly ) ULR? @)

A(EY))
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where the quantity {y},J|y,,J) is the overlap between
the initial and final state of the j > 1 electrons. The label
¥ in Eq. (2) has become the double (y},y,) in Eq. (4).
Both reduced-matrix elements in Eq. (4) involve the wave
functions for just the s and p electrons. From the analysis
in the Appendix, the angular momentum J; must equal 1.
The reduced-matrix elements involving the operator
b TE,,(E which appear in the direct terms can then be ex-

pressed in terms of orbital overlaps according to [19]
VBB L lv)=—V3plry . ®

The reduced-matrix elements involving the operator
3& which appear in the exchange terms can be evaluated
for any given ¥, and any orbital 4. However, in decays
of a many-electron initial state one particular y, state
dominates the sum over v, in Eq. (4). This is the state in
which the s and p orbitals have the same occupancy as in
the initial state. This final state, which will be called the
core state of the s and P electrons, will be written v/
where the label u indicates the quantum numbers of the
electrons are the same as in the initial state y,. For de-
cay of the ions of 'Ru and *!'Pu that forms a major
focus of this work, we have shown by explicit computa-
tion of the overlaps {y,|y,) that the state y. is pro-
duced in more than 99.5% of decays so that less than
0.5% of s and p electrons are excited in the decay pro-
cess. This may be compared with the corresponding
probability for decay to the final state of the j> 1 elec-
trons in which these electrons are in orbitals that have
the same quantum numbers as those in the initial state.
If this final state is denoted y,, computation of the over-
laps {y.,,J|y,,J ) shows that the probability of decay to
the y, state is 75-80 %, implying that electrons with
Jj >4 are excited in 20-25 % of decays. Thus in the fol-
lowing we focus on exchange terms in the ¥, state which
gives the dominant contribution to the exchange effects
on the B spectrum and sum over all the y, states using
closure. For the ¥, state, the reduced-matrix element in
the exchange terms is given by [19]

(Vi Bk, 2B 1y ) =V v (A —>Ek)lv,) (6

where (y,(4—E,x,)| is the Fock-space bra generated
from (.| by replacing the orbital belonging to subshell
A and having m;=4 by the continuum m;=1 orbital
with kinetic energy E and kappa quantum number «,.
When the reduced-matrix elements are expressed in
terms of orbital overlaps by means of Egs. (5) and (6), the
exchange terms are seen to contain a phase factor of op-
posite sign to that of the direct term. This phase factor
arises from the antisymmetrization of the electron wave
functions. The overlap in Eq. (6) can be written as a
determinant whose elements are one-electron overlaps.
The main contribution to the value of the determinant
comes from the leading diagonal. In particular, terms in-
volving products of two or more one-electron overlaps
between an initial-state bound orbital and a final-state
continuum orbital are very small. Thus to a good ap-
proximation we have
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(E,k,lay)

, D
(ajylay)

(ruld—E,k)ly, ) =(y,lv,)

where (E,x,|la ) is a one-electron overlap between an
initial-state orbital belonging to subshell 4 and a final-
state continuum orbital of kinetic energy E and kappa
quantum number k.. In this and all subsequent one-
electron overlaps appearing below, the initial- and final-
state orbitals are assumed to have the same magnetic
quantum number which is omitted for convenience. The
v and v, states satisfy the closure relations

S{ridlyaJ)=1, ®)
b
S v, I )2=1. 9)

When Egs. (5)-(7) are substituted in Eq. (4) the above
closure results can be used to perform all the sums over
¥ as well as that over y,, in the direct terms, at the same
time replacing Wy(y},v,), which is only a weak function
of v}, and 7,, by an average end-point energy W, as de-
scribed in Refs. [19] and [20]. In the sum over y,, the ex-
change terms for states other than the core state y; will
be neglected since, for the reasons given above, this state
is by far the most important final state of the s and p elec-
trons and exchange terms in this state will therefore be
dominant. Then, noting that to a very good approxima-
tion {y,ly,)=1 and (a/la,)=1 (except for Z=1),
one has

dl

W o —
dE )4 (Wo )

UEVKE(R)

— 3 (Exfa YU R)| , (10)

A(Ey)

where the summation over A is over orbitals which are
occupied in the initial state y. If the terms involving
U 4(R) are neglected, Eq. (10) yields the standard result
for the B spectrum intensity with no exchange (denoted
by the superscript NE):

dINE LW
=CR *—
dE p

(Wo—WPPE(R)+QL (R)]. (1D

The B spectrum intensity calculated including the ex-
change terms can then be written in terms of the intensity
calculated ignoring exchange terms:

dl _ dI™®

dE dE
where the factor 9L (E) describes the modification to the
B spectrum intensity due to the inclusion of exchange

effects. This factor will be called the total exchange fac-
tor and from Egs. (10)-(12) it is given by

Nel E)=f, QT +TH+(1—f)2T,+T}) , (13)

[1+71(E)], (12)

where f is given by
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fo=y L (R) (14)
Y PR(R)TQLL(R)

and T, and T_ are sums of exchange terms given by

s(R)
- 3 (Es’ lns) , (15)
ns'(Ey) PES(R)
and
Q {R)
T,=— 3 (Ep'lnp (16)
Q. (
np(Ey) Ep

If exchange effects are ignored, then for those decays pro-
ducing a continuum electron of energy E, f, represents
the fraction of B decays in which this electron emerges in
an s state. In the following discussion, the focus will be
on exchange terms involving s electrons and exchange
effects involving p electrons will be ignored. The contri-
bution to the total decay rate made by p-wave decays is
relatively small except in very-high-Z decays and there-
fore p-wave exchange should be considerably less impor-
tant than s-wave exchange.

It will be convenient to consider the separate contribu-
tions that different ns subshells make to the exchange fac-
tor. We therefore define a subshell exchange factor
n2%(E) for a particular subshell at a given electron energy
by

ME)=f, |— |2(Es’| ) AR)
Nex(E)=fs s'|ns PES< )
(R) |?

(Es’ lns)m ] . (17

The total exchange factor can be written in terms of the
subshell exchange factors according to

+(R)
T — ns
NHK(E) %nex(E)+ m%S (Es’ Ims) PES(R)
(m+n)
(Es'|nsy L) (18)
s'|ns P (R)

Since the exchange terms are generally quite small com-
pared to unity, the products of terms in large parentheses
in Eq. (18) are considerably smaller than the quantity
n4(E). Thus the total exchange factor is given, to a good
approximation, by the sum of subshell exchange factors
defined by Eq. (17).

Since we also wish to quantify exchange effects on the
phase-space integral due to exchange with different sub-
shells, we define quantities called subshell exchange con-
tributions by

NE
5= [ L ENE

dINE -1
i

dE (19)

The subshell exchange contribution represents the frac-
tional change in the phase-space integral for the decay as
a result of the inclusion of exchange with ns electrons. In
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a similar way, the total exchange contribution is defined
by

dINE
= B f —dE
and represents the fractional change in the phase-space

integral as a result of the inclusion of exchange with all
bound s electrons.

—1
> (20)

[ - S E(E) }dE

D. Nonrelativistic approximations

Generally, relativistic effects on the electron wave
functions are very important in the [3-decay process be-
cause the Ug, (E) factors, which determine the direct

contribution to the decay process, involve the electron
wave function at the nuclear radius. However, one may
expect the exchange terms 7 to be less sensitive to rela-
tivistic effects because they involve ratios of electron
wave functions in the nuclear region in which relativistic
effects should largely cancel out. Also, the overlaps
should not be strongly dependent upon relativistic effects.
In many cases it may therefore be convenient to evaluate
the exchange effects on the S spectrum by calculating
1no(E) using a nonrelativistic approximation for the wave
functions in Eq. (15) but retaining a relativistic treatment
of the factor f;. Using point nucleus unscreened Dirac
Coulomb wave functions for P (R) and QEﬁ,(R), it can
be shown that f; is well approximated by the quantity
(W+7v,)/(2W) with yo=[1—(aZ)?]'/? where a is the
fine-structure constant. For low-energy decays f, can
vary from a value close to unity in a low-Z atom to a
value of 0.85 in a high-Z ~95 atom. If the effect of ex-
change on the (minor) p contribution to the [ intensity is
ignored, then in this nonrelativistic approximation, the
total exchange factor is given by

NL(E)=QT,+THW+yy)/2W . 21)
The validity of this nonrelativistic approximation for the
exchange terms is examined for several cases in Sec. III
by comparison with exchange terms calculated using ful-
ly relativistic wave functions.

E. Kurie plot

B spectra are commonly interpreted in terms of the
Kurie plot. The Kurie function K (E) is defined as

—||4L Wip
K= | |G| e
—-171/2
2
| |

(22)

where (dI /dE)., is the experimentally measured B~ in-
tensity. If the theoretical intensity (dI /dE) in Eq. (12) is
equal to the experimental intensity (which should be the
case if antineutrino mass is zero) then, using Egs. (11) and
(22), K (E) is given by
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K(E)=B[1+4T(E)]VXE,—E), (23)

where B is a constant independent of electron energy. A
Kurie plot, which is a plot of K (E) versus E, should thus
be linear if the total exchange factor nL(E) is negligible
or if it is independent of energy in the energy range con-
sidered. It is thus only through their energy dependence
that exchange effects manifest themselves as a distortion
of the Kurie plot. If the exchange factor is small com-
pared to unity then the inclusion of exchange leads to
multiplication of the Kurie function by a factor approxi-
mately equal to 1+1nZ(E).

III. EVALUATION OF THE EXCHANGE TERMS

A. General overview

The exchange factors 1"(E) and 5L (E) given by Egs.
(17) and (18) involve the overlap {Es’|ns) between a
bound s orbital wave function in the initial-state atom
(nuclear charge Z—1) and a continuum s orbital wave
function in the final-state atom (nuclear charge Z). This
overlap requires knowledge of both wave functions over a
wide region of space. Screening effects of atomic elec-
trons on both wave functions may need to be taken into
account since screening may be significant in the regions
of space contributing to the overlap integral. Also care
has to be taken to ensure that the final-state continuum
electron wave function is orthogonal to the wave func-
tions for the final-state bound orbitals which are eigen-

functions of the same Hamiltonian. In particular, in nu-
|

(=) '"4Z,~Z)
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merical calculations, care has to be taken to ensure that
the orbital sets used to describe the initial and final states
are calculated so that the overlap (Es’|ns’) (which
should be identically zero by orbital orthogonality) is
much smaller than (Es’|ns), otherwise the overlap
( Es’|ns ) may be significantly in error.

Two methods of calculating the exchange overlap in-
tegrals are described below. The first is based on a hydro-
genic approximation for both bound and continuum wave
functions. The second is based on a Hartree-Fock ap-
proximation for the electron wave functions.

B. Hydrogenic approximation

Within the hydrogenic approximation, two cases will
be considered: one based on using eigenfunctions of the
Schrédinger equation and the other on eigenfunctions of
the Dirac equation. In the nonrelativistic case, the ana-
lytic forms of the bound and continuum hydrogenic elec-
tron wave functions are well known [21] and, moreover,
matrix elements involving hydrogenic wave functions and
radial operators (including the unit operator) can be ex-
pressed analytically in terms of hypergeometric functions
[22]. If the effective nuclear charge of a hydrogenic
bound wave function with principal quantum number n
and angular momentum / is denoted Z; and the effective
nuclear charge of a hydrogenic continuum wave function
of energy E and angular momentum / is denoted Z, then
the overlap integral between these wave functions,
(Z,,El|Z;,nl), can be shown from [22] to be given by

2i(l+1—n)arctan(p /2,- )
e

(Z,,El|Z;,nl )= -
7 ElZon [+ Dip(p2+Z D)+

nZ,/2p —(2Z,/p)arctan(p/Z;)
Xe f Pe r/P p

where Z;=Z,/n and the continuum wave functions are
assumed to be normalized on the energy scale according
to

[ e (OYp (D)dr=8E—E") . (25)
Setting / =0 and n =1 Eq. (24) yields

(Z;,Es|Z,,1s)=8(Z,— Z, N Z,;Z})'?

—(2Z; /plarctan(p /Z;)

Xe (p2+2H)?

X(1—e 2?12 (26)

This result for the overlap between a hydrogenic 1s wave
function and a hydrogenic continuum electron wave
function agrees with the result given in [2].
Setting / =0 and n =2 in Eq. (24) yields
(Z;,Es|Z;,25s)=8(Z; —Zf)(ZfZ,-3)”2
Xe —(ZZf/p)arctan(p/Z‘-)
X(p2+Z ) H1—e )12

X[p*+Z,2Z,~Z,)] . 27

2UHpZ ) I+ 1—i(Z, /p))]

CFUH1+I(Z, /p), 1 +1—n,21+2,—4piZ, /(Z,~ip)*) , (24)

[

By virtue of the factor (Z;,—Z ), the overlaps for both 1s
and 2s orbitals are clearly seen to be of negative sign.
The bound and continuum wave functions used in this
calculation are defined with phases such that the large
component of the nonrelativistic radial wave function is
positive for small r. The quantities P, .(R) and Pg.(R) in
Egs. (17) and (18) are therefore also positive. Taken to-
gether, these results for the signs of the quantities
(Es'|ns), Pg(R), and P,.(R) show that the exchange
terms involving 1s and 2s electrons must be of positive
sign with the result that they interfere constructively
with the direct term thereby leading to an enhancement
of the B-decay rate. This result is the reverse of that re-
ported by Bahcall [18]. An inconsistency in the wave
functions used in the latter calculation would seem to ex-
plain the discrepancy. Evaluation of Eq. (24) with a
range of values of n for /=0 and 1 shows that the over-
laps (Z 7 El |Z;,nl ) are negative irrespective of the value
of n. This implies the general result that the inclusion of
exchange with s and p electrons tends to enhance the S-
decay rate. Exchange terms involving two bound elec-
trons arise in the theory of bound-state B decay [19].
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Evaluation of these exchange terms for several decays
also shows that the sign of the exchange terms are such
that they tend to enhance the B-decay rate [19]. It should
be emphasized that the above comments regarding the
sign of the bound-continuum exchange terms refer to ex-
change terms in Eq. (2) in final states in which the s and p
electrons are in orbitals which have the same quantum
numbers as those in the initial state, though electrons
with j > 1 may be in excited orbitals. Exchange terms in-
volving final states containing excited s or p electrons are
not necessarily guaranteed to interfere constructively
with the direct term. However, as indicated above, the
latter final states are produced with very low probability
in decays of medium- and high-Z atoms.

In order to evaluate the exchange terms using overlap
integrals given by Egs. (24)-(27), it is necessary to assign
values to the effective nuclear charges Z; and Z; in such
a way that they yield reasonable estimates of the overlap
integrals between screened atomic orbitals. That is, the
values of Z; and Z, should be chosen in order to yield
values for the hydrogenic wave functions which are
reasonable approximations to the wave functions for the
states (Z,El'| and |Z—1,nl) in the regions of space
which  contribute significantly to the overlap
(Z,El'|lZ—1,nl). In this work Z; and Z; have been
chosen in two different ways, one taking account of elec-
tron screening effects, the second ignoring such effects
completely. In the former method, denoted the screened
hydrogenic approximation, Z; and Z, were chosen for
each initial state orbital ns by matching the well-known
result [23] for the mean radius of a hydrogenic orbital of
effective nuclear charge Z g,

3n?  1U+1)

[ —— (28)

Z ,nl , =
(Zog,nl|r|Zog,nl) 2z, 2Z.

to mean radii for ns orbitals calculated in the Hartree-
Fock approximation. Specifically, Z; and Z, were calcu-
lated according to

(Zins|r|ZnsY=Crdz_ 1, u » (29a)
and

(Zsns|rlZyns)=(r) (29b)

Z,y%ns °
Here the mean radii on the left of these expressions are
calculated using Eq. (28) while the mean radii on the
right-hand side refer to mean radii calculated in the
Hartree-Fock approximation. {r)z_,, . is the mean

radius of the ns orbital in the initial state ¥ of the N-
electron atom with nuclear charge Z —1. (r) Ziyons 15

the mean radius of the ns orbital in the core state (denot-
ed y°) of the N-electron atom with nuclear charge Z in
which all the electrons have the same orbital occupation
numbers as in the initial state y. This procedure for cal-
culating Z; and Z, aims at ensuring that the hydrogenic
continuum orbital (Z f,Esl is very nearly orthogonal to
the true final-state bound orbital (Z,ns’|. The values of
Z; and Z, are based on matching values of mean radii,
rather than other radial expectation values, in order that
the hydrogenic orbitals (Z,ns| and |Z;,ns) provide
reasonable estimates of the true orbital wave functions
(Z,ns’| and |Z—1,ns) in the regions contributing
significantly to the overlap (Z,Es’|Z—1,ns ). It should
be noted that results are fairly insensitive to the choice of
the particular expectation value used to fix Z; and Z + by
matching to Hartree-Fock wave functions. Thus, consid-
er, for example, the case of decay of the ion '“Ru'" in
the ground state [Kr]4d’. '®Ru is chosen as an example
since it is considered to be representative of a medium-Z
low-energy B decay. The core final state is Rh?"
[Kr]4d’. Table I shows values of the mean radii of the s
orbitals of these Ru!* and Rh2" states calculated in the
Hartree-Fock approximation together with values of
effective nuclear charges obtained by fitting according to
Eq. (29). The Hartree-Fock wave functions were generat-
ed using the GRASP code [24] with the velocity of light set
to a large value which yields the nonrelativistic limit.
For both y and y°¢ states, all configurations arising from
the d’ manifold were included in the calculation. Al-
though the effective nuclear charges which fit the
Hartree-Fock expectation values differ significantly from
the full nuclear charge, particularly for high n, it is clear
that for a given orbital, the difference between the
effective nuclear charge in Rh?* and Ru!" is very close
to unity. Table II shows the results of a similar analysis
based on matching the hydrogenic mean inverse radius to
the Hartree-Fock mean inverse radius. For a hydrogenic
orbital the mean inverse radius is given by
(Z;,nllr~YZ;,nl)=2Z,/n? [23]. Again the differences
in effective nuclear charge between Ru!* and Ru’" are
seen to be very close to unity. Furthermore these results
for Z; and Z; based on matching the mean inverse radii
are very similar to those calculated by matching the
mean radii. The results based on matching the mean ra-
dii are preferred because the mean radius receives the
most significant contributions at larger radial distances

TABLE 1. Mean radii of s orbitals in Ru'" and Rh?*, calculated in the Hartree-Fock approxima-
tion, and associated effective nuclear charges (Z; and Z;) of hydrogenic s orbitals calculated according

to Egs. (28) and (29).

<r)Ru1+,ns <r>Rh2+,n3
n (a.u.) Z, (a.u.) z,
1 0.034 624 43.322 0.033 845 44.319
2 0.150 601 39.841 0.146 993 40.818
3 0.412 044 32.764 0.400 326 33.723
4 1.056 522 22.716 1.012 668 23.700
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TABLE II. Mean inverse radii of s orbitals in Ru'™ and Rh?®*, calculated in the Hartree-Fock ap-
proximation, and associated effective nuclear charges (Z; and Z;) of hydrogenic s orbitals.

(r=1

(r )

Ru1+,ns Rh2+,ns
n (a.u.) Z; (a.u.) zZ;
1 43.4823 43.482 44.4806 44.481
2 9.8650 39.460 10.1089 40.436
3 3.4731 31.258 3.5782 32.204
4 1.2736 20.377 1.3316 21.306

than the mean inverse radius and in a similar region of
space to that which is expected to give the dominant con-
tributions to the overlaps { Es’|ns ).

The overlaps of the type just discussed may be sensitive
to screening effects particularly for medium- to high-Z
atoms. On the other hand, the ratios of electron wave
functions evaluated at the nuclear radius that appear in
Egs. (17) and (18) should be considerably less sensitive to
electron screening effects. Therefore, in calculations of
exchange factors in the hydrogenic approximation, the
components P,.(R) and Pg.(R), evaluated at the nuclear
radius, which appear in Eq. (17) have been approximated
by the value appropriate for a completely unscreened
nonrelativistic hydrogenic wave function.

Thus far the use of hydrogenic electron wave functions
has been considered within a nonrelativistic approxima-
tion. However, in order to evaluate the validity of this
nonrelativistic approximation, calculations have also
been performed employing eigenfunctions of the Dirac
equation but using a similar method to that described
above for nonrelativistic wave functions. The relativistic
counterpart of Eq. (28) is given in Ref. [25]. Values for
Z; and Z, have been obtained by matching mean radii
for relativistic hydrogenic wave functions to the mean ra-
dii of orbitals in the y and y° states calculated using
GRASP [24]. Again all configurations corresponding to a
given manifold were included in the calculation. The
values of Z; and Z, thus generated were used to calculate
overlaps (Z ' Es |Z,-,ns) by direct numerical integration
using the well-known expressions for the relativistic hy-
drogenic bound and continuum electron wave functions
[26]. The values of P,(R) and Pg.(R) used to calculate
the exchange terms in Eq. (17) were obtained using com-
pletely unscreened hydrogenic Dirac wave functions.
The results of a comparison between relativistic and non-
relativistic approaches are presented below.

C. Hartree-Fock approximation

Wave functions for bound electronic states can be
readily calculated in the Hartree-Fock approximation.
Solving the Hartree-Fock equations with both bound and
continuum electrons is less straightforward. For the
present purpose it has been found convenient to solve the
Hartree-Fock equations for the continuum electron using
a fixed core approximation for the bound electrons. The
computational implementation of this method has been
described by Bates [27]. With this approach, orthogonal-
ity integrals of the kind {Z,El|Z,nl ) can be forced to be

zero (to within a given numerical accuracy) using the
method of Lagrange undetermined multipliers.

In order to generate the continuum wave functions
used in the calculation of the exchange factor, the wave
functions for a given ¥ state were first generated using
the GRASP code [24] as described above. These were
then used, after interpolation to a suitable grid, as the
frozen core input used to solve the Hartree-Fock equa-
tions for the (N + 1)-electron system composed of the ¥
state together with the continuum electron, according to
the method described in [27].

The method has been found to be practical for relative-
ly low energies (E <50 keV). At higher energies the os-
cillatory nature of the continuum electron wave function
leads to very large radial grids being required to ade-
quately represent the wave functions, with consequent
numerical difficulties. In the calculations reported below
the continuum wave functions were evaluated at 30 inter-
vals between the maximum and minimum energies.

IV. RESULTS
A. '%Ru decay

1. Hydrogenic approximation

We consider decay of Ru!* [Kr]4d” to final states con-
taining one continuum electron and the Rh?** [Kr]4d’
ion. Exchange with s electrons may involve l1s, 2s, 3s, or
4s electrons since all these orbitals are filled in the initial
state. The effective nuclear charges used in the calcula-
tion of the overlap integrals in the nonrelativistic
screened hydrogenic approximation are shown in Table 1
and have been discussed in the preceding section. The s,
25, 3s, and 4s subshell exchange terms evaluated in the
hydrogenic approximation using Egs. (17) and (24) are
plotted in Fig. 1. Exchange with 1s electrons constitutes
the most significant contribution at energies from 40 keV
down to approximately 1 keV. However, the 2s contribu-
tion is non-negligible and amounts to approximately 25%
of the 1s contribution over much of the energy range
above 10 keV, becoming even more important at low en-
ergies. The energy dependence of the 1s exchange factor
is rather weak. The exchange factors are, however, seen
to become increasingly energy dependent for higher prin-
cipal quantum number. The total exchange factor varies
from approximately 2% at 40 keV to 7% at 5 keV. This
would suggest that the exchange process may
significantly modify the [ intensity, particularly at low
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Energy (keV)

FIG. 1. Exchange factors for 1s, 2s, 3s, and 4s subshells and
total exchange factor for °Ru decay, calculated in the screened
hydrogenic approximation.

energy and thereby also significantly increase the phase-
space integral for the decay.

The results obtained above in the screened hydrogenic
approximation are compared in Fig. 2 with those ob-
tained using completely unscreened hydrogenic electron
wave functions. The result for the ls subshell exchange
using unscreened wave functions agrees well with the re-
sult obtained using the screened hydrogenic wave func-
tions. For subshells with larger principal quantum num-
bers (n), the difference between the subshell exchange fac-
tors calculated in the two approximations tends to in-
crease as n increases. However, except at very low elec-
tron energy, the contribution to the total exchange factor
made by a given subshell decreases as n increases. The
net result is that the total exchange factor calculated in
the unscreened hydrogenic approximation also agrees
well with the screened hydrogenic result, except at very
low electron energy (see Fig. 2).

2. Hartree-Fock approximation

For 'Ru'" decay, Fig. 3 shows subshell exchange fac-
tors for the 1s and 2s subshells, evaluated in the Hartree-
Fock approximation using the method described in Sec.

Exchange Factor

" L " 1
0 10 20 30 40

Energy (keV)

FIG. 2. Comparison of 1s subshell and total exchange factors
calculated with screened hydrogenic (solid line) and unscreened
hydrogenic (dashed line) nonrelativistic wave functions.
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FIG. 3. Comparison of 1s and 2s subshell exchange factors
for !%Ru!* decay. The solid lines were obtained using the
screened hydrogenic approximation. The dashed lines were ob-
tained using the Hartree-Fock approximation.

III. The results agree very closely at high electron ener-
gies. At low energies the results calculated in the
Hartree-Fock approximation are larger than the results
calculated in the screened hydrogenic approximation.
The agreement of the two results over much of the spec-
trum indicates the usefulness of the screened hydrogenic
approximation.

B. Comparison of relativistic and nonrelativistic results

Thus far the exchange factors have been calculated us-
ing the nonrelativistic approximation described in Sec.
IID. In order to examine the validity of this approxima-
tion we consider the relativistic effects on the 1s exchange
contribution for decays of two isotopes, '°Ru and 2*!Pu.
The 1s exchange factor is chosen since this orbital makes
the largest contribution to the exchange factor. The de-
cay of %Ru is chosen as representative of a medium-Z,
low-energy B emitter and the decay of 2*!'Pu as represen-
tative of a high-Z, low-energy 8 emitter. 2*'Pu decays by
a first forbidden transition to >*'Am. However, since the
decay is one for which the £ approximation holds good
[28,29], the expression for the decay rate is the same as
that for an equivalent allowed [ emitter with the only
difference that the 3 intensity is multiplied by an energy-
independent constant. The theory presented above for al-
lowed transitions can therefore be applied straightfor-
wardly to 2*'Pu decay. It should be noted that Ref. [29]
used an alternative form of the § approximation in which
the decay rate expression contains the small components
of s orbitals instead of their large components as used
here (and also the large components of p orbitals instead
of their small components). This latter approach is for-
mally more exact but gives numerical results which do
not differ significantly from the £ approximation as ap-
plied here.

The Dirac-Fock mean radii for the 1s orbitals of Ru'*
and Rh?" were found to be 0.033427 and 0.032 618 au,
respectively, using the GRASP code [24]. Using the rela-
tivistic analog of Eq. (24) given in Ref. [25] yields the
effective nuclear charges Z;=43.339 and Z,=44.337.
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TABLE III. Mean radii of s orbitals in Pu?* [Rn]5f° and Am** [Rn]5f>, calculated in the Dirac-
Fock approximation, and associated effective nuclear charges (Z; and Z,) of hydrogenic s orbitals.

(r>Pu3+,ns <r)Am‘H',ns

n (a.u.) Z; (a.u.) Z,

1 0.013 226 93.222 0.013015 94.213
2 0.054 675 90.485 0.053772 91.505
3 0.142 357 84.050 0.140079 85.108
4 0.308 900 72.601 0.303 613 73.695
5 0.643 961 56.388 0.630206 57.527
6 1.425111 37.452 1.372235 38.860

For Pu®" and Am** the Dirac-Fock mean radii of the 1s -
orbitals and associated values of Z; and Z; are shown in
Table III; these compare with the results Z; =93.222 and
Z;=94.213 calculated from the Hartree-Fock wave
functions for Pu'" and Am?" using Eq. (29). The 1s ex-
change factors for Ru!* and Pu3™, calculated in both rel-
ativistic and nonrelativistic screened hydrogenic approxi-
mations, are shown in Fig. 4. For Ru!* the nonrelativis-
tic approximation is seen to be a very good one with
agreement to within a few percent over the whole spec-
trum. Since relativistic effects on the ns (n > 1) exchange
factors will certainly be no larger than those on the 1s ex-
change factor, this result indicates that the nonrelativistic
approximation (as described in Sec. II D) applied to a
low- or medium-Z decay is certainly satisfactory. For
Pu’" decay the nonrelativistic approximation is seen to
be less satisfactory and underestimates the ls exchange
factor by approximately 50% at 40 keV.

C. *'Pu decay

Based on the results of the preceding section, accurate
calculation of exchange effects in 2*'Pu decay should be
based on a relativistic description of the electron wave
functions. The results of a calculation of exchange fac-
tors for 2*'Pu®* using a fully relativistic screened hydro-
genic approximation are shown in Fig. 5. The Dirac-
Fock mean radii of s orbitals 2*'Pu3* [Rn]5f° and the
core state of 2! Am** [Rn]5f° are shown in Table III, to-
gether with the associated effective nuclear charges.
From Fig. 5 it can be seen that the 1s subshell again

0.04

Exchange Factor
(=]
8

8

0.01 L L . 1

20
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FIG. 4. Comparison of relativistic (dashed line) and nonrela-
tivistic (solid line) 1s exchange factors for 'Ru'" and 2*'Pu’*
decay, calculated in the screened hydrogenic approximation.

makes the single largest contribution to the total ex-
change factor over most of the spectrum but contribu-
tions from 2s, and higher-lying s orbitals are quite
significant. The 1s exchange factor is almost independent
of energy over the whole B spectrum of ?*'Pu’™.

D. Effect of exchange on the Kurie plot

Figure 6 shows the effect of exchange on the Kurie
plots for decay of !Ru'" and ?*'Pu*. The Kurie plots
including exchange were calculated according to Eq. (23)
using the Hartree-Fock approximation for the electron
wave functions for 'Ru'™ and the relativistic screened
hydrogenic approximation for 2*'Pu**, implemented as
described in the preceding section. The inclusion of ex-
change leads to distortion of the Kurie plot from the
straight line expected in the case of no exchange. The
distortion becomes larger at lower electron energy. How-
ever, from the end-point energy to an energy of about 5
keV the deviation from linearity is a few percent at most
in both cases. Deviations of this magnitude appear to be
too small to observe in the existing data [30—32] on the B
spectra of these isotopes.
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FIG. 5. Exchange factors for 2*'Pu®* decay calculated in the
screened hydrogenic approximation using relativistic wave func-
tions. The short-dashed line is for the 1s subshell, the dotted
line for the 2s subshell, the long-dashed line for the 3s subshell,
the chain-dotted line for the 4s subshell, the chain-dashed line
for the Ss subshell, and the solid line for the 6s subshell. Also
shown is the total exchange factor.
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FIG. 6. Effect of exchange on the Kurie plots for 'Ru'* de-
cay and 2*'Pu**. The solid lines are the Kurie plots assuming
exchange effects are negligible while the dotted lines are calcu-
lated including exchange with s electrons. For '°Ru the results
were calculated in the Hartree-Fock approximation while for
241py the results were calculated using the screened hydrogenic
approximation with effective nuclear charges obtained by
matching to Dirac-Fock s orbital wave functions.

E. Effect of exchange on the phase-space integral

Integrating the 3 spectrum from zero energy to the end
point using Egs. (19) and (20) yields the exchange contri-
butions to the phase-space integrals for 'Ru'" and
241py3* decay shown in Table IV. Exchange with 1s elec-
tron is the single most important contribution, but the
sum of exchange contributions from ns (rn > 1) electrons is
of comparable magnitude to the ls exchange contribu-
tion. The total enhancement in the phase-space integral
due to exchange is approximately 6.3% for 'Ru!* de-
cay and 7.5% for *'Pu’" decay. This would suggest that
exchange effects may significantly modify the phase-space
integrals of low-energy 3 emitters and should be taken ac-
count of if an accuracy in the value for the phase-space
integral of order 10% or better is required.

F. Application to B decays of other nuclei

There have been recent reports that experimental
spectra of “C [13] and *S [11,12] deviate from the
theoretical spectra in a region approximately 17 keV
from the end point. These deviations have been inter-

TABLE IV. Exchange contributions to the phase-space in-
tegral for 'Ru'* and *'Pu’" decays.

Exchange contribution (%)

Orbital 106Ry!+ #py3t
1s 3.31 2.19
2s 1.57 2.01
3s 0.89 1.42
4s 0.57 0.94
Ss 0.56
6s 0.34
Total 6.3 7.5

01 ¢

001 £

0.001

Total Exchange Factor

0.0001

0 50 * 100 * 150
Energy (keV)

FIG. 7. Total exchange factors for '*C and **S calculated us-
ing the unscreened hydrogenic approximation.

preted as evidence for a heavy antineutrino of mass 17
keV which was first postulated to explain an apparent
distortion of the tritium B spectrum [6,7]. Since it may
be of interest to define the atomic distortion of the 8 spec-
trum very precisely for these isotopes, exchange effects
have been calculated using the nonrelativistic hydrogenic
approximation described above. Figure 7 shows the total
exchange factors for *C and *°S calculated in this way.
The exchange process enhances the B spectrum by ap-
proximately 0.003% for '*C and 0.05% for S in the re-
gion 17 keV from the end point. The energy dependence
of the exchange factor is, however, rather weak with the
result that exchange effects need not be considered at the
level of accuracy necessary for the interpretation of the
experimental data on the 17-keV antineutrino.

In order to provide some estimate of exchange effects
for general B emitters, we have performed calculations of
exchange effects in the unscreened hydrogenic approxi-
mation for a range of initial nuclear charges from 10 to
90 and electron energies up to 200 keV. The total ex-
change factors are plotted in Fig. 8 as a function of ener-
gy. In all cases exchange with occupied s orbitals up to

Total Exchange Factor

0.0001 10

0 ’ 50 * 100 150 200
Energy (keV)

FIG. 8. Total exchange factors for decay of isotopes of
different initial nuclear charge, Z;, calculated in the unscreened
hydrogenic approximation. Exchange with occupied subshells
up to and including the 3s subshell is included.
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and including the 3s orbital was included. On the basis of
the previous discussion, this approach should yield the
dominant contributions to the exchange effects. The ex-
change effects were truncated at the 3s subshell since the
unscreened hydrogenic approximation is not likely to be
a good approximation for high-n orbitals particularly in
medium- or high-Z atoms and the exchange factors for 4s
and higher subshells are negligible. Except at very low
energy, the total exchange factors are seen to become
progressively larger as the nuclear charge increases.
Clearly the total exchange factor decreases with increas-
ing energy and thus exchange effects are entirely negligi-
ble for B emitters with end-point energies greater than
about 100 keV, irrespective of the Z value.

G. Chemical effects on the exchange process

Since the exchange process involves bound electron
wave functions it may possibly be sensitive to the chemi-
cal state of the element undergoing 3 decay and it may
therefore be interesting to consider to what extent the
half-life for B8 decay will be modified in different chemical
states as a result of exchange. An estimate of the chemi-
cal effect on the exchange process has been made by com-
paring the exchange contributions calculated in the
screened hydrogenic approximation for two chemical
states of '°Ru. One state chosen was the Ru!™* [Kr}4d’
ion, on which calculations were reported above. The
second state was the Ru?>' [Kr]4d ® ion which decays to a
core final state Rh3" [Kr]4d®. Hartree-Fock mean radii
of the s orbitals of these states of Ru?>" and Rh** are
shown in Table V, together with the values of Z; and Z -
calculated from Eq. (28). Using the nonrelativistic
screened hydrogenic approximation, the phase-space in-
tegral for 1%Ru’* was found to be larger than that for
106Ru'* by 0.0026% as a result of differences in exchange
effects in these two ions. Thus chemical effects on the ex-
change process are very weak. This result can be com-
pared with a calculation [19] of other chemical effects on
the decay constant of %Ru. Besides exchange, there are
three other principal factors which lead to a chemical
dependence of the half-life or decay constant: changes in
atomic electron binding energies which determine the
end-point energy, changes in the bound-state S-decay
rate, and changes in atomic electron screening of the S-
particle wave function [19,33]. In Ref. [19] it was shown
that the first two effects are dominant and individually re-
sult in fractional changes in the total decay constant of
order 0.1% between chemical states of '“Ru differing by
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one unit of charge. However, these effects tend to par-
tially cancel one another with the result that the net
chemical effects are somewhat less than 0.1%. Thus (ig-
noring exchange effects) the total decay constant of
106Ru?* was found to be larger than that of '%Ru!* by
approximately 0.03%. The change in decay constant of
106Ru due to chemical effects on the exchange process re-
ported here is thus considerably smaller than the change
due to these other chemical effects on the decay process.

V. CONCLUSION

A general expression has been derived to describe the
effect of exchange between bound and continuum elec-
trons on the B spectrum of a multielectron atom. If a
screened hydrogenic approximation is used to describe
the electron wave functions then the effect of exchange
due to a given electron subshell can be expressed in a sim-
ple analytical form. This shows that, for the dominant
atomic final states produced in the decay, exchange with
bound s electrons necessarily leads to an enhancement of
the B-decay rate. This result is the opposite of that re-
ported in a previous calculation which appears to contain
an error in the evaluation of the overlap integral between
bound and continuum electron wave functions.

The low-energy B decay of '“Ru has been used as an
example for the detailed comparison of exchange effects
calculated in different approximations. The results ob-
tained with a screened hydrogenic approximation, with
effective nuclear charges chosen to reproduce Hartree-
Fock mean orbital radii, agree well with those calculated
using a full Hartree-Fock approximation for the electron
wave functions. Relativistic effects on the exchange pro-
cess have been shown to be negligible for low- and
medium-Z decays but become significant for high-Z de-
cays. The simple analytic results obtained in the hydro-
genic approximation thus represent a convenient way of
calculating exchange effects in a general 8 spectrum of a
low- or medium-Z beta emitter.

Detailed calculations on the 8 spectra of '“Ru!* and
241py3* have shown that the inclusion of exchange leads
to a distortion of the Kurie plot, but this distortion is
very small except at very low electron energies, essential-
ly because the exchange effects are not strongly energy
dependent except at low electron energy. However, ex-
change effects on the phase-space integrals are consider-
ably more significant. For '%Ru, integrating over the S
spectrum shows that the inclusion of exchange leads to
an increase in the phase-space integral for the decay of

TABLE V. Mean radii of s orbitals in Ru?** and Rh**, calculated in the Hartree-Fock approxima-
tion, and associated effective nuclear charges (Z; and Z;) of hydrogenic s orbitals calculated according

to Egs. (28) and (29).

<r>Ru2+,n: (r>Rh3+,ns
n (a.u.) Z; (a.u.) Z;
1 0.034 624 43.322 0.033 845 44.320
2 0.150 600 39.841 0.146 992 40.819
3 0.412 020 32.765 0.400272 33.727
4 1.050732 22.841 1.005 635 23.866
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6.3%. For the first forbidden B decay of 2*!'Pu, the ex-
change effect is found to increase the phase-space integral
by 7.5%. These results suggest that if the absolute
theoretical § intensity of a low-energy B emitter (with
end-point energy less than approximately 100 keV) is re-
quired to an accuracy of 10% or better, then exchange
effects should be taken into consideration.

Results have also been presented for exchange effects
on the S spectra of '*C and 3°S, in which recently report-
ed spectral deviations have been interpreted as evidence
for a heavy neutrino of mass 17 keV. Exchange effects in
the region 17 keV from the end point would appear to
enhance the intensity of the spectrum by approximately
0.003% for *C and 0.05% for **S. The energy depen-
dence of the exchange process is relatively weak, howev-
er, with the result that the shape of the 8 spectrum is not
significantly affected at the level of significance relevant
for the determination of antineutrino mass effects.

|N+1>7,E’Ke;J',M'>E|N+1,?’;,yJ,‘}’:,,E,Ke,J;,J',M'>
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APPENDIX

Consider an overall (N +1)-electron final state
IN+1,7,E,k,,J',M') as defined in Sec. II. This can be
constructed by vector coupling the states of the s and p
electrons (denoted |y,,E,«,,J;,M,)) to the states of the
electrons with j > 1 (denoted |v},J,M, ) where M; is the
z component of the total angular momentum of these
electrons) according to

(A1)
(A2)

=AM =M M M) |y, I, M =M |y, E ke, J M)
v

s

where (J,J,,M'—M_.,M!|J',M') is a vector coupling coefficient [34]. The reduced-matrix elements in Eq. (2) arise
from writing the Wigner-Eckart theorem in the form used by Racah [35], thus being greater by a factor of (2J'+1)!/2
than the more conventional ones of [34]. After using the appropriate relation on p. 152 of [34] suitably modified to take
account of this difference, the reduced-matrix elements in Eq. (2) can be written in the form

(N+ L7, Bk, ' [B GIIN, v, T ) = AN+ 1,70,0,7 0 E sk I3 T 1B 61V as i d )
JJ g
0 J J

(A3)

J+I+J! , , PN
: o |V ard YV E kb JB Gl

=(—1) [(2J +1)(2J'+1)]'7?

(A4)

where G denotes any s or p subshell. The M quantum numbers on the overlaps {7},J|y,,J ) have been suppressed for
convenience since the overlap {y},J,M'|y,,J,M ) vanishes unless M'=M in which case the result is independent of M.
On simplifying the 6 symbol and noting that J'=J 1, one has

(N + L7, E, ko, JN|B BN, v, T Y =120+ 1) /2]y, I Iy o, Iy Bk JNB Gl - (A5)

This procedure has thus allowed the wave functions for the J > 1 electrons to be factored out of the reduced-matrix ele-

ments. Since the total angular momentum of the state y, is zero and the operator b E creates an electron with j =1,

the reduced-matrix element in Eq. (A5) is zero unless J;=1. It should be noted that this result has been obtained using
a different order of the angular-momentum coupling of the electrons from that used to derive Eq. (2.68) of [19]. Howev-

er, it is straightforward to show that Eq. (A5) is valid even if the order of coupling of the angular momenta is changed.
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