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Calculation of molecular magnetic properties within the Landau gauge
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A theoretical procedure for calculating magnetic susceptibility and nuclear magnetic shieldings in

molecules in the presence of a spatially uniform time-independent magnetic field, within the Landau

gauge for the vector potential, is described. Sum rules for charge and current conservation and gauge in-

variance have been derived. A computational scheme based on the random-phase approximation has

been used to calculate magnetic susceptibility and shielding tensors in the water molecule, adopting fair-

ly flexible Gaussian basis sets of large size. The results show that very accurate molecular wave func-

tions are needed to obtain paramagnetic contributions to the magnetic susceptibility of the same quality

as those obtainable within the Coulomb gauge for the vector potential. The theoretical nuclear magnetic

shielding tensors in the Landau gauge are characterized by the same quality as those in the Coulomb

gauge.

PACS number{s): 31.90.+s, 35.20.My, 75.20.Ck

I. INTRODUCTION

Theoretical determinations of magnetic properties of
molecules in the presence of a time-independent and spa-
tially uniform magnetic field are usually carried out
within the Coulomb prescription [1] for the gauge of vec-
tor potential A. Accordingly, the molecular Born-
Oppenheimer Hamiltonian is written in terms of a
divergenceless A (r) =

—,'B Xr. The magnetic field

B=V X A is invariant under a gauge transformation
[1,2],

Ac Ae+VA

where A(r) is an arbitrary function of the position coor-
dinate.

Under the change of gauge, the wave function P and
the Hamiltonian h of a particle with charge q undergo
corresponding gauge transformations [2]:

g~g'= g exp A
Pic

lq Lq
h ~h'=exp A h exp — A

Pic Ac

leaving invariant the Schrodinger equation h g=sP of the
particle.

Hence, molecular magnetic properties evaluated via
quantum-mechanical approaches must be gauge indepen-
dent, which is a fundamental physical requirement.
Whenever approximate methods are adopted, the degree
to which the constraints for gauge invariance are satisfied
provides a yardstick of accuracy for the computational
scheme and a fundamental test of quality for the molecu-
lar wave function. In particular, if the algebraic approxi-
mation is used, the essential features of a basis set, i.e.,

optimum size, flexibility, degree of completeness, and
ability to describe the magnetic perturbation, can be easi-
ly judged by analyzing appropriate sum rules [3,4].

In practice, the gauge transformations that have been
studied so far amount merely to a change of origin of the
coordinate system r'~r" =r'+ d, where d is an arbitrary
vector, i.e., to a limited class of functions A, such that

A =A +VA, A—=d A, A =A (r —r').
Much more general choices for the gauge function A

can, of course, be made. A particularly interesting gauge
transformation of vector potential has been devised by
Landau [1,2,5], leading to a quite simple form for the
Hamiltonian.

The present paper sets out to investigate the suitability
of the Landau gauge as an alternative choice with respect
to the customary Coulomb's gauge for calculating molec-
ular magnetic properties. An essential aim is also that of
obtaining a set of sum rules for gauge invariance of calcu-
lated magnetic properties which may serve as indepen-
dent a priori criteria for the accuracy of molecular wave
functions, i.e., when comparison with experimental data
is difficult.

To this end, a series of basis sets of Gaussian functions
have been considered for extended studies on the water
molecule. Perturbed coupled Hartree-Fock (CHF) and
random-phase-approximation (RPA) methods imple-
mented in efficient computer programs [6—8] have been
employed to calculate magnetic susceptibility and nuclear
magnetic shielding tensors.

II. MAGNETIC SUSCEPTIBILITY
WITHIN THE LANDAU GAUGE

Within the Coulomb gauge, the transverse vector po-
tential associated to spatially uniform, time-independent
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A". = A.'+V.x=a~r, , (3)

where a, P, and y are an even cyclic permutation of x, y,
and z. According to Eq. (3), also, the Landau vector po-
tential is divergenceless, i.e.,

V.A". =0 . (4)

The Hamiltonian within the Coulomb gauge of an elec-
tron, with mass m„charge —e, position r, and linear
momentum p,

'2

h = p +—A8 2 a a
e

magnetic field 8 is, using tensor notation [1],
CAa = 2EaPyBP1y

(sum over repeated Greek indices is implied throughout
this paper). The Landau gauge [1,2] is obtained introduc-
ing the gauge function

A= —,'(B„yz+8 zx+B,xy)

and the gauge transformation (leaving B~ =e
& V&A ~

in-

variant)

n p.
Ho= g 2me

N—e' g Z, /r, —R, /

2 n+' g fr, —r, [
2

jAi
~2 N N

+ g Q ZI+J IRr
I=1 J=1

JAI

(10)

with eigenfunctions
~j ). In the presence of the magnetic

field 8, the first- and second-order Hamiltonians within
the Landau gauge become

H = g(A p);,
meC I

2
HM

z B„gy; +B„gz; +8,2 g x,.
meC i=1 i=1 i=1

so that the total Hamiltonian is

cleus. The unperturbed Born-Oppenheimer Hamiltonian
of the electrons is

under the gauge transformation (3) becomes
Hg =Hp+H~ +—,'H~ (13)

hp+hg (6)
In the reference state ~a ) the diamagnetic contribution

to the magnetic susceptibility tensor [9] is

where

h
1

2m~ '
me

a'
(a [

'H~~)a ) =-
xx g82 2 C

2

meC

n

gyz a
i=1

(14)

h&'= A p = (8 zp„+B,xp~+B„yp, ),
m, c m, c

2 e (By+Bz+Bx ) (9)

Let us now consider a molecule with n electrons and N
nuclei. We denote by r;, p;, and /; =r, Xp, , the position
and linear and angular momentum of the ith electron and
by RI and ZIe, the position and charge of the Ith nu-

The other tensor components are obtained by cyclic
permutation of the indices x, y, and z. It is worthy of no-
tice that the off-diagonal components of the diamagnetic
contribution are vanishing for any arbitrary coordinate
system within the Landau gauge.

The paramagnetic contributions to the magnetic sus-
ceptibility tensor [9] are obtained from perturbation
theory. They are

e' 2 n n

Re a g(yp, ); j j g(yp, ), a
me C R j(Aa) ~ja i =1 i=1

8 2 n n

y~y= g Re a g(yp), . j j g(zp„); a
eC '5 j(Xa) ~ja i =1 i=1

(15)

with cyclic permutation of the indices for the other ten-
sor components. In these formulas %co.,=E.—E, is the
transition energy between the ~j) excited state and the
~a ) reference state. The paramagnetic contribution is a
symmetric tensor, as in the Coulomb gauge. Whereas the
diamagnetic term (14) is always diagonal, the paramag-

netic term (15) is diagonal only within its principal axis
system.

As a consequence of the fact that the diamagnetic con-
tribution (14) is diagonal, the off-diagonal components of
the susceptibility tensor are paramagnetic, and, quite re-
markably, they are origin independent within the Landau
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gauge. From Eq. (15) one can realize that paramagnetic
susceptibilities in the Landau gauge are simpler to calcu-
late than in the Coulomb's gauge when a Gaussian basis
set is used. In fact, operating with the canonical momen-
tum p= —iAV on a given Gaussian, i.e., differentiating,
gives rise to a linear combination of two Gaussians,
which is very easy to handle, every type of integral ap-
pearing in Eq. (15) being eventually reducible to a sum of
overlap integrals.

III. NUCLEAR MAGNETIC SHIELDING
IN THE LANDAU GAUGE

pIX
xx

2

Re (a fMI„ fj )
meC A j (~a) ja

n

X j g(yp);a
i=1

i.e., the diamagnetic contribution to the magnetic shield-
ing tensor of nucleus I in the Landau gauge is represented
by a second-rank asymmetric tensor with six nonvanish-
ing components in the absence of symmetry.

The paramagnetic contribution to the magnetic shield-
ing [10]of nucleus I is

p 1IA i a &aPy PIPEIy ~

e

where

(16)

Let us suppose that nucleus I carries an intrinsic mag-
netic dipole pI. The vector potential acting on electron i
due to such a nuclear dipole is

pIL
~xy

2

Re (a I~I"
Ij &

meC A j (Wa) ja

n

X j g(zp); a
i=1

(23)

Rr

fr, —R, f'
(17)

is the electric field of electron i on nucleus I. In the pres-
ence of the nuclear magnetic dipole two extra terms enter
Hamiltonian (13):

and

2

(A 'A ), ,
m, c

where the operator for the magnetic field of electrons on
nucleus I in the absence of an external magnetic field is

e „„1~Ia MIa& MIa ~apr g Elp piym, c
(20)

Within the Landau gauge for the vector potential, the
diamagnetic contribution to the nuclear magnetic shield-
ing [10]of nucleus I becomes

a2

aPI-BB

This contribution is an asymmetric tensor with nine in-
dependent components in the absence of molecular sym-
metry. Similarly to the case of magnetic susceptibility,
the off-diagonal components O.x, O.

yz and o,„are fully
paramagnetic and origin independent.

IV. CONNECTIONS
BETWEEN MAGNETIC PROPERTIES

IN LANDAU AND COULOMB GAUGES

~dF
ap

dIC
~ap

2 n

a g(r 5p rrp}; a—
4meC

e n

a g (r; EI 5 p r, aEIp) a —. (25)
2mec

(24}

Therefore, one can easily find, from Eqs. (14) and (21),

Within the Coulomb gauge the diamagnetic contribu-
tions to the magnetic susceptibility and to the nuclear
magnetic shielding tensors are [3,4]

e
a gyEI

me

a2odI~= (a fH„"' fa)
Bp BB

e n

a gyEs
mec

(21)

+d C' ] +dX

dIC —i
( de+ de

)+xx 2 +xx +yy

dIC 1 de
yx 2 yx

~ ~ ~

dIC~ deaa +aa

(26)

de de de
O~xy yz zx (22)

Other nonvanishing components are obtained by cyclic
permutation of the indices x, y, and z. It is remarkable
that, for any coordinate system,

g (xp };=iL, + —,
' g (xp +yp„), , L, = g I,, (27)

In order to obtain the relationships between paramag-
netic contributions within the different gauges, we con-
sider the identity
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and the commutator

Ho, g (xy),.
iA g (xp +yp ), .
7?l

(2g)

magnetic properties are invariant under the gauge trans-
formation (3), [see the last line of Eqs. (32) and (33)) only
if the basis set is complete.

For the off-diagonal matrix elements, one gets

n

a g (xp„), j = ,'(a)-L, j~&
i=1

ai,, a g(xy);j
i=1

(29)

V. ORIGIN DEPENDENCE
OF THE MAGNETIC PROPERTIES

IN THE LANDAU GAUGE

The theoretical tota1 magnetic properties must to be in-
dependent of the origin of the coordinate system [9,10],
i.e., the variation of the paramagnetic contributions
should exactly cancel the corresponding variation of the
diamagnetic contributions. An arbitrary shift d of origin

r'~r" =r'+d (34)
By cyclic permutation of x, y and z, the formulas for all
tensor components are obtained. From the definitions of
the paramagnetic contributions to the magnetic proper-
ties within the Coulomb gauge [3,4],

2

Re(&a~L j~&(j~Lp~a&),4' C '5 J(~ ) jg

can be thought of as a gauge transformation of the Lan-
dau vector potential

(35}

where

(30)
X =B d, x +B,d„y +B„d»z . (36)

pIC
2

m2C2

Accordingly, one finds for the magnetic susceptibility,

X y Re(&a~MI" ~j && j~Lg~a &),
) (~a) ~J~

and using formulas (29), one gets

X' =X' +-'(X' —3X'")

+pX pC ~ dC C
xy =+xy Xxy ++xy =+xy

pX~ dX ~ C pC~ dC
~ap ~+ap =&ap +ap=~ap++ap

oPIC —oPIP+ i
(

de dij'
)~xx Oxx 2 Oyy

~IX pIX pIC + dIC IC'
+xy =~xy ~xy ~xy =~xy

pIX pIC dIC
yX yX yX

(31)

(32)

(33}

2 n

=y,„(r')+ 2 a g (y; —y') a nd—
@leC i=1

2

y», ( r" ) =y»„(r' )
—

2 2 [ 2( T„P,),d»
??le C

(P„P,)—,d ],
(37)

y»» (r" ) =y»„(r') — [ ( T„,P„),d, +(T,P, ),d
Ale C

(P„P„),—d d, ],

and for the magnetic shielding of nucleus I,

o (r")=o" (r') — (a iE" ia &d
PleC

~pIX+ dIJ ~IJ ~IC ~pIC +~dIC+ap +ap =+ap +ap =+ap +ap

It may be useful to recall that in any calculation based
on the algebraic approximation, Eqs. (26) are identically
satisfied for any basis set. On the other hand, Eqs. (32)
and (33), connecting the paramagnetic contributions
within different gauges for the vector potential, are
obeyed if and only if the off-diagonal relations (29) are
satisfied, i.e., if the hypervirial theorem for the second
moment operator holds [11]. For example, Eqs. (32) and
(33) are valid for the exact ~a & and ~j & Hartree-Fock
eigenstates [11]. If a finite basis set is employed accord-
ing to the self-consistent-field scheme, the degree to
w»ch Eqs. (32) and (33) are fulfilled gives a measure of
accuracy of the calculation, i.e., information on the quali-
ty of the basis set and its degree of completeness with
respect to the operators involved. In particular, total

e

@le C

odi~(r")=o, ~di(r') + ', &a~ZI"„~a &d, ,
meC

2

Ale C

2

m c

where

P =gp, , Ei =QEJ

(38)
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and

Re(&. IP. IJ &&~IP,I.&),
1 2

j (Xa) j+

(39)

dipole velocity formalism. They also restate commuta-
tion formulas, conditions for current conservation, hyper-
virial theorems, etc. [3,4, 11].

VI. OUTLINES OF CALCULATION

(T„P ) I

1 2

j (+g) ja
r

n

XRe a g [(x —x')p ], j
i=1

x&j IP, Ia& (40)

(Ml~ Pp) i= „—X Re(&MIMI" jI&&j IPpI~ &)
1 2

j (Aa) ja

The conditions

(41)

X p(r" }=X p(r'),

o (r" ) =o (r')

for invariance of theoretical magnetic properties under a
coordinate transformation imply that

(P,Pp), =m, n5 p, (42)

(P„T„),=m, a g (y, —y') a
i=1

(P„T ),=(T„P,) i=0,
me(P,Mlp) i= e pr&~ I&lr Ia & .
e

(43)

(44)

These equations are directly obtained from (14), (15),
(21), (23), (37), and (38). They are also directly obtained
from the definitions (39)—(41) using simple off-diagonal
hypervirial relations [4]. Equations (42) and (44) are the
same as those obtained within the Coulomb gauge [3,4];
Eq. (43) is new. The hypervirial conditions under which
(42)—(44) are satisfied are similar to those analyzed before
in the case of Eqs. (32) and (33). In particular, they are
obeyed by exact Hartree-Fock wave functions [11].

The constraints for in variance are very general
quantum-mechanical relationships —for instance, Eq.
(42) is the Thomas-Reiche-Kuhn sum rule [12] within the

A series of Gaussian basis sets of increasing quality has
been examined in the present study. The main features of
these basis sets are available in Table I. Basis set I is ob-
tained from the 6-31G basis [13],polarized according to a
recipe previously discussed [6,7]. Basis set II, taken from
Ref. [14], is especially designed to calculate near-
Hartree-Fock dipole polarizabilities in the length gauge.
It has been examined here in view of the fact that, ac-
cording to Eqs. (15), a good representation of the dipole
length operator is also needed to get accurate Landau
paramagnetic susceptibilities.

Basis set III is constructed from the (lls7p/5s) sub-
strate from van Duijneveldt's tables [15], by adding two
sets of 3d functions with exponents 1.218 79 and 0.36102
on oxygen and one set of 2p functions with exponent 1.16
to hydrogen. Basis set IV adopts the (13sgp/8s) sub-
strate from the same tables [15];the exponents for the 3d
functions on oxygen are 2.51691, 0.75541, and 0.277 62;
the exponents for the 2p functions on hydrogen are 3.568
and 0.830.

In basis set V the same (13s8p/8s) substrate has been
augmented by two di6'use s functions on oxygen, with ex-
ponents 0.076666 and 0.030666, to improve the descrip-
tion of the tail regions of the molecular domain. These
functions are expected to yield significant contributions
to the transition matrix of the dipole length operator.
The 3d exponents for oxygen are 4.0, 1.218 87, 0.36102,
and 0.1; the 2p exponents for hydrogen are 1.5, 0.4, and
0.1. Basis set VI is the same as V, with one set of 4f on
oxygen, with exponent 0.41 and one set of 3d functions
on hydrogen, with exponent 0.235.

The overall quality of the Gaussian basis sets can be
judged from the self-consistent-field (SCF) energies re-
ported in Table I. Supplementary information can be ob-
tained from Ref. [8], where wave function V has been
used to calculate a number of properties. The second-
order magnetic tensors and sum rule (43) have been cal-
culated via the sYsMo suite of computer programs [6—8],
implementing an RPA section designed for the Landau
gauge.

From the results displayed in Table II, one can see that
the dipole-velocity Thomas-Reiche-Kuhn sum rule (42) is
satisfied almost exactly by basis sets V and VI, quite good

TABLE I. Specification of basis sets and SCF energy. GTO stands for Gaussian-type orbitals;
CGTO for contracted Gaussian-type orbitals.

Basis
set

Contraction scheme
GTO CGTO

Number of Number of
GTO CGTO's

SCF
energy (a.u.)

I
II
III
IV
V
VI

(13s13p4d /4s4p)
(10s6p4d /6s4p)
(11s7p2d /5s 1p)
( 13s8p 3d /Ss 2p)
(15s8p4d /10s 3p)

115s8p4d 1f/10s3p ld)

[4s4p 2d /2s 2p]
[Ss3p 2d /3s2p]
[6s5p2d /3s 1p]
[8s6p 3d /6s2p]
Uncontr acted
Uncontracted

108
88
60
83

101
123

44
44
45
68

101
123

—76.028 242 83
—76.054 459 28
—76.055 997 00
—76.064 54166
—76.065 283 39
—76.065 797 96
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TABLE II. Sum rules [coordinates in bohr: d(H, ) =(0,1.431 53,—0 985 27), d(O) =(0 0 0.124 14)] for charge and current conser-
vation and gauge invariance of magnetic susceptibility (a.u.).

Basis set

I
II
III
IV
V
VI

—0.226 13
—0.196 17
—0.187 56
—0.19322
—0.19695
—0.19693

(Tx Py) —1

0.060 73
—0.020 87

0.034 80
0.025 89
0.03041

—0.000 73

( Ty, P„)

0.061 99
—0.299 88

0.038 81
—0.027 79
—0.025 21
—0.164 10

(P„,P„)

8.765
7.828
9.113
9.731
9.862
9.942

(P,P )

9.064
8.192
9.356
9.883

10.003
9.990

(P„P,)

8.968
8.078
9.278
9.844
9.970
9.972

—'(P,P )

8.933
8.033
9.249
9.819
9.945
9.968

values having already been obtained via basis set IV. On
the other hand, constraint (43) is much more difficult to
fulfill allowing for the basis sets retained here. In the case
of basis sets I and III, the sign of the theoretical predic-
tions is wrong. Even the results yielded by very large
basis sets are far from being fully satisfactory. In fact,
whereas some of the conditions (T~,P&),=0 are
satisfied by symmetry, the conditions (T~,P„) i=(z)
and (T„,P ),=0 are fulfilled with good accuracy only
via basis set VI.

This means that sum rule (43) is a quite severe probe of
accuracy for molecular wave functions. In particular, as
can be realized from definition (40}, the basis set ought to
be suitable to represent both dipole length and velocity
operators at the same time, which may be difBcult to ob-
tain via ordinary Gaussian basis sets. In fact, it is worth
noticing that Sadlej basis sets [14], especially developed
to calculate near-Hartree-Fock electric polarizabilities,
i.e., to represent the position operator fairly accurately,
give the right sign, even if their extension is smaller than
that of basis sets IV-VI. From these findings one infers
that ad hoc basis sets are to be constructed by carefully
tailoring the exponents of the polarization functions in
order for sum rule (43) to be fulfilled to a reasonable ex-
tent. It seems to be mandatory to include 4f functions on
heavy atoms and 3d functions on hydrogen for a basis set
to guarantee accurate simultaneous representation of
length and velocity operators.

The sum rules for charge conservation and origin in-
dependence of the nuclear magnetic shieldings are report-
ed in Table III. The theoretical expectation value of the
electric fields at oxygen, (Eo), and hydrogen, (EH), is
little affected by basis-set quality, as can be achieved by
inspection of Table III, but, as expected, tensors
(MH, P), and (Mo, p), are much more dependent on
the number of polarization functions and their exponents.

We can see that sum rule (44} is poorly obeyed by basis
sets of lower quality and only basis sets V and VI provide
accurate results for oxygen. For hydrogen, basis set IV
already seems to be fairly adequate to guarantee a good
degree of origin independence. This is due to the fact
that the Gaussian sets we have taken into account are, in
general, more suitable to describe the electronic environ-
ment of hydrogen than of oxygen.

The diamagnetic contributions to the magnetic suscep-
tibility within the Landau prescription for the gauge of
the vector potential [see the first line of Eqs. (26)], are ex-
pected to be roughly two times larger than the corre-
sponding quantities in the Coulomb gauge. In fact, the
theoretical values for the latter, calculated via basis set V
[8], y„„= —183.360,

gyes
= —161.983, y„= —171.435,

show that, at least in the case of water, the diamagnetic
contribution is not highly anisotropic; therefore, for the
diamagnetic contributions within the Landau gauge, one
expects y„+=2g„"„,etc., which holds exactly for the
trace of the tensor [see the third line of Eqs. (26}]. From
the condition for gauge invariance of total magnetic sus-
ceptibility [see the last line of Eqs. (32)], paramagnetic
contributions within the Landau gauge much larger than
the corresponding ones within the Coulomb gauge are
also achieved [see also the first of Eqs. (32)]. According-
ly, total magnetic susceptibilities within the Landau
gauge are the difference between two large numbers.
Now, the diamagnetic contributions are merely expecta-
tion values over the unperturbed wave function and are
usually rather accurate even for relatively small basis
sets. The paramagnetic contributions, however, are
much more dependent on the quality of the basis sets. As
a consequence, for a given basis set, paramagnetic contri-
butions and total susceptibilities in the Landau gauge are
expected to be generally worse than those in the Coulomb
gauge.

TABLE III. Sum rules [coordinates in bohr: d(H)—:d(H, )=(0,1.43153,—0.98527)] for charge and current conservation and
gauge invariance of nuclear magnetic shieldings (a.u.).

Basis set (En~ ) (M i', P» L, (Mii„,Pz ), (EH, ) (Mn, Py ) (MH, P„) (Eo", ) (MQ Py ) (M(),P„)
I
II
III
IV
V
VI

—2.05700
—2.041 54
—2.026 60
—2.049 65
—2.055 40
—2.05625

1.785 87
1.469 12
1.757 43
1.954 16
1.990 72
2.018 33

—1.823 61
—1.50205
—1.767 37
—1.964 58
—2.003 13
—2.022 77

1.503 89
1.489 13
1.477 84
1.497 27
1.501 23
1.501 61

—1.344 89
—1.11462
—1.321 66
—1.457 23
—1.486 18
—1.485 49

1.31657
1.043 75
1.271 43
1.428 93
1.458 82
1.473 65

—0.376 42
—0.302 17
—0.346 72
—0.37020
—0.373 27
—0.373 55

0.181 33
—0.397 83

0.174 71
0.312 85
0.360 80
0.359 91

—0.11439
0.503 15

—0.423 40
—0.411 97
—0.377 88
—0.360 91
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Basis

TABLE IV. Magnetic susceptibility of H&O in ppm (a.u.).

set XxxP d P +n' Xzz
P

Xzz
d

Xav Xav
P

Xav

I
II
III
IV
V

YE"-

LZ'
Expt."

Expt. '

—385.542
—386.911
—384.676
—384.993
—385.625
—383.923
—183.360

171.721 —213.821 —342.992
203.893 —183.018 —349.330
196.095 —188.581 —346.038
209.567 —175.426 —346.937
212.509 —173.116 —347.816
Zi, 2.705 —264.20'8 —34K.69'2

26.473 —156.887 —161.983
—154+20
—150+22

91.741
116.139
114.960
123.191
127.674
252.0'

7.485

—251.251
—233.191
—231.078
—223.746
—220.142
—261.669'
—154.498
—136+18
—137+22

—292.124 70.199
—299.767 97.148
—297.519 97.574
—299.253 108.574
—300.115 113.603
—295.569 234.62/
—171.435 14.166

—221.925
—202.349
—199.945
—190.679
—186.512
—264. 2 13
—157.269
—151+22
—150+28

—340.219
—345.336
—342.744
—343.728
—344.519
—&44.46K
—172.259

111.221
139.150
136.210
147.111
151.262
219.2 25

16.042

—228.999
—206.186
—206.535
—196.617
—193.257
—263.&50
—156.217

'The conversion factor from ppm (a.u. ) per molecule to usual ppm (cgs) per mole is 8.923 887 8 X 10
Paramagnetic susceptibilities in the Coulomb gauge from the same basis set: g~„=26.318 ppm

g~ = 14.357 ppm (a.u.).
'Theoretical susceptibility in the Coulomb gauge from Ref. [8].
Experimental values from Ref. [16].

'Experimental values from Ref. [17].

(a.u. ), g~ =7.588 ppm (a.u. ),

TABLE V. Magnetic shielding at proton H& in ppm from basis sets I, II, III, IV, and V.

Component e" (c.m. ) o~ (c.m. ) e" (H, ) o~ (H)) o (c.m. ) o (Hi)

XX

zz

yz
zy
Av

her

zz

yz
zy
Av
Ao.

zz

yZ

zy
Av

ho

XX

yy
zz

yZ

Zy

Av
Ao.

XX

yy
zz

yZ

Zy

Av
ho.

—1.526
26.319
46.310
0.0

—29 431
23.701
33.914

—0.094
26.843
46.331
0.0

—28.822
24.36
32.956

1.022
27.389
46.326
0.0

—27.903
24.912
32.120

—0.610
26.537
46.434
0.0

—29.129
24.120
33.470

—0.994
26.314
46.417
0.0

—29.388
23.912
33.757

23.609
9.383

—10.752
—5.314
14.746
7.413

—27.248

18.950
8.606

—10.975
—5.808
15.396
5.527

—24.753

16.615
4.557

—9.176
—4.553

9.1

3.999
—19.762

21.426
8.107

—12.751
—7.023
13.268
5.594

—27.517

21.982
8.188

—12.755
—6.810

12.922
5.805

—27.840

Basis set I
155.281
105.224
46.310
0.0

78.493
102.271

—83.943
Basis set II

155.493
104.966
46.331
0.0

78.263
102.263

—83.898

Basis set III
155.542
104.935
46.326
0.0

78.447
102.267

—83.912

Basis set IV
155.663
105.080
46.434
0.0

78.428
102.392

—83.937

Basis set V
155.691
105.079
46.417
0.0

78.452
102.395

—83.968

—115.406
—59.693
—10.752
—5.314

—78.953
—61.950

76.798

—95.549
—46.169
—10.975
—5.808

15.396
—50.897

59.884

—118.085
—62.128
—9.176
—4.553

—83.084
—63.130

80.930

—128.292
—66.868
—12.751
—7.023

—89.252
—69.304

84.829

—130.719
—68.352
—12.755
—6.810

—91.525
—70.609

86.781

22.083
35.702
35.558

—5.314
—14.685

31.114
6.666

18.856
35.449
35.356

—5.808
—13.426

29.887
8.203

17.637
31.946
37.15

—4.553
—18.803

28.911
12.358

20.816
34.644
33.683

—7.023
—15.861

29.714
5.953

20.988
34.502
33.662

—6.810
—16.466

29.717
5.917

39.875
45.531
35.558

—5.314
—0.46
40.321

—7.145

59.944
58.797
35.356

—5.808
93.659
51.366

—24.014

37.457
42.807
37.15

—4.553
—4.637
39.137

—2.982

27.371
38.212
33.683

—7.023
—10.824

33.088
0.892

24.972
36.727
33.662

—6.810
—13.073

31.786
2.813
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TABLE VI. Magnetic shielding at proton H& in ppm from basis set VI and comparison with previ-
ous theoretical and experimental results.

Expt. '
Calc.

Component

zz

yz
zy
Av
60.
Av

Av
Lo.

cr (c.m. )

—1.004
26.353
46.326
0.0

—29.473
23.892
33.652

23.912
—1.801

u~ (c.m. )

22.245
10.582

—14.538
—8.457
18.433
6.096

—30.952

5.968
1.052

o "(Hi)

155.727
105.158
46.326
0.0

78.399
102.403

—84.116
102.4
102.395
—2.012

0~(H) )

—131.970
—66.754
—14.538
—8.457

—87.445
—71.087

84.824
—71.80

—70.526
1.978

0. (c.m. )

21.241
36.935
31.788

—8.457
—11.040

29.988
2.700

30.2
29.880

—0.749

g (H))

23.757
38.404
31.788

—8.457
—9.046
31.316
0.708

30.2
31.869

—0.034

'Experimental values from Refs. [18]and [19].
bGTO calculations from Ref. [8].

The results reported in Table IV largely confirm these
expectations. The diamagnetic contributions in the Lan-
dau gauge are fairly independent of basis-set quality and
are roughly two times larger than in the Coulomb gauge.
Landau paramagnetic susceptibilities are also much

larger, roughly one order of magnitude, and extremely
dependent on basis-set quality: It can be observed that,
even for the largest basis sets V and VI, the results have
not fully converged. As a matter of fact, total Landau
magnetic susceptibilities are usually less accurate than

TABLE VII. Magnetic shielding at oxygen 0 in ppm from basis sets I-V. Coordinates in bohr: d(O) =(0,0,0.124 14).

Component cr" (c.m. ) crJ' (c.m. ) 0 (0) u (c.m. ) o(O)

zz
Av

her

416.988
413.921
414.174
415.027
—1.280

—102.988
—35.596

—119.794
—86.126
—50.502

Basis set I
416.988
416.410
414.174
415.857
—2.525

—102.988
—36.353

—119.794
—86.378
—51.124

314.000
378.324
294.380
328.901

—51.782

314.000
380.057
294.380
329.478

—52.649

zz
Av

ha

417.395
416.351
413.749
415.832
—3.124

Basis set II
—108.118 417.395
—66.660 416.388
—92.637 413.749
—89.138 415.844
—5.248 —3.143

—108.118
—63.335
—92.637
—88.030
—6.910

309.277
349.691
321.112
326.694
—8.372

309.277
353.053
321.112
327.814

—10.053

XX

yy
zz
Av

her

417.253
414.226
414.331
415.270
—1.408

Basis set III
—118.678 417.253
—77.406 416.520

—104.161 414.331
—100.082 416.034

—6.119 —2.555

—118.678
—80.202

—104.161
—101.013

—4.721

298.575
336.820
310.170
315.188
—7.527

298.575
336.318
310.170
315.021
—7.276

zz
Av

ho

417.633
414.128
413.872
415.211
—2.008

Basis set IV
—112.190 417.633
—60.667 416.754

—107.163 413.872
—93.340 416.026
—20.734 —3.231

—112.190
—62.736

—107.163
—94.030
—19.700

305.443
353.458
306.709
321.871

—22.742

305.443
353.838
306.709
321.997

—22.931

zz
Av
ho.

417.104
412.736
415.739
415.193
—0.819

—109.943
—49.783

—112.965
—90.897
—33.102

Basis set V
417.104
415.204
415.739
416.016
—0.415

—109.943
—52.281

—112.965
—91.729
—31.853

307.161
362.953
302.774
324.296

—32.283

307.161
326.923
302.774
324.287

—32.268
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TABLE VIII. Magnetic shielding at oxygen 0 in ppm from basis set VI and comparison with previous theoretical and experimen-
tal results.

Expt. '
Calc.b

Component

yy
ZZ

Av
Ao.

Av

Av
ho.

o" (c.m. )

417.758
414.213
413.617
415.196
—2.368

415.193
0.820

cr~ (c.m. )

—112.054
—45.751

—106.286
—88.030
—27.384

—88.066
—23.569

o. (0)

417.758
416.679
413.617
416.018
—3.602

416.016
—0.414

—112.054
—48.138

—106.826
—88.826
—26.190

—88.878
—22.352

o (c.m. )

305.704
368.462
307.331
327.166

—29.752
334+15
327.127

—22.749

305.704
368.541
307.331
327.192

—29.792

327.138
—22.766

'Experimental values from Ref. [18].
GTO calculations from Ref. [8].

corresponding quantities in the Coulomb gauge [8],
which have virtually attained the Hartree-Fock limit and
are close to the experimental values reported for y and

xzz ~

On the other hand, as can be expected by inspection of
Eqs. (26) and (33), the accuracy of theoretical nuclear
magnetic shieldings furnished by a given basis set should
be comparable within Coulomb and Landau gauges, at
least in the case of diagonal components. In fact, from
the fourth line of Eq. (26), we observe that the diamagnet-
ic contributions should have comparable magnitude —in
particular, the trace of the tensor must be the same
within the different gauges [see the last line of Eqs. (26)].
Therefore, from the gauge invariance for total values [see
the last line of Eqs. (33)], one could predict that similar
quality could be obtained for the paramagnetic contribu-
tions in the Coulomb and Landau gauges. The results
from the present calculation do in fact support this hy-
pothesis. The paramagnetic contributions to the nuclear
magnetic shieldings of hydrogen and oxygen (see Tables
V —VIII) are continuously improving from basis set I to
VI. The theoretical predictions from basis sets V and VI
are very close to those obtained in our best previous cal-
culations of the same quantities in the Coulomb gauge
[8], using angular momentum and torque formalisms.
Accordingly, we believe that the present estimates are of
near-Hartree-Fock quality. Comparison with the avail-
able experimental average nuclear shieldings (see Tables
VI and VIII) also confirms the very good quality of the
calculated values.

VII. CONCLUSIONS

These findings are a piece of evidence showing that ac-
curate paramagnetic susceptibilities in the Landau gauge
are obtainable only by means of very large Gaussian basis

sets, including 4f polarization functions on heavy atoms
and 3d functions on hydrogen, carefully constructed for
this quantity. Together with sum rule (43), Landau
paramagnetic susceptibilities provide an extremely severe

test on the quality of molecular wave functions and their
ability to represent magnetic perturbations.

In ordinary calculations aimed at predicting accurate
magnetic susceptibilities, it is advisable to adopt the
Coulomb gauge for the vector potential. The opposite
may be true in the case of nuclear magnetic shielding
within the Landau gauge, owing to the advantages in
evaluating integrals over a Gaussian basis discussed in
Sec. II. As a matter of fact, nuclear magnetic shielding
calculated via Gaussian basis sets is characterized by
comparable accuracy within the Coulomb and Landau
gauges.
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