Calculation of molecular magnetic properties within the Landau gauge

M. B. Ferraro and T. E. Herr

Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Ciudad Universitaria, Pabellón I, Buenos Aires, Argentina

P. Lazzeretti, M. Malagoli, and R. Zanasi

Dipartimento di Chimica dell'Università degli Studi di Modena, Via Campi 183, 41100 Modena, Italy

(Received 8 October 1991)

A theoretical procedure for calculating magnetic susceptibility and nuclear magnetic shieldings in molecules in the presence of a spatially uniform time-independent magnetic field, within the Landau gauge for the vector potential, is described. Sum rules for charge and current conservation and gauge invariance have been derived. A computational scheme based on the random-phase approximation has been used to calculate magnetic susceptibility and shielding tensors in the water molecule, adopting fairly flexible Gaussian basis sets of large size. The results show that very accurate molecular wave functions are needed to obtain paramagnetic contributions to the magnetic susceptibility of the same quality as those obtainable within the Coulomb gauge for the vector potential. The theoretical nuclear magnetic shielding tensors in the Landau gauge are characterized by the same quality as those in the Coulomb gauge.

PACS number(s): 31.90.+s, 35.20.My, 75.20.Ck

I. INTRODUCTION

Theoretical determinations of magnetic properties of molecules in the presence of a time-independent and spatially uniform magnetic field are usually carried out within the Coulomb prescription [1] for the gauge of vector potential **A**. Accordingly, the molecular Born-Oppenheimer Hamiltonian is written in terms of a divergenceless $\mathbf{A}^{\mathcal{C}}(\mathbf{r}) = \frac{1}{2}\mathbf{B} \times \mathbf{r}$. The magnetic field $\mathbf{B} = \nabla \times \mathbf{A}^{\mathcal{C}}$ is invariant under a gauge transformation [1,2],

$$\mathbf{A}^{\mathscr{C}} \to \mathbf{A}^{\mathscr{C}} + \nabla \Lambda \; ,$$

where $\Lambda(\mathbf{r})$ is an arbitrary function of the position coordinate.

Under the change of gauge, the wave function ψ and the Hamiltonian h of a particle with charge q undergo corresponding gauge transformations [2]:

$$\psi \rightarrow \psi' = \psi \exp \left[\frac{iq}{\hbar c} \Lambda \right] ,$$

$$h \rightarrow h' = \exp \left[\frac{iq}{\hbar c} \Lambda \right] h \exp \left[-\frac{iq}{\hbar c} \Lambda \right] ,$$

leaving invariant the Schrödinger equation $h\psi = \varepsilon \psi$ of the particle.

Hence, molecular magnetic properties evaluated via quantum-mechanical approaches must be gauge independent, which is a fundamental physical requirement. Whenever approximate methods are adopted, the degree to which the constraints for gauge invariance are satisfied provides a yardstick of accuracy for the computational scheme and a fundamental test of quality for the molecular wave function. In particular, if the algebraic approximation is used, the essential features of a basis set, i.e., optimum size, flexibility, degree of completeness, and ability to describe the magnetic perturbation, can be easily judged by analyzing appropriate sum rules [3,4].

In practice, the gauge transformations that have been studied so far amount merely to a change of origin of the coordinate system $\mathbf{r'} \rightarrow \mathbf{r''} = \mathbf{r'} + \mathbf{d}$, where **d** is an arbitrary vector, i.e., to a limited class of functions Λ , such that

$$\mathbf{A}^{\mathcal{C}''} = \mathbf{A}^{\mathcal{C}'} + \nabla \Lambda, \quad \Lambda \equiv \mathbf{d} \cdot \mathbf{A}^{\mathcal{C}'}, \quad \mathbf{A}^{\mathcal{C}'} = \mathbf{A}^{\mathcal{C}}(\mathbf{r} - \mathbf{r}') \ .$$

Much more general choices for the gauge function Λ can, of course, be made. A particularly interesting gauge transformation of vector potential has been devised by Landau [1,2,5], leading to a quite simple form for the Hamiltonian.

The present paper sets out to investigate the suitability of the Landau gauge as an alternative choice with respect to the customary Coulomb's gauge for calculating molecular magnetic properties. An essential aim is also that of obtaining a set of sum rules for gauge invariance of calculated magnetic properties which may serve as independent *a priori* criteria for the accuracy of molecular wave functions, i.e., when comparison with experimental data is difficult.

To this end, a series of basis sets of Gaussian functions have been considered for extended studies on the water molecule. Perturbed coupled Hartree-Fock (CHF) and random-phase-approximation (RPA) methods implemented in efficient computer programs [6-8] have been employed to calculate magnetic susceptibility and nuclear magnetic shielding tensors.

II. MAGNETIC SUSCEPTIBILITY WITHIN THE LANDAU GAUGE

Within the Coulomb gauge, the transverse vector potential associated to spatially uniform, time-independent

<u>45</u> 6272

magnetic field B_{α} is, using tensor notation [1],

$$A_{\alpha}^{\mathcal{C}} = \frac{1}{2} \epsilon_{\alpha\beta\gamma} B_{\beta} r_{\gamma} \tag{1}$$

(sum over repeated Greek indices is implied throughout this paper). The Landau gauge [1,2] is obtained introducing the gauge function

$$\Lambda = \frac{1}{2} (B_x yz + B_y zx + B_z xy) \tag{2}$$

and the gauge transformation (leaving $B_{\alpha} = \epsilon_{\alpha\beta\gamma} \nabla_{\beta} A_{\gamma}^{L}$ invariant)

$$A_{\alpha}^{\mathcal{L}} = A_{\alpha}^{\mathcal{O}} + \nabla_{\alpha} \Lambda = B_{\beta} r_{\gamma} , \qquad (3)$$

where α , β , and γ are an even cyclic permutation of x, y, and z. According to Eq. (3), also, the Landau vector potential is divergenceless, i.e.,

$$\nabla_{\alpha} A_{\alpha}^{\mathcal{L}} = 0 . \tag{4}$$

The Hamiltonian within the Coulomb gauge of an electron, with mass m_e , charge -e, position **r**, and linear momentum **p**,

$$h_{\mathcal{C}} = \frac{1}{2m_{e}} \left[p_{\alpha} + \frac{e}{c} A_{\alpha}^{\mathcal{C}} \right]^{2}, \qquad (5)$$

under the gauge transformation (3) becomes

$$h_{\mathcal{C}} \to h_{\mathcal{L}} = h_0 + h_{\mathcal{L}}^{(1)} + \frac{1}{2} h_{\mathcal{L}}^{(2)} ,$$
 (6)

where

$$h_0 = \frac{1}{2m_e} p_\alpha^2 , \qquad (7)$$

$$h_{\mathcal{L}}^{(1)} = \frac{e}{m_e c} A_{\alpha}^{\mathcal{L}} p_{\alpha} = \frac{e}{m_e c} (B_y z p_x + B_z x p_y + B_x y p_z) , \qquad (8)$$

$$h_{\mathcal{L}}^{(2)} = \frac{e^2}{m_e c^2} A_{\alpha}^{\mathcal{L}} A_{\alpha}^{\mathcal{L}} = \frac{e^2}{m_e c^2} (B_x^2 y^2 + B_y^2 z^2 + B_z^2 x^2) .$$
(9)

Let us now consider a molecule with *n* electrons and *N* nuclei. We denote by \mathbf{r}_i , \mathbf{p}_i , and $l_i = \mathbf{r}_i \times \mathbf{p}_i$, the position and linear and angular momentum of the *i*th electron and by \mathbf{R}_I and $Z_I e$, the position and charge of the *I*th nu-

cleus. The unperturbed Born-Oppenheimer Hamiltonian of the electrons is

$$H_{0} = \sum_{i=1}^{n} \left[\frac{p_{i}^{2}}{2m_{e}} - e^{2} \sum_{I=1}^{N} Z_{I} |\mathbf{r}_{i} - \mathbf{R}_{I}|^{-1} + \frac{e^{2}}{2} \sum_{\substack{j=1\\j \neq i}}^{n} |\mathbf{r}_{i} - \mathbf{r}_{j}|^{-1} \right] + \frac{e^{2}}{2} \sum_{I=1}^{N} \sum_{\substack{J=1\\j \neq I}}^{N} Z_{I} Z_{J} |\mathbf{R}_{I} - \mathbf{R}_{J}|^{-1}, \qquad (10)$$

with eigenfunctions $|j\rangle$. In the presence of the magnetic field B_{α} , the first- and second-order Hamiltonians within the Landau gauge become

$$H_{\mathcal{L}}^{B} = \frac{e}{m_{e}c} \sum_{i=1}^{n} \left(A_{\alpha}^{\mathcal{L}} p_{\alpha} \right)_{i} , \qquad (11)$$

$$H_{\mathcal{L}}^{BB} = \frac{e^2}{m_e c^2} \left[B_x^2 \sum_{i=1}^n y_i^2 + B_y^2 \sum_{i=1}^n z_i^2 + B_z^2 \sum_{i=1}^n x_i^2 \right], \quad (12)$$

so that the total Hamiltonian is

$$H_{\mathcal{L}} = H_0 + H_{\mathcal{L}}^B + \frac{1}{2} H_{\mathcal{L}}^{BB} .$$
 (13)

In the reference state $|a\rangle$ the diamagnetic contribution to the magnetic susceptibility tensor [9] is

$$\chi_{xx}^{d\mathcal{L}} = -\frac{\partial^2}{\partial B_x^2} \langle a | \frac{1}{2} H_{\mathcal{L}}^{BB} | a \rangle = -\frac{e^2}{m_e c^2} \left\langle a \left| \sum_{i=1}^n y_i^2 \right| a \right\rangle,$$

$$\chi_{xy}^{d\mathcal{L}} = 0, \qquad (14)$$

· · · .

The other tensor components are obtained by cyclic permutation of the indices x, y, and z. It is worthy of notice that the off-diagonal components of the diamagnetic contribution are vanishing for any arbitrary coordinate system within the Landau gauge.

The paramagnetic contributions to the magnetic susceptibility tensor [9] are obtained from perturbation theory. They are

$$\chi_{xx}^{p\mathcal{L}} = \frac{e^2}{m_e^2 c^2 \hbar} \sum_{j(\neq a)} \frac{2}{\omega_{ja}} \operatorname{Re} \left[\left\langle a \left| \sum_{i=1}^n \left(yp_z \right)_i \right| j \right\rangle \left\langle j \left| \sum_{i=1}^n \left(yp_z \right)_i \right| a \right\rangle \right],$$

$$\chi_{xy}^{p\mathcal{L}} = \frac{e^2}{m_e^2 c^2 \hbar} \sum_{j(\neq a)} \frac{2}{\omega_{ja}} \operatorname{Re} \left[\left\langle a \left| \sum_{i=1}^n \left(yp_z \right)_i \right| j \right\rangle \left\langle j \left| \sum_{i=1}^n \left(zp_x \right)_i \right| a \right\rangle \right],$$
(15)

with cyclic permutation of the indices for the other tensor components. In these formulas $\hbar \omega_{ja} = E_j - E_a$ is the transition energy between the $|j\rangle$ excited state and the $|a\rangle$ reference state. The paramagnetic contribution is a symmetric tensor, as in the Coulomb gauge. Whereas the diamagnetic term (14) is always diagonal, the paramagnetic term (15) is diagonal only within its principal axis system.

As a consequence of the fact that the diamagnetic contribution (14) is diagonal, the off-diagonal components of the susceptibility tensor are paramagnetic, and, quite remarkably, they are origin independent within the Landau gauge. From Eq. (15) one can realize that paramagnetic susceptibilities in the Landau gauge are simpler to calculate than in the Coulomb's gauge when a Gaussian basis set is used. In fact, operating with the canonical momentum $\mathbf{p} = -i\hbar\nabla$ on a given Gaussian, i.e., differentiating, gives rise to a linear combination of two Gaussians, which is very easy to handle, every type of integral appearing in Eq. (15) being eventually reducible to a sum of overlap integrals.

III. NUCLEAR MAGNETIC SHIELDING IN THE LANDAU GAUGE

Let us suppose that nucleus I carries an intrinsic magnetic dipole μ_I . The vector potential acting on electron i due to such a nuclear dipole is

$$A_{i\alpha}^{\mu_{I}} = \frac{1}{e} \epsilon_{\alpha\beta\gamma} \mu_{I\beta} E_{I\gamma}^{i} , \qquad (16)$$

where

$$E_{I\gamma}^{i} = e \frac{r_{i\gamma} - R_{I\gamma}}{|\mathbf{r}_{i} - \mathbf{R}_{I}|^{3}}$$
(17)

is the electric field of electron i on nucleus I. In the presence of the nuclear magnetic dipole two extra terms enter Hamiltonian (13):

$$H^{\mu_I} = -\mu_{I\alpha} B^n_{I\alpha} \tag{18}$$

and

$$H_{\mathcal{L}}^{\mu_{I}B} = \frac{e^{2}}{m_{e}c^{2}} \sum_{i=1}^{n} (A_{\alpha}^{\mu_{I}} A_{\alpha}^{\mathcal{L}})_{i} , \qquad (19)$$

where the operator for the magnetic field of electrons on nucleus I in the absence of an external magnetic field is

$$B_{I\alpha}^{n} = -\frac{e}{m_{e}c}M_{I\alpha}^{n}, \quad M_{I\alpha}^{n} = \frac{1}{e}\epsilon_{\alpha\beta\gamma}\sum_{i=1}^{n}E_{I\beta}^{i}p_{i\gamma}. \quad (20)$$

Within the Landau gauge for the vector potential, the diamagnetic contribution to the nuclear magnetic shield-ing [10] of nucleus *I* becomes

$$\sigma_{xx}^{dI \perp} = \frac{\partial^2}{\partial \mu_{Ix} \partial B_x} \langle a | H_{\perp}^{\mu_I B} | a \rangle$$

$$= \frac{e}{m_e c^2} \left\langle a \left| \sum_{i=1}^n y_i E_{Iy}^i \right| a \right\rangle,$$

$$\sigma_{yx}^{dI \perp} = \frac{\partial^2}{\partial \mu_{Iy} \partial B_x} \langle a | H_{\perp}^{\mu_I B} | a \rangle$$

$$= -\frac{e}{m_e c^2} \left\langle a \left| \sum_{i=1}^n y_i E_{Ix}^i \right| a \right\rangle,$$
(21)

Other nonvanishing components are obtained by cyclic permutation of the indices x, y, and z. It is remarkable that, for any coordinate system,

$$\sigma_{xy}^{dI\mathcal{L}} = \sigma_{yz}^{dI\mathcal{L}} = \sigma_{zx}^{dI\mathcal{L}} = 0 , \qquad (22)$$

i.e., the diamagnetic contribution to the magnetic shielding tensor of nucleus I in the Landau gauge is represented by a second-rank asymmetric tensor with six nonvanishing components in the absence of symmetry.

The paramagnetic contribution to the magnetic shielding [10] of nucleus I is

٢

$$\sigma_{xx}^{pl\mathcal{L}} = -\frac{e^2}{m_e^2 c^2 \hbar} \sum_{j \ (\neq a)} \frac{2}{\omega_{ja}} \operatorname{Re} \left[\left\langle a \left| M_{Ix}^n \right| j \right\rangle \right. \\ \left. \times \left\langle j \left| \sum_{i=1}^n (yp_z)_i \right| a \right\rangle \right] , \\ \sigma_{xy}^{pl\mathcal{L}} = -\frac{e^2}{m_e^2 c^2 \hbar} \sum_{j \ (\neq a)} \frac{2}{\omega_{ja}} \operatorname{Re} \left[\left\langle a \left| M_{Ix}^n \right| j \right\rangle \right. \\ \left. \times \left\langle j \left| \sum_{i=1}^n (zp_x)_i \right| a \right\rangle \right] , \\ \left. \ldots \right.$$

$$(23)$$

This contribution is an asymmetric tensor with nine independent components in the absence of molecular symmetry. Similarly to the case of magnetic susceptibility, the off-diagonal components σ_{xy}^{IL} , σ_{yz}^{IL} , and σ_{zx}^{IL} are fully paramagnetic and origin independent.

IV. CONNECTIONS BETWEEN MAGNETIC PROPERTIES IN LANDAU AND COULOMB GAUGES

Within the Coulomb gauge the diamagnetic contributions to the magnetic susceptibility and to the nuclear magnetic shielding tensors are [3,4]

$$\chi^{d\mathcal{C}}_{\alpha\beta} = -\frac{e^2}{4m_e c^2} \left\langle a \left| \sum_{i=1}^n \left(r^2_{\gamma} \delta_{\alpha\beta} - r_{\alpha} r_{\beta} \right)_i \right| a \right\rangle, \qquad (24)$$

$$\sigma_{\alpha\beta}^{dI\mathcal{C}} = \frac{e}{2m_e c^2} \left\langle a \left| \sum_{i=1}^n \left(r_{i\gamma} E_{I\gamma}^i \delta_{\alpha\beta} - r_{i\alpha} E_{I\beta}^i \right) \right| a \right\rangle. \quad (25)$$

Therefore, one can easily find, from Eqs. (14) and (21),

$$\chi_{xx}^{d\mathcal{C}} = \frac{1}{4} (\chi_{xx}^{d\mathcal{L}} + \chi_{yy}^{d\mathcal{L}}) ,$$

$$\cdots ,$$

$$\chi_{\alpha\alpha}^{d\mathcal{C}} = \frac{1}{2} \chi_{\alpha\alpha}^{d\mathcal{L}} ,$$

$$\sigma_{xx}^{d\mathcal{C}} = \frac{1}{2} (\sigma_{xx}^{d\mathcal{I}\mathcal{L}} + \sigma_{yy}^{d\mathcal{I}\mathcal{L}}) ,$$

$$\sigma_{yx}^{d\mathcal{C}} = \frac{1}{2} \sigma_{yx}^{d\mathcal{I}\mathcal{L}} ,$$

$$\cdots ,$$

$$\sigma_{\alpha\alpha}^{d\mathcal{C}} = \sigma_{\alpha\alpha}^{d\mathcal{I}\mathcal{L}} .$$

(26)

In order to obtain the relationships between paramagnetic contributions within the different gauges, we consider the identity

$$\sum_{i=1}^{n} (xp_{y})_{i} = \frac{1}{2}L_{z} + \frac{1}{2}\sum_{i=1}^{n} (xp_{y} + yp_{x})_{i}, \quad L_{z} = \sum_{i=1}^{n} l_{iz}$$
(27)

and the commutator

$$\left| H_0, \sum_{i=1}^n (xy)_i \right| = -\frac{i\hbar}{m_e} \sum_{i=1}^n (xp_y + yp_x)_i .$$
 (28)

For the off-diagonal matrix elements, one gets

$$\left\langle a \left| \sum_{i=1}^{n} (xp_{y})_{i} \right| j \right\rangle = \frac{1}{2} \langle a | L_{z} | j \rangle - \frac{im_{e}}{2} \omega_{ja} \left\langle a \left| \sum_{i=1}^{n} (xy)_{i} \right| j \right\rangle,$$
(29)

By cyclic permutation of x, y and z, the formulas for all tensor components are obtained. From the definitions of the paramagnetic contributions to the magnetic properties within the Coulomb gauge [3,4],

$$\chi^{p\mathcal{C}}_{\alpha\beta} = \frac{e^2}{4m_e^2 c^2 \hbar} \sum_{j \ (\neq a)} \frac{2}{\omega_{ja}} \operatorname{Re}(\langle a | L_{\alpha} | j \rangle \langle j | L_{\beta} | a \rangle) , \qquad (30)$$

$$\sigma_{\alpha\beta}^{pI\ell} = -\frac{e^2}{2m_e^2 c^2 \hbar} \times \sum_{j \ (\neq a)} \frac{2}{\omega_{ja}} \operatorname{Re}(\langle a | M_{Ia}^n | j \rangle \langle j | L_\beta | a \rangle), \qquad (31)$$

and using formulas (29), one gets

$$\chi_{\alpha\beta}^{pL} + \chi_{\alpha\beta}^{dL} \equiv \chi_{\alpha\beta}^{L} \equiv \chi_{\alpha\beta}^{ee} \equiv \chi_{\alpha\beta}^{pe} + \chi_{\alpha\beta}^{de} ,$$

$$\sigma_{xx}^{pLL} = \sigma_{xx}^{pIC} + \frac{1}{2} (\sigma_{yy}^{dLL} - \sigma_{xx}^{dLL}) ,$$

$$\sigma_{xy}^{IL} \equiv \sigma_{xy}^{pIC} = \sigma_{yy}^{pIC} + \sigma_{xy}^{dIC} \equiv \sigma_{xy}^{IC} ,$$

$$\sigma_{yx}^{pLL} = \sigma_{yx}^{pIC} - \sigma_{yx}^{dIC} ,$$

$$\cdots ,$$

$$\sigma_{\alpha\beta}^{pIL} + \sigma_{\alpha\beta}^{dIL} \equiv \sigma_{\alpha\beta}^{IL} \equiv \sigma_{\alpha\beta}^{IE} \equiv \sigma_{\alpha\beta}^{pIC} + \sigma_{\alpha\beta}^{dIC} .$$
(33)

It may be useful to recall that in any calculation based on the algebraic approximation, Eqs. (26) are identically satisfied for any basis set. On the other hand, Eqs. (32) and (33), connecting the paramagnetic contributions within different gauges for the vector potential, are obeyed if and only if the off-diagonal relations (29) are satisfied, i.e., if the hypervirial theorem for the second moment operator holds [11]. For example, Eqs. (32) and (33) are valid for the exact $|a\rangle$ and $|j\rangle$ Hartree-Fock eigenstates [11]. If a finite basis set is employed according to the self-consistent-field scheme, the degree to which Eqs. (32) and (33) are fulfilled gives a measure of accuracy of the calculation, i.e., information on the quality of the basis set and its degree of completeness with respect to the operators involved. In particular, total magnetic properties are invariant under the gauge transformation (3), [see the last line of Eqs. (32) and (33)] only if the basis set is complete.

V. ORIGIN DEPENDENCE OF THE MAGNETIC PROPERTIES IN THE LANDAU GAUGE

The theoretical total magnetic properties must to be independent of the origin of the coordinate system [9,10], i.e., the variation of the paramagnetic contributions should exactly cancel the corresponding variation of the diamagnetic contributions. An arbitrary shift **d** of origin

$$\mathbf{r}' \rightarrow \mathbf{r}'' = \mathbf{r}' + \mathbf{d} \tag{34}$$

can be thought of as a gauge transformation of the Landau vector potential

$$A_{\alpha}^{\mathcal{L}'} \to A_{\alpha}^{\mathcal{L}''} = A_{\alpha}^{\mathcal{L}'} + \nabla_{\alpha} \mathcal{L} , \qquad (35)$$

where

$$\mathcal{L} = B_y d_z x + B_z d_x y + B_x d_y z \quad . \tag{36}$$

Accordingly, one finds for the magnetic susceptibility,

$$\chi_{xx}^{d\mathcal{L}}(\mathbf{r}^{\prime\prime}) = \chi_{xx}^{d\mathcal{L}}(\mathbf{r}^{\prime}) + \frac{e^{2}}{m_{e}c^{2}} \left[2 \left\langle a \left| \sum_{i=1}^{n} (y_{i} - y^{\prime}) \left| a \right\rangle d_{y} - n d_{y}^{2} \right| \right\}, \\ \chi_{xx}^{p\mathcal{L}}(\mathbf{r}^{\prime\prime}) = \chi_{xx}^{p\mathcal{L}}(\mathbf{r}^{\prime}) - \frac{e^{2}}{m_{e}^{2}c^{2}} \left[2(T_{x}, P_{z})_{-1}d_{y} - (P_{z}, P_{z})_{-1}d_{y}^{2} \right], \\ \chi_{xy}^{p\mathcal{L}}(\mathbf{r}^{\prime\prime}) = \chi_{xx}^{p\mathcal{L}}(\mathbf{r}^{\prime}) - \frac{e^{2}}{m_{e}^{2}c^{2}} \left[(T_{x}, P_{x})_{-1}d_{z} + (T_{y}, P_{z})_{-1}d_{y} - (P_{z}, P_{x})_{-1}d_{y} - (P_{z}, P_{x})_{-1}d_{y}d_{z} \right],$$
(37)

··· ,

and for the magnetic shielding of nucleus I,

$$\sigma_{xx}^{dI\mathcal{L}}(\mathbf{r}^{\prime\prime}) = \sigma_{xx}^{dI\mathcal{L}}(\mathbf{r}^{\prime}) - \frac{e}{m_e c^2} \langle a | E_{Iy}^n | a \rangle d_y ,$$

$$\sigma_{xx}^{pI\mathcal{L}}(\mathbf{r}^{\prime\prime}) = \sigma_{xx}^{pI\mathcal{L}}(\mathbf{r}^{\prime}) + \frac{e^2}{m_e^2 c^2} (M_{Ix}^n, P_z)_{-1} d_y ,$$

$$\sigma_{yx}^{dI\mathcal{L}}(\mathbf{r}^{\prime\prime}) = \sigma_{yx}^{dI\mathcal{L}}(\mathbf{r}^{\prime}) + \frac{e}{m_e c^2} \langle a | E_{Ix}^n | a \rangle d_y ,$$

$$\sigma_{yx}^{pI\mathcal{L}}(\mathbf{r}^{\prime\prime}) = \sigma_{yx}^{pI\mathcal{L}}(\mathbf{r}^{\prime}) + \frac{e^2}{m_e^2 c^2} (M_{Iy}^n, P_z)_{-1} d_y ,$$

$$\sigma_{xy}^{pI\mathcal{L}}(\mathbf{r}^{\prime\prime}) = \sigma_{xy}^{pI\mathcal{L}}(\mathbf{r}^{\prime}) + \frac{e^2}{m_e^2 c^2} (M_{Ix}^n, P_x)_{-1} d_z ,$$

(38)

where

··· ,

$$P_{\alpha} = \sum_{i=1}^{n} p_{i\alpha}, \quad E_{I\alpha}^{n} = \sum_{i=1}^{n} E_{I\alpha}^{i} ,$$

(39)

(41)

and

(

$$(P_{\alpha}, P_{\beta})_{-1} = \frac{1}{\hbar} \sum_{j \ (\neq a)} \frac{2}{\omega_{ja}} \operatorname{Re}(\langle a | P_{\alpha} | j \rangle \langle j | P_{\beta} | a \rangle) ,$$

$$T_{z}, P_{y})_{-1} = \frac{1}{\hbar} \sum_{j \ (\neq a)} \frac{2}{\omega_{ja}} \times \operatorname{Re}\left[\left\langle a \left| \sum_{i=1}^{n} \left[(x - x')p_{y} \right]_{i} \right| j \right\rangle \right. \right. \\ \left. \times \left\langle j \left| P_{y} \right| a \right\rangle \right], \qquad (40)$$

$$(M_{I\alpha}^n, P_{\beta})_{-1} = \frac{1}{\hbar} \sum_{j \ (\neq a)} \frac{2}{\omega_{ja}} \operatorname{Re}(\langle a | M_{I\alpha}^n | j \rangle \langle j | P_{\beta} | a \rangle) .$$

The conditions

$$\chi^{\mathcal{L}}_{\alpha\beta}(\mathbf{r}^{\prime\prime}) = \chi^{\mathcal{L}}_{\alpha\beta}(\mathbf{r}^{\prime}) ,$$

$$\sigma^{I\mathcal{L}}_{\alpha\beta}(\mathbf{r}^{\prime\prime}) = \sigma^{I\mathcal{L}}_{\alpha\beta}(\mathbf{r}^{\prime})$$

for invariance of theoretical magnetic properties under a coordinate transformation imply that

$$(P_{\alpha}, P_{\beta})_{-1} = m_e n \delta_{\alpha\beta} , \qquad (42)$$

$$(P_z, T_x)_{-1} = m_e \left\langle a \left| \sum_{i=1}^n (y_i - y') \right| a \right\rangle , \qquad (43)$$

$$(P_z, T_y)_{-1} = (T_x, P_x)_{-1} = 0$$
,

$$(P_{\alpha}, M_{I\beta}^{n})_{-1} = \frac{m_{e}}{e} \epsilon_{\alpha\beta\gamma} \langle a | E_{I\gamma}^{n} | a \rangle .$$
(44)

These equations are directly obtained from (14), (15), (21), (23), (37), and (38). They are also directly obtained from the definitions (39)-(41) using simple off-diagonal hypervirial relations [4]. Equations (42) and (44) are the same as those obtained within the Coulomb gauge [3,4]; Eq. (43) is new. The hypervirial conditions under which (42)-(44) are satisfied are similar to those analyzed before in the case of Eqs. (32) and (33). In particular, they are obeyed by exact Hartree-Fock wave functions [11].

The constraints for invariance are very general quantum-mechanical relationships—for instance, Eq. (42) is the Thomas-Reiche-Kuhn sum rule [12] within the dipole velocity formalism. They also restate commutation formulas, conditions for current conservation, hypervirial theorems, etc. [3,4,11].

VI. OUTLINES OF CALCULATION

A series of Gaussian basis sets of increasing quality has been examined in the present study. The main features of these basis sets are available in Table I. Basis set I is obtained from the 6-31G basis [13], *polarized* according to a recipe previously discussed [6,7]. Basis set II, taken from Ref. [14], is especially designed to calculate near-Hartree-Fock dipole polarizabilities in the length gauge. It has been examined here in view of the fact that, according to Eqs. (15), a good representation of the dipole length operator is also needed to get accurate Landau paramagnetic susceptibilities.

Basis set III is constructed from the (11s7p/5s) substrate from van Duijneveldt's tables [15], by adding two sets of 3d functions with exponents 1.218 79 and 0.361 02 on oxygen and one set of 2p functions with exponent 1.16 to hydrogen. Basis set IV adopts the (13s8p/8s) substrate from the same tables [15]; the exponents for the 3d functions on oxygen are 2.516 91, 0.755 41, and 0.277 62; the exponents for the 2p functions on hydrogen are 3.568 and 0.830.

In basis set V the same (13s 8p/8s) substrate has been augmented by two diffuse s functions on oxygen, with exponents 0.076 666 and 0.030 666, to improve the description of the tail regions of the molecular domain. These functions are expected to yield significant contributions to the transition matrix of the dipole length operator. The 3d exponents for oxygen are 4.0, 1.218 87, 0.361 02, and 0.1; the 2p exponents for hydrogen are 1.5, 0.4, and 0.1. Basis set VI is the same as V, with one set of 4f on oxygen, with exponent 0.41 and one set of 3d functions on hydrogen, with exponent 0.235.

The overall quality of the Gaussian basis sets can be judged from the self-consistent-field (SCF) energies reported in Table I. Supplementary information can be obtained from Ref. [8], where wave function V has been used to calculate a number of properties. The secondorder magnetic tensors and sum rule (43) have been calculated via the SYSMO suite of computer programs [6-8], implementing an RPA section designed for the Landau gauge.

From the results displayed in Table II, one can see that the dipole-velocity Thomas-Reiche-Kuhn sum rule (42) is satisfied almost exactly by basis sets V and VI, quite good

TABLE I. Specification of basis sets and SCF energy. GTO stands for Gaussian-type orbitals; CGTO for contracted Gaussian-type orbitals.

Basis	Contraction s	Number of	Number of	SCF	
set	GTO	CGTO	GTO	CGTO's	energy (a.u.)
I	(13s13p4d/4s4p)	[4s4p2d/2s2p]	108	44	- 76.028 242 83
II	(10s6p4d/6s4p)	[5s3p2d/3s2p]	88	44	- 76.054 459 28
III	(11s7p2d/5s1p)	[6s5p2d/3s1p]	60	45	- 76.055 997 00
IV	(13s8p3d/8s2p)	[8s6p3d/6s2p]	83	68	- 76.064 541 66
v	(15s8p4d/10s3p)	Uncontracted	101	101	-76.065 283 39
VI	(15s8p4d1f/10s3p1d)	Uncontracted	123	123	- 76.065 797 96

Basis set	(z)	$(T_x, P_y)_{-1}$	$(T_y, P_x)_{-1}$	$(P_x, P_x)_{-1}$	$(P_{y}, P_{y})_{-1}$	$(P_z, P_z)_{-1}$	$\frac{1}{3}(\boldsymbol{P}_{\alpha},\boldsymbol{P}_{\alpha})_{-1}$
I	-0.22613	0.060 73	0.061 99	8.765	9.064	8.968	8.933
п	-0.196 17	-0.020 87	-0.299 88	7.828	8.192	8.078	8.033
III	-0.187 56	0.034 80	0.038 81	9.113	9.356	9.278	9.249
IV	-0.193 22	0.025 89	-0.02779	9.731	9.883	9.844	9.819
v	-0.196 95	0.030 41	-0.025 21	9.862	10.003	9.970	9.945
VI	-0.196 93	-0.000 73	-0.164 10	9.942	9.990	9.972	9.968

TABLE II. Sum rules [coordinates in bohr: $d(H_1)=(0,1.43153,-0.98527)$, d(O)=(0,0,0.12414)] for charge and current conservation and gauge invariance of magnetic susceptibility (a.u.).

values having already been obtained via basis set IV. On the other hand, constraint (43) is much more difficult to fulfill allowing for the basis sets retained here. In the case of basis sets I and III, the sign of the theoretical predictions is wrong. Even the results yielded by very large basis sets are far from being fully satisfactory. In fact, whereas some of the conditions $(T_{\alpha}, P_{\beta})_{-1} = 0$ are satisfied by symmetry, the conditions $(T_y, P_x)_{-1} = \langle z \rangle$ and $(T_x, P_y)_{-1} = 0$ are fulfilled with good accuracy only via basis set VI.

This means that sum rule (43) is a quite severe probe of accuracy for molecular wave functions. In particular, as can be realized from definition (40), the basis set ought to be suitable to represent both dipole length and velocity operators at the same time, which may be difficult to obtain via ordinary Gaussian basis sets. In fact, it is worth noticing that Sadlej basis sets [14], especially developed to calculate near-Hartree-Fock electric polarizabilities, i.e., to represent the position operator fairly accurately, give the right sign, even if their extension is smaller than that of basis sets IV-VI. From these findings one infers that ad hoc basis sets are to be constructed by carefully tailoring the exponents of the polarization functions in order for sum rule (43) to be fulfilled to a reasonable extent. It seems to be mandatory to include 4f functions on heavy atoms and 3d functions on hydrogen for a basis set to guarantee accurate simultaneous representation of length and velocity operators.

The sum rules for charge conservation and origin independence of the nuclear magnetic shieldings are reported in Table III. The theoretical expectation value of the electric fields at oxygen, $\langle \mathbf{E}_{O}^{n} \rangle$, and hydrogen, $\langle \mathbf{E}_{H}^{n} \rangle$, is little affected by basis-set quality, as can be achieved by inspection of Table III, but, as expected, tensors $(\mathbf{M}_{H}^{n}, \mathbf{P})_{-1}$ and $(\mathbf{M}_{O}^{n}, \mathbf{P})_{-1}$ are much more dependent on the number of polarization functions and their exponents. We can see that sum rule (44) is poorly obeyed by basis sets of lower quality and only basis sets V and VI provide accurate results for oxygen. For hydrogen, basis set IV already seems to be fairly adequate to guarantee a good degree of origin independence. This is due to the fact that the Gaussian sets we have taken into account are, in general, more suitable to describe the electronic environment of hydrogen than of oxygen.

The diamagnetic contributions to the magnetic susceptibility within the Landau prescription for the gauge of the vector potential [see the first line of Eqs. (26)], are expected to be roughly two times larger than the corresponding quantities in the Coulomb gauge. In fact, the theoretical values for the latter, calculated via basis set V [8], $\chi^d_{xx} = -183.360$, $\chi^d_{yy} = -161.983$, $\chi^d_{zz} = -171.435$, show that, at least in the case of water, the diamagnetic contribution is not highly anisotropic; therefore, for the diamagnetic contributions within the Landau gauge, one expects $\chi_{xx}^{dL} \approx 2\chi_{xx}^{d\mathcal{O}}$, etc., which holds exactly for the trace of the tensor [see the third line of Eqs. (26)]. From the condition for gauge invariance of total magnetic susceptibility [see the last line of Eqs. (32)], paramagnetic contributions within the Landau gauge much larger than the corresponding ones within the Coulomb gauge are also achieved [see also the first of Eqs. (32)]. Accordingly, total magnetic susceptibilities within the Landau gauge are the difference between two large numbers. Now, the diamagnetic contributions are merely expectation values over the unperturbed wave function and are usually rather accurate even for relatively small basis sets. The paramagnetic contributions, however, are much more dependent on the quality of the basis sets. As a consequence, for a given basis set, paramagnetic contributions and total susceptibilities in the Landau gauge are expected to be generally worse than those in the Coulomb gauge.

TABLE III. Sum rules [coordinates in bohr: $d(H) \equiv d(H_1) = (0, 1.43153, -0.98527)$] for charge and current conservation and gauge invariance of nuclear magnetic shieldings (a.u.).

Basis set	$\langle E_{\rm Hy}^n \rangle$	$(\boldsymbol{M}_{\mathrm{Hz}}^{n},\boldsymbol{P}_{x})_{-1}$	$(\boldsymbol{M}_{\mathrm{H}x}^n, \boldsymbol{P}_z)_{-1}$	$\langle E_{\mathrm{Hz}}^n \rangle$	$\langle M_{\mathrm{H}x}^n, P_y \rangle_{-1}$	$(\boldsymbol{M}_{\mathrm{Hy}}^{n}, \boldsymbol{P}_{x})_{-1}$	$\langle E_{\text{Oz}}^n \rangle$	$(\boldsymbol{M}_{\mathrm{Ox}}^n, \boldsymbol{P}_y)_{-1}$	$(\boldsymbol{M}_{\mathrm{Oy}}^{n},\boldsymbol{P}_{x})_{-1}$
Ι	-2.057 00	1.785 87	-1.823 61	1.503 89	- 1.344 89	1.316 57	-0.376 42	0.181 33	-0.114 39
II	-2.041 54	1.469 12	-1.50205	1.489 13	-1.114 62	1.043 75	-0.302 17	-0.397 83	0.503 15
III	-2.026 60	1.757 43	-1.767 37	1.477 84	-1.321 66	1.271 43	-0.346 72	0.17471	-0.423 40
IV	-2.049 65	1.954 16	- 1.964 58	1.497 27	-1.457 23	1.428 93	-0.37020	0.312 85	-0.41197
v	-2.055 40	1.99072	-2.003 13	1.501 23	-1.486 18	1.458 82	-0.37327	0.360 80	-0.377 88
VI	-2.05625	2.018 33	-2.02277	1.501 61	- 1.485 49	1.473 65	-0.373 55	0.359 91	-0.36091

<u>45</u>

TABLE IV. Magnetic susceptibility of H₂O in ppm (a.u.).

Basis												
set	χ^d_{xx}	χ^p_{xx}	<i>X</i> _{xx}	χ^d_{yy}	χ^{p}_{yy}	χ_{yy}	χ^d_{zz}	χ^p_{zz}	χ _{zz}	$\chi^d_{ m av}$	$\chi^p_{ m av}$	χ_{av}
Ι	-385.542	171.721	-213.821	- 342.992	91.741	-251.251	-292.124	70.199	-221.925	-340.219	111.221	-228.999
п	-386.911	203.893	-183.018	-349.330	116.139	-233.191	-299.767	97.148	-202.349	-345.336	139.150	-206.186
III	-384.676	196.095	-188.581	-346.038	114.960	-231.078	-297.519	97.574	- 199.945	-342.744	136.210	-206.535
IV	-384.993	209.567	-175.426	- 346.937	123.191	-223.746	-299.253	108.574	-190.679	-343.728	147.111	-196.617
v	-385.625	212.509	-173.116	-347.816	127.674	-220.142	-300.115	113.603	-186.512	-344.519	151.262	-193.257
٧I ^{b.}	-385.913	221.705	- 164.208	- 348.691	181.022	- 167.669	-298.800	134.627	— 164.17 3	- 344.468	179.118	- 165.350
LZ ^c	-183.360	26.473	-156.887	-161.983	7.485	-154.498	-171.435	14.166	-157.269	-172.259	16.042	-156.217
Expt. ^d			$-154{\pm}20$			$-136{\pm}18$			-151 ± 22			
Expt. ^e			-150 ± 22			-137 ± 22			-150 ± 28			

^aThe conversion factor from ppm (a.u.) per molecule to usual ppm (cgs) per mole is $8.923 887 8 \times 10^{-2}$.

^bParamagnetic susceptibilities in the Coulomb gauge from the same basis set: $\chi^{p}_{xx} = 26.318$ ppm (a.u.), $\chi^{p}_{yy} = 7.588$ ppm (a.u.), $\chi_{zz}^{p} = 14.357 \text{ ppm (a.u.).}$ "Theoretical susceptibility in the Coulomb gauge from Ref. [8].

^dExperimental values from Ref. [16].

^eExperimental values from Ref. [17].

TABLE V. Magnetic shielding at proton H₁ in ppm from basis sets I, II, III, IV, and V.

Component	σ^d (c.m.)	σ^p (c.m.)	σ^{d} (\mathbf{H}_{1})	σ^p (H ₁)	σ (c.m.)	σ (H ₁)
			Basis set I			
xx	-1.526	23.609	155.281	-115.406	22.083	39.875
vv	26.319	9.383	105.224	- 59.693	35.702	45.531
ZZ	46.310	-10.752	46.310	-10.752	35.558	35.558
vz	0.0	-5.314	0.0	-5.314	-5.314	-5.314
zv	-29.431	14.746	78.493	-78.953	-14.685	-0.46
Âv	23.701	7.413	102.271	-61.950	31.114	40.321
$\Delta \sigma$	33.914	-27.248	-83.943	76.798	6.666	-7.145
			Basis set II			
xx	-0.094	18.950	155.493	-95.549	18.856	59.944
vv	26.843	8.606	104.966	-46.169	35.449	58.797
zz	46.331	- 10.975	46.331	-10.975	35.356	35.356
<i>yz</i>	0.0	-5.808	0.0	-5.808	-5.808	-5.808
zv	-28.822	15.396	78.263	15.396	-13.426	93.659
Âv	24.36	5.527	102.263	- 50.897	29.887	51.366
$\Delta \sigma$	32.956	-24.753	-83.898	59.884	8.203	-24.014
			Basis set III			
xx	1.022	16.615	155.542	-118.085	17.637	37.457
vv	27.389	4.557	104.935	-62.128	31.946	42.807
ZZ	46.326	-9.176	46.326	-9.176	37.15	37.15
vz	0.0	-4.553	0.0	-4.553	-4.553	-4.553
zy	-27.903	9.1	78.447	-83.084	-18.803	-4.637
Αυ	24.912	3.999	102.267	-63.130	28.911	39.137
$\Delta\sigma$	32.120	-19.762	-83.912	80.930	12.358	-2.982
			Basis set IV			
xx	-0.610	21.426	155.663	-128.292	20.816	27.371
уу	26.537	8.107	105.080	-66.868	34.644	38.212
ZZ	46.434	-12.751	46.434	-12.751	33.683	33.683
уz	0.0	-7.023	0.0	-7.023	-7.023	-7.023
zy	-29.129	13.268	78.428	- 89.252	-15.861	-10.824
Av	24.120	5.594	102.392	-69.304	29.714	33.088
$\Delta\sigma$	33.470	-27.517	-83.937	84.829	5.953	0.892
			Basis set V			
xx	-0.994	21.982	155.691	-130.719	20.988	24.972
уу	26.314	8.188	105.079	-68.352	34.502	36.727
ZZ	46.417	-12.755	46.417	- 12.755	33.662	33.662
yz	0.0	-6.810	0.0	-6.810	-6.810	-6.810
zy	-29.388	12.922	78.452	-91.525	- 16.466	-13.073
Av	23.912	5.805	102.395	- 70.609	29.717	31.786
$\Delta \sigma$	33.757	-27.840	- 83.968	86.781	5.917	2.813

	Component	σ^d (c.m.)	σ^p (c.m.)	$\sigma^{d}(\mathbf{H}_{1})$	$\sigma^{p}(\mathbf{H}_{1})$	σ (c.m.)	$\sigma(\mathbf{H}_1)$
	xx	-1.004	22.245	155.727	-131.970	21.241	23.757
	VV	26.353	10.582	105.158	-66.754	36.935	38.404
	ZZ	46.326	-14.538	46.326	-14.538	31.788	31.788
	vz	0.0	- 8.457	0.0		- 8.457	-8.457
	zy	-29.473	18.433	78.399	- 87.445	11.040	-9.046
	Âv	23.892	6.096	102.403	-71.087	29.988	31.316
	$\Delta \sigma$	33.652	- 30.952	-84.116	84.824	2.700	0.708
Expt. ^a	Av			102.4	-71.80	30.2	30.2
Calc. ^b	Av	23.912	5.968	102.395	- 70.526	29.880	31.869
	Δσ	-1.801	1.052	-2.012	1 978	-0 749	-0.034

TABLE VI. Magnetic shielding at proton H_1 in ppm from basis set VI and comparison with previous theoretical and experimental results.

^aExperimental values from Refs. [18] and [19]. ^bGTO calculations from Ref. [8].

The results reported in Table IV largely confirm these expectations. The diamagnetic contributions in the Landau gauge are fairly independent of basis-set quality and are roughly two times larger than in the Coulomb gauge. Landau paramagnetic susceptibilities are also much larger, roughly one order of magnitude, and extremely dependent on basis-set quality: It can be observed that, even for the largest basis sets V and VI, the results have not fully converged. As a matter of fact, total Landau magnetic susceptibilities are usually less accurate than

TABLE VII. Magnetic shielding at oxygen O in ppm from basis sets I-V. Coordinates in bohr: d(O) = (0,0,0.12414).

Component	σ^{d} (c.m.)	σ^p (c.m.)	$\sigma^{d}(O)$	$\sigma^{p}(\mathbf{O})$	σ (c.m.)	<i>σ</i> (O)
		Bas	is set I			
xx	416.988	-102.988	416.988	-102.988	314.000	314.000
עע	413.921	-35.596	416.410	-36.353	378.324	380.057
ZZ	414.174	-119.794	414.174	-119.794	294.380	294.380
Av	415.027	-86.126	415.857	- 86.378	328.901	329.478
$\Delta\sigma$	-1.280	- 50.502	-2.525	-51.124	-51.782	- 52.649
		Basi	is set II			
xx	417.395	-108.118	417.395	-108.118	309.277	309.277
VV	416.351	-66.660	416.388	-63.335	349.691	353.053
zz	413.749	-92.637	413.749	-92.637	321.112	321.112
Αυ	415.832	- 89.138	415.844	-88.030	326.694	327.814
$\Delta\sigma$	-3.124	-5.248	-3.143	-6.910	-8.372	- 10.053
		Basi	s set III			
xx	417.253	-118.678	417.253	-118.678	298.575	298.575
vv	414.226	-77.406	416.520	- 80.202	336.820	336.318
ZZ	414.331	-104.161	414.331	-104.161	310.170	310.170
Av	415.270	-100.082	416.034	-101.013	315.188	315.021
$\Delta\sigma$	-1.408	-6.119	-2.555	-4.721	-7.527	-7.276
		Basi	s set IV			
xx	417.633	-112.190	417.633	-112.190	305.443	305.443
уу	414.128	-60.667	416.754	-62.736	353.458	353.838
ZZ	413.872	-107.163	413.872	-107.163	306.709	306.709
Αυ	415.211	-93.340	416.026	-94.030	321.871	321.997
$\Delta\sigma$	-2.008	-20.734	-3.231	-19.700	22.742	-22.931
		Bas	is set V			
xx	417.104	- 109.943	417.104	-109.943	307.161	307.161
уу	412.736	- 49.783	415.204	- 52.281	362.953	326.923
ZZ	415.739	-112.965	415.739	-112.965	302.774	302.774
Av	415.193	-90.897	416.016	-91.729	324.296	324.287
Δσ	-0.819	-33.102	-0.415	-31.853	-32.283	-32.268

	Component	σ^d (c.m.)	σ^p (c.m.)	$\sigma^{d}(\mathbf{O})$	$\sigma^{p}(\mathbf{O})$	σ (c.m.)	$\sigma(\mathbf{O})$
	xx	417.758	-112.054	417.758	-112.054	305.704	305.704
	vv	414.213	-45.751	416.679	-48.138	368.462	368.541
	ZZ	413.617	-106.286	413.617	-106.826	307.331	307.331
	Av	415.196	-88.030	416.018	-88.826	327.166	327.192
	$\Delta \sigma$	-2.368	-27.384	-3.602	-26.190	-29.752	-29.792
Expt. ^a	Av					334±15	
Calc. ^b	Av	415.193	-88.066	416.016	-88.878	327.127	327.138
	$\Delta\sigma$	0.820	-23.569	-0.414	-22.352	-22.749	-22.766

TABLE VIII. Magnetic shielding at oxygen O in ppm from basis set VI and comparison with previous theoretical and experimental results.

^aExperimental values from Ref. [18].

^bGTO calculations from Ref. [8].

corresponding quantities in the Coulomb gauge [8], which have virtually attained the Hartree-Fock limit and are close to the experimental values reported for χ_{xx} and χ_{zz} .

On the other hand, as can be expected by inspection of Eqs. (26) and (33), the accuracy of theoretical nuclear magnetic shieldings furnished by a given basis set should be comparable within Coulomb and Landau gauges, at least in the case of diagonal components. In fact, from the fourth line of Eq. (26), we observe that the diamagnetic contributions should have comparable magnitude-in particular, the trace of the tensor must be the same within the different gauges [see the last line of Eqs. (26)]. Therefore, from the gauge invariance for total values [see the last line of Eqs. (33)], one could predict that similar quality could be obtained for the paramagnetic contributions in the Coulomb and Landau gauges. The results from the present calculation do in fact support this hypothesis. The paramagnetic contributions to the nuclear magnetic shieldings of hydrogen and oxygen (see Tables V-VIII) are continuously improving from basis set I to VI. The theoretical predictions from basis sets V and VI are very close to those obtained in our best previous calculations of the same quantities in the Coulomb gauge [8], using angular momentum and torque formalisms. Accordingly, we believe that the present estimates are of near-Hartree-Fock quality. Comparison with the available experimental average nuclear shieldings (see Tables VI and VIII) also confirms the very good quality of the calculated values.

VII. CONCLUSIONS

These findings are a piece of evidence showing that accurate paramagnetic susceptibilities in the Landau gauge are obtainable only by means of very large Gaussian basis sets, including 4f polarization functions on heavy atoms and 3d functions on hydrogen, carefully constructed for this quantity. Together with sum rule (43), Landau paramagnetic susceptibilities provide an extremely severe test on the quality of molecular wave functions and their ability to represent magnetic perturbations.

In ordinary calculations aimed at predicting accurate magnetic susceptibilities, it is advisable to adopt the Coulomb gauge for the vector potential. The opposite may be true in the case of nuclear magnetic shielding within the Landau gauge, owing to the advantages in evaluating integrals over a Gaussian basis discussed in Sec. II. As a matter of fact, nuclear magnetic shielding calculated via Gaussian basis sets is characterized by comparable accuracy within the Coulomb and Landau gauges.

ACKNOWLEDGMENTS

Generous allocation of computer resources provided by SEYCAD, Armada Argentina, and the CICAIA of the University of Modena and financial support for the present research from the Argentinian CONICET, the Italian CNR (Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo), and the Italian Ministry of Public Education are gratefully acknowledged.

- L. Landau and E. Lifshitz, *Théorie de Champs*, 3rd ed. (Mir, Moscow, 1970).
- [2] L. Landau and E. Lifshitz, Mecanique Quantique (Mir, Moscow, 1966).
- [3] P. Lazzeretti and R. Zanasi, Phys. Rev. A 32, 2607 (1985).
- [4] P. Lazzeretti, Adv. Chem. Phys. 75, 507 (1987).
- [5] F. Bloch, in W. Heisenberg und die Physik unserer Zeit (Vieweg, Braunschweig, 1961).
- [6] P. Lazzeretti and R. Zanasi, J. Chem. Phys. 84, 3916 (1986).
- [7] P. Lazzeretti and R. Zanasi, J. Chem. Phys. 85, 5932 (1986).

- [8] P. Lazzeretti and R. Zanasi, Phys. Rev. A 33, 3727 (1986).
- [9] J. H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities (Oxford University Press, New York, 1932).
- [10] J. A. Pople, W. G. Schneider, and H. T. Bernstein, High Resolution Nuclear Magnetic Resonance Spectroscopy (McGraw-Hill, New York, 1959).
- [11] S. T. Epstein, *The Variation Method in Quantum Chemistry* (Academic, New York, 1974).
- [12] H. A. Bethe and E. W. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer-Verlag, Berlin, 1957).
- [13] W. J. Hehre, L. Radom, P. von R. Schleyer, and J. A. Po-

ple, *Ab Initio Molecular Orbital Theory* (Wiley, New York, 1986).

- [14] A. J. Sadlej, Collect. Czech. Chem. Commun. 53, 1995 (1988).
- [15] F. B. van Duijneveldt, IBM Res. Rep. RJ 945 (1971).
- [16] H. Taft and B. P. Dayley, J. Chem. Phys. 51, 1002 (1969).
- [17] W. H. Flygare, Chem. Rev. 74, 653 (1974).
- [18] C. J. Jameson, in Nuclear Magnetic Resonance, Vol. 2 of Specialist Periodical Reports (Royal Chemical Society, London, 1983).
- [19] P. Lazzeretti and R. Zanasi, J. Chem. Phys. 68, 1523 (1978).