Doubly excited ${}^{3}P^{e}$ resonant states in Ps⁻

Y. K. Ho

Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803-4001

A. K. Bhatia

Laboratory for Astronomy and Solar Physics, NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771

(Received 9 December 1991)

Doubly excited ${}^{3}P^{e}$ resonant states in Ps⁻ are calculated using a method of complex-coordinate rotation. Resonance parameters (both resonance positions and widths) for doubly excited states associated with the n = 2, 3, 4, 5, and 6 thresholds of positronium atoms are evaluated using elaborate Hylleraastype functions. In addition to ten Feshbach-type resonances lying below various Ps thresholds, we have identified three shape resonances, one each lying above the n = 2, 4, and 6 Ps thresholds. It is further noted that the energy levels for the present ${}^{3}P^{e}$ states are nearly degenerate with respect to the previously calculated ${}^{1}P^{o}$ states. Such a symmetric character suggests that the highly and doubly excited Ps⁻, similar to its counterpart in H⁻, would exhibit rovibrational behaviors analogous to those of XYX triatomic molecules.

PACS number(s): 36.10.Dr, 31.20.Di, 32.80.Dz, 34.80.Bm

I. INTRODUCTION

The positronium ion, Ps-, is a three-particle system that consists of two electrons and a positron interacting through Coulomb forces. There have been continuous investigations of various properties of this system [1]. The studies are due in part to the observation of such a species in the laboratory by Mills [2] and the subsequent measurement of its annihilation rate [3]. Furthermore, Ps⁻ is a member of a family of three-body systems, and the recent theoretical studies of such systems include the investigations of the underlying symmetries of the Hamiltonian. In H^- and He, for example, it was revealed that high-lying doubly excited H⁻ and He would behave very much like a linear XYX triatomic molecule. The energy levels for the doubly excited two-electron systems reveal molecular rotational and vibrational characters [4]. In order to have a better understanding of the underlying symmetry of the Hamiltonian and the molecular characters of the $e^-e^+e^-$ system, calculations of high-lying doubly excited states for various partial waves and parities are needed. In previous investigations, resonances for ${}^{1,3}S^e$ [5] and ${}^{1,3}P^o$ states have been calculated up to the Ps (n=6) threshold [6]. For D-wave resonances, only one resonance below the Ps (n=2) threshold was calculated [7]. In the present work we present a calculation of ${}^{3}P^{e}$ resonances up to the Ps (n=6) threshold. Hylleraas- type wave functions are used in this work. Investigations of a ${}^{3}P^{e}$ bound state in Ps⁻ were carried out by Mills [8] and by Bhatia and Drachman [9]. It was found that in contrast to the H⁻ case, there is no ${}^{3}P^{e}$ bound state (below the n = 2 threshold) in Ps⁻. By analyzing the adiabatic hyperspherical potential curves, Botero [7] indicated that a shape resonance lying above the n = 2 Ps threshold would exist. In our present work we also carry out an investigation of such a shape resonance. Resonance parameters for position and width are reported.

II. CALCULATIONS

In this work the method of complex-coordinate rotation [10] is used to calculate resonance parameters. The advantage of using this method is that resonance parameters can be obtained by using bound-state-type wave functions and no asymptotic wave functions are necessarily used. Such an advantage becomes apparent when we are calculating a resonance in which many channels are open. The calculation of the resonance position and total width for a many-channel resonance is as straightforward as that for an elastic resonance. Elaborate Hylleraas-type wave functions [9,11] are used in the present work,

$$\Psi(r_{1}, r_{2}) = (\sin\theta_{12})r_{1}r_{2} \\ \times \sum_{l,m,n} C_{lmn} [r_{1}^{1}r_{2}^{m}e^{-(\alpha r_{1} + \beta r_{2})} \\ + (1 \leftrightarrow 2)]r_{12}^{n}\mathcal{D}_{1}^{0+}, \qquad (1)$$

where the \mathcal{D} functions involve the symmetric Euler angles describing the orientation in space of the coordinate vectors and $l+m+n \leq \omega$, with ω a positive integer or zero. The Hamiltonian is given by

$$H = -2\nabla_1^2 - 2\nabla_2^2 - 2\nabla_1 \cdot \nabla_2 - 2/r_1 - 2/r_2 + 2/r_{12}$$

= T + V, (2)

where r_1 and r_2 are the coordinates of electrons with respect to the positron, and $r_{12} = |\overline{r_1} - \overline{r_2}|$.

In the complex-rotation method, the radial coordinates are rotated through an angle θ

$$r \rightarrow r \exp(i\theta)$$
 (3)

45 6268

© 1992 The American Physical Society

and the Hamiltonian can be written as

$$H = T \exp(-2i\theta) + V \exp(-i\theta) .$$
(4)

The eigenvalues are calculated by diagonalizing the expression

$$E = \langle \Phi H \Phi \rangle / \langle \Phi \Phi \rangle , \qquad (5)$$

wherein the wave function is real. Since the rotated Hamiltonian is complex, complex eigenvalues are obtained. The resonance parameters are determined by finding a root which is stable with respect to the variation of the nonlinear parameters α , β , and the angle θ , provided it is greater than $\arg(E_{res})/2$. The complex resonance energy is given by

$$E_{\rm res} = E_r - i\Gamma/2 \ . \tag{6}$$

The theoretical aspects of the complex rotation method have been discussed in previous publications [10] and will not be repeated here. Instead we only briefly describe the computational procedures. First, we use the stabilization method to obtain optimized wave functions with which complex-coordinate calculations will then be carried out. The use of the stabilization method as a first step for the method of complex-coordinate rotation has been demonstrated in a review [10]. Once the stabilized wave functions for a particular resonance are obtained, a staightforward complex rotation method is applied, and the socalled "rotational paths" are examined after the complex transformation $r \rightarrow r \exp(i\theta)$ is made. We then determine the optimized θ by examining the resonance complex eigenvalue when it exhibits the most stabilized characters. This is usually done by employing smaller basis expansion sets. For example, for the $n = 3 {}^{3}P^{e}(1)$ resonance, it is found that when $\alpha = 0.22$ and $\theta = 0.3$ radians approximately, the resonance complex eigenvalue would exhibit the most stabilized character, i.e., $\partial |E| / \partial \theta \approx \text{minimum}$. Once the optimized value for θ is obtained, we can examine the convergence behaviors for the resonance parameters for different expansion lengths N.

III. RESULTS AND DISCUSSIONS

Table I shows the results when different expansion lengths are used for the n = 3 ${}^{3}P^{e}(1)$ state. We estimate

TABLE I. Doubly excited ${}^{3}P^{e}$ states of Ps⁻ below the Ps (n=3) threshold $(\alpha=\beta=0.22, \theta=0.30)$.

	5) threshold (a	p 0.22, 0 0.50).	
ω	N	<i>E</i> (R y)	Γ/2 (Ry)
		${}^{3}P^{e}(1)$	
14	444	-0.063 261 20	0.000 179 15
15	525	-0.06326142	0.000 179 18
16	615	-0.06326138	0.000 179 04
17	715	-0.063 261 31	0.000 179 09
18	825	-0.063 261 35	0.000 179 12
		${}^{3}P^{e}(2)$	
14	444	-0.05621088	0.000 031 16
15	525	-0.05621058	0.000 028 77
16	615	-0.05621002	0.000 027 90
17	715	-0.056 209 77	0.000 027 51
18	825	-0.056 209 48	0.000 027 37

TABLE II. Doubly excited ${}^{3}P^{e}$ states of Ps⁻ associated with the Ps (n = 4) threshold $(\alpha = \beta = 0.22, \theta = 0.3)$.

ω	N	<i>E</i> (R y)	Γ/2 (Ry)
		${}^{3}P^{e}(1)$	
14	444	-0.0377892224	0.000 015 070 2
15	525	-0.0377892429	0.000 015 066 7
16	615	-0.037 789 242 1	0.000 015 056 7
17	715	-0.0377892351	0.000 015 056 9
18	825	-0.0377892359	0.000 015 062 0
		${}^{3}P^{e}(2)$	
14	444	-0.033 088 136	8.481×10 ⁻⁶
15	525	-0.033087705	8.809×10^{-6}
16	615	-0.033087607	8.943×10 ⁻⁶
17	715	-0.033087573	8.985×10^{-6}
18	825	-0.033087579	9.004×10^{-6}
		Shape resonance	
14	444	-0.0309564	0.000 032 0
15	525	-0.030 960 8	0.000 030 7
16	615	-0.030 964 8	0.000 030 5
17	715	-0.030 968 4	0.000 031 0
18	825	-0.030 971 5	0.000 032 2

the resonance position as $E_r = -0.0632613(1)$ Ry, and $\Gamma/2=0.0001791(1)$ Ry, with the number(s) inside the parentheses representing the uncertainty in the last digit(s) quoted. It should also be mentioned that the present calculation is not a bound calculation. The error estimates for the resonance parameters are based on the stabilized behaviors of such parameters.

Table I also shows the similar convergence behavior for the $n = 3 {}^{3}P^{e}(2)$ resonance at the optimized nonlinear parameters $\alpha = \beta = 0.22$ and $\theta = 0.3$. We estimate that the resonance parameters for the $n = 3 {}^{3}P^{e}(2)$ state are

TABLE III. Doubly excited ${}^{3}P^{e}$ states of Ps⁻ associated with the Ps (n = 5) threshold $(\alpha = \beta = 0.22, \theta = 0.3)$.

ω	N	E (Ry)	$\Gamma/2$ (Ry)
		${}^{3}P^{e}(1)$	
14	444	-0.024 931 815	0.000 025 068
15	525	-0.024 931 645	0.000 025 536
16	615	-0.024 931 667	0.000 025 463
17	715	-0.024 931 665	0.000 025 479
18	825	-0.024 931 660	0.000 025 473
		${}^{3}P^{e}(2)$	
14	444	-0.02212137	0.000 024 6
15	525	-0.022 096 86	0.000 021 4
16	615	-0.022 096 94	0.000 025 3
17	715	-0.02209706	0.000 025 8
18	825	-0.022 097 16	0.000 026 2
		${}^{3}P^{e}(3)$	
14	444	-0.021 657 603	0.000 133 91
15	525	-0.021 659 698	0.000 132 72
16	615	-0.021 659 985	0.000 132 23
17	715	-0.021 660 040	0.000 132 07
18	825	-0.021 660 014	0.000 132 02

TABLE IV. Convergence behaviors for doubly excited ${}^{3}P^{e}$ states of Ps⁻ associated with the Ps (n=6) threshold. Nonlinear parameters used: ${}^{3}P^{e}(1)$, $\alpha=\beta=0.2$; ${}^{3}P^{e}(2)$, $\alpha=\beta=0.2$; ${}^{3}P^{e}(3)$, $\alpha=\beta=0.2$; ${}^{3}P^{e}$ shape resonance, $\alpha=\beta=0.15$. In all cases, $\theta=0.3$.

ω	N	E (R y)	$\Gamma/2 (Ry)$
		${}^{3}P^{e}(1)$	
15	525	-0.017 598 2	0.000 051 9
16	615	-0.017 596 9	0.000 054 0
17	715	-0.017 596 1	0.000 053 3
		${}^{3}P^{e}(2)$	
15	525	-0.015 898	0.000077
16	615	-0.015 901	0.000 061
17	715	-0.015 894	0.000 058
		${}^{3}P^{e}(3)$	
15	525	-0.015 801 1	0.000 050 6
16	615	-0.0158203	0.000 057 5
17	715	-0.0158108	0.000 057 1
	3	P ^e shape resonance	
14	444	-0.013 761 1	0.000 024 0
15	525	-0.0137610	0.000 021 9
16	615	-0.013 760 6	0.000 019 9

 $E_r = -0.056\,209\,5(10)$ and $\Gamma/2=0.000\,027\,4(10)$ Ry. Table II summarizes the result for the n = 4 ${}^{3}P^{e}$ states below the n = 4 Ps threshold; we have identified a total of three resonances in this energy region. We will summarize them later in the text. In addition to these Feshbach-type resonances lying below the n = 4 Ps threshold, we have also identified a stabilized complex eigenvalue lying "above" the n = 4 threshold. Recall that the energy level of the Ps (n = 4) threshold is E = -0.03125 Ry. The convergence behavior for this resonance is also shown here in Table II, and we estimate that it would lie at $E_r = -0.030\,972(5)$ Ry, about $0.000\,278$ Ry above the n = 4 threshold. We conclude

TABLE V. The ${}^{3}P^{e}$ shape resonance lying above the n = 2 Ps threshold ($\alpha = \beta = 0.5$).

ω		<i>E</i> (R y)	Γ/2 (R y)
		$\theta = 0.6$	
15	52.5	-0.1243755	0.000 255 5
16 :	615	-0.124 383 6	0.000 252 8
17	715	-0.124 391 2	0.000 251 9
18	825	-0.124 398 1	0.000 252 5
		$\theta = 0.7$	
15	525	-0.1243823	0.000 270 5
16	615	-0.124 387 3	0.000 267 2
17	715	-0.124 391 7	0.000 265 4
18	825	-0.124 395 7	0.000 264 9
		$\theta = 0.8$	
15	525	-0.124 388 8	0.000 283 1
16	615	-0.124 393 9	0.000 274 6
17	715	-0.124 394 2	0.000 271 3
18	825	-0.124 392 5	0.000 271 0

TABLE VI. Comparison of the ${}^{3}P^{e}$ shape resonance lying above the n = 2 Ps threshold.

	Present calculation Complex-coordinate rotation	Hyperspherical coordinate ^a
E_r (R y)	$-0.12440\pm3\times10^{-5}$	-0.124 26
$\Gamma/2$ (Ry)	$0.00027\pm3\times10^{-5}$	0.000 36

^aReference [7].

TABLE VII. Doubly excited ${}^{3}P^{e}$ state of Ps⁻ associated with various positronium thresholds *n*. The number(s) inside the parentheses represents the uncertainty in the last digit(s) quoted.

State	<i>E</i> (R y)	$\Gamma/2$ (Ry)
	n = 2	
${}^{3}P^{e}$	$-0.12440(3)^{a}$	0.000 27(3)
	n = 3	
${}^{3}P^{e}(1)$	-0.0632613(1)	0.000 179 1(1)
${}^{3}P^{e}(2)$	-0.056 209 5(10)	0.000 027 4(10)
	n = 4	
${}^{3}P^{e}(1)$	-0.037789236(10)	0.000 015 06(1)
${}^{3}P^{e}(2)$	-0.0330876(1)	$9.0(1) \times 10^{-6}$
${}^{3}P^{e}$	$-0.030972(5)^{a}$	0.000 032(5)
	n = 5	
${}^{3}P^{e}(1)$	-0.024 931 66(10)	0.000 025 47(10)
${}^{3}P^{e}(2)$	-0.0220972(5)	0.000 026 2(5)
${}^{3}P^{e}(3)$	-0.021 660 0(1)	0.000 132 0(1)
	n = 6	
${}^{3}P^{e}(1)$	-0.017 596(1)	0.000 053(1)
${}^{3}P^{e}(2)$	-0.015 894(10)	0.000 058(10)
${}^{3}P^{e}(3)$	-0.015 811(10)	0.000 057(10)
$^{3}P^{e}$	$-0.013761(10)^{a}$	0.000 020(10)

^aA shape resonance as it lies above threshold.

TABLE VIII. Symmetry between doubly excited ${}^{3}P^{e}$ and ${}^{1}P^{o}$ states in Ps⁻. (Energy levels are given in rydbergs.)

$n = 3$ $-0.063 244 7$ $n = 4$ $-0.037 780 7$ $-0.033 077$ $-0.033 087 6$ $-0.030 975^{b}$ $n = 5$ $-0.024 922 5$ $-0.021 660$ $n = 6$ $-0.017 595$ $-0.017 595$ $-0.015 890$ $-0.015 894$ $-0.013 750^{b}$ $-0.013 76^{b}$	¹ P ^{o a}		$^{3}P^{e}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		n = 3	
$n = 4$ $-0.037 780 7$ $-0.033 077$ $-0.033 087 6$ $-0.030 975^{b}$ $n = 5$ $-0.024 922 5$ $-0.022 087 5$ $-0.021 660$ $n = 6$ $-0.017 595$ $-0.017 595$ $-0.017 596$ $-0.015 890$ $-0.015 894$ $-0.015 811$ $-0.013 750^{b}$ $-0.013 761^{b}$	-0.063 244 7		-0.063 261 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		n = 4	
$\begin{array}{rcl} -0.033077 & & -0.0330876 \\ -0.030975^{\rm b} & & -0.030972^{\rm b} \\ n = 5 & & \\ -0.0249225 & & & -0.02493166 \\ -0.0220875 & & & -0.0220972 \\ -0.021660 & & & & -0.0216600 \\ n = 6 & & \\ -0.017595 & & & -0.015894 \\ -0.015890 & & & -0.015811 \\ -0.013750^{\rm b} & & & -0.013761^{\rm b} \end{array}$	-0.0377807		-0.037 789 236
$ \begin{array}{rcl} -0.030975^{b} & -0.030972^{b} \\ n = 5 \\ -0.0249225 & -0.02493166 \\ -0.0220875 & -0.0220972 \\ -0.021660 & -0.0216600 \\ n = 6 \\ \hline -0.017595 & -0.015894 \\ -0.015804 & -0.015811 \\ -0.013750^{b} & -0.013761^{b} \\ \end{array} $	-0.033077		-0.0330876
$n = 5$ $-0.024 922 5 \qquad -0.024 931 66$ $-0.022 087 5 \qquad -0.022 097 2$ $-0.021 660 \qquad -0.021 660 0$ $n = 6$ $-0.017 595 \qquad -0.017 596$ $-0.015 890 \qquad -0.015 894$ $-0.015 804 \qquad -0.015 811$ $-0.013 750^{b} \qquad -0.013 761^{b}$	-0.030 975 ^b		-0.030972^{b}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		n=5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.0249225		-0.024 931 66
$ \begin{array}{rcl} -0.021660 & -0.0216600 \\ n = 6 & \\ -0.017595 & -0.017596 \\ -0.015890 & -0.015894 \\ -0.015804 & -0.015811 \\ -0.013750^{\text{b}} & -0.013761^{\text{b}} \end{array} $	-0.0220875		-0.022 097 2
$n = 6$ $-0.017 595 -0.017 596 -0.015 890 -0.015 894$ $-0.015 804 -0.015 811 -0.013 750^{b} -0.013 761^{b}$	-0.021 660		-0.021 660 0
$\begin{array}{cccc} -0.017595 & & -0.017596 \\ -0.015890 & & -0.015894 \\ -0.015804 & & -0.015811 \\ -0.013750^{\rm b} & & -0.013761^{\rm b} \end{array}$		n=6	
-0.015 890 -0.015 894 -0.015 804 -0.015 811 -0.013 750 ^b -0.013 761 ^b	-0.017 595		-0.017 596
-0.015 804 -0.015 811 -0.013 750 ^b -0.013 761 ^b	-0.015 890		-0.015 894
<u>-0.013 750^b</u> <u>-0.013 761^b</u>	-0.015804		-0.015811
	-0.013 750 ^b		-0.013 761 ^b

^aReference [6].

^bShape resonance.

that such a stabilized complex eigenvalue would lead to a shape resonance in e^- . Ps scattering. It is noted that the counterpart of this shape resonance in H⁻ would lie below the hydrogen threshold [12]. Table III shows the convergence behaviors for the ${}^{3}P^{e}$ resonances below the n = 5 Ps threshold, and Table IV shows the ${}^{3}P^{e}$ resonance below the n = 6 Ps threshold. Again, in addition to the Feshbach resonances we have identified a stabilized complex eigenvalue lying above the n = 6 Ps threshold (the energy level for the n = 6 Ps states is E = -0.013889Ry). Our resonance energy of E = -0.013761 Ry lies at about 0.000 128 Ry above the n = 6 threshold. It is noted that the counterpart of this ${}^{3}P^{e}$ shape resonance in H⁻ would lie below the n = 6 hydrogen threshold and becomes a Feshbach resonance [12].

The possible bound ${}^{3}P^{e}$ state of Ps⁻ below the n = 2 Ps threshold was investigated by Mills [8] and by Bhatia and Drachman [9] using a variational method. They concluded that such a bound state in Ps⁻, in contrast to its counterpart in H⁻, does not exist. Botero [7], by examining the adiabatic curves that were obtained using hyperspherical coordinates, calculated the energy level for such a state and found it lying above the n = 2 threshold to become a shape resonance. In this work we also investigate such a shape resonance. The optimized nonlinear param-

- See Y. K. Ho, in *Positron Annihilation in Gases and Galaxies*, NASA Conference Publ. No. 3058, edited by Richard J. Drachman (NASA, Washington, DC, 1989), p. 243, and references therein.
- [2] A. P. Mills, Jr., Phys. Rev. Lett. 46, 717 (1981).
- [3] A. P. Mills, Jr., Phys. Rev. Lett. 50, 671 (1983).
- [4] D. R. Herrick, Adv. Chem. Phys. 52, 1 (1983) and references therein.
- [5] Y. K. Ho, Phys. Rev. A 19, 2347 (1979); Phys. Lett. 102A, 348 (1984).
- [6] A. K. Bhatia and Y. K. Ho, Phys. Rev. A 42, 1119 (1990);

eters are found to be $\alpha = \beta = 0.5$ and $\theta = 0.8$. The convergence behaviors using different expansion lengths are shown here in Table V. We conclude that the resonance parameters for this resonance are $E_r = -0.12440(3)$ Ry and $\Gamma/2=0.00027(3)$ Ry. A comparison with the results obtained in Ref. [7] is shown in Table VI. Table VII summarizes results for all the doubly excited intrashell states associated with the n = 2, 3, 4, 5, and 6 positronium thresholds, respectively.

One of the vibrational characters of an XYX molecule is that the ${}^{3}P^{e}$ and ${}^{1}P^{o}$ states are nearly degenerate. In Table VIII we show the comparison between the present ${}^{3}P^{e}$ results and the previously calculated ${}^{1}P^{o}$ states [6]. It is noted that the ${}^{3}P^{e}$ and ${}^{1}P^{o}$ states are highly symmetrical. It is further noted that the ${}^{3}P^{e}$ states lie slightly lower than the ${}^{1}P^{o}$ counterparts. This suggests that the $e^{-}e^{+}e^{-}$ system would exhibit the vibrational characters similar to those for an XYX molecule. Of course in order to have a better understanding of the symmetry character of the Ps⁻ Hamiltonian, accurate calculations for highly excited autoionizing states with higher angular momenta for Ps⁻ are needed. It is hoped that our recent investigation on doubly excited Ps⁻ would stimulate other theoretical studies, as well as further experimental investigations on this purely leptonic three-particle system.

- Y. K. Ho and A. K. Bhatia, *ibid.* 44, 2890 (1991).
- [7] J. Botero, Z. Phys. D 8, 177 (1988); Phys. Rev. A 35, 36 (1987).
- [8] A. P. Mills, Jr., Phys. Rev. A 24, 3242 (1981).
- [9] A. K. Bhatia and R. J. Drachman, Phys. Rev. A 28, 2523 (1983); 35, 4051 (1987).
- [10] Y. K. Ho, Phys. Rep. 99, 1 (1983).
- [11] A. K. Bhatia and A. Temkin, Rev. Mod. Phys. 36, 1050 (1964).
- [12] Y. K. Ho and J. Callaway, Phys. Rev. A 34, 130 (1986).