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Performance of a gauge-invariant method on calculated dynamic polarizabilities
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In the calculation of the dynamic polarizability including electronic correlation and ensuring gauge in-

variance, contributions of spectroscopic states and quasispectral series are analyzed. An improvement of
our original electric-field variant ket approach is proposed and illustrated by application to H and LiH
systems.
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I. INTRODUCTION

In preceding papers [1,2] a method based on the use of
a time-dependent gauge operator was developed for the
calculation of dynamic polarizability. Accurate results
were obtained provided that the limited size of the
molecular-basis-set effects and the inAuence of the contin-
uum states were partly simulated through a polynomial
gauge factor, which moreover ensured the gauge invari-
ance. A part of these effects is explicitly taken into ac-
count in the extrapolation procedure, which leads, as was
pointed out [2], actually to the upper limit of the static
polarizability a from the knowledge of a finite number of
discrete states. Rapid convergence of the expansion in
terms of discrete states is generally assumed with a small
number of them except if the first spectroscopic states
have a Rydberg character.

In this paper we consider in the context of the
electric-field variant ket approach an improvement of our
preliminary method, which not only reduces and
simplifies the calculations, but also corrects some draw-
backs, namely those due to the accuracy of the extrapola-
tion procedure that is difficult to estimate precisely.

The purpose of this article is to present this approach
briefly summarized in Sec. II and illustrated by applica-
tion to the H atom and LiH molecule in Sec. III with the
aim of showing the reliability of the proposed method by
comparing our results with previous theoretical data
[3—15].

II. THEORY

The static polarizability can be obtained from a varia-
tional method:

a= —2(OIH, —E, I»
with

(H, —Z, )l»= —(H, —& )10&

and where ~0) is the wave function of the unperturbed
system, Eo the corresponding energy, H& the first-order
perturbation Hamiltonian, E, =(O~H, ~O) and ~1) the
corresponding first-order energy and wave function, re-
spectively. When

~
1 ) is described as a sum over the

"true" spectroscopic kets
~ g„) such as

H = —qer.
In order to obtain accurate values of polarizability, this

sum not only must be infinite over the true spectral states
but also extended into continuum. We have shown else-
where [2] that the use of a polynomial function g(r) in
the expression of the first-order wave function ~1) such
as

N

li&=g(r)ly, &+ y C„ly„&
n)0

(3)

allows us to reach an extrapolate value of a for the
ground state $0 from a finite number N (usually less than
10) of low-lying true spectral states. In this case the
first-degree polynomial function g(r) presents several
main advantages.

(i) It ensures the gauge invariance.
(ii) It compensates for the limited size of the molecular

basis set.
(iii) It corrects the results due to the unavoidably re-

stricted number N of states used in the calculations.
(iv) It simulates a part of the continuum contribution.
(v) It allows the use of the extrapolation procedure.

The two latter points will be discussed in Sec. III for the
H atom.

The calculation of a finite number N of true spectral
states f„,however, can be expensive, and often accurate
values of static polarizability may be found from a
quasispectral series P including a part of the continuum
contribution [16,17]. Unfortunately if the first low-lying
symmetry states connected to the ground state by al-
lowed dipole transition are not the true spectral states g„,
then the value of dynamic polarizability near the first res-
onance is poor.

Consequently we can now present a scheme of our

Ho~/„) =E„~tf„),the usual expression of the static po-
larizability is given by

(@,fH, [@„&'a=2 g E„—Eo

where
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time-dependent gauge method, which combines both true
spectral states g„necessary near the resonance and
quasispectral states P

The first-order wave function
l

1 & is constructed ac-
cording to a mixed procedure analogous to that reported
[2] and leading to

quires the calculations of a„', c„", and c" factors, which,
for an e, perturbation, leads to the following system of
linear equations:

M+ Uvx yv+
0 l

where

ll &=g( )lg, &+ & „lg„&+&
n)0

(4)

g'(r)= ga„"u with u, v =x,y, z

where g(r) is a first-degree polynomial function of the
electronic coordinate

U' —=
l

'a
Q

v+
Cn

v+
Cm

(7)

is the solution we are trying to find for the frequency-
dependent system (kv), and

when the electric field lies in the v direction, l(„ is the
true spectral state built from Slater determinants

and P is a quasispectral series determined by Slater
detern1inants selected using the following threshold:

S = (5)0 —E0

with

and

n

&o &=(o&o X o; 4o)

with H =&mlHplm &.

It should be emphasized that some of the (t& deter-
minants of the quasispectral series can be identical to P'
used in the spectral states. The P and P' sets of Slater
determinants thus are not necessarily orthogonal, and
this leads to additional terms in the following variational
treatment (see (9)).

The computation of the dynamic polarizability then re-

n n

(oo&=tgo Z o, Z o, o&o) .
i=1 j=l

n, is the number of electrons. When the origin of the
molecular system studied is set at the center of electronic
charge, then &v &=0, the right-hand side of the linear
nonhomogeneous system is notably simplified, and M0
will be written (in a.u. )

"'5..+»&uU& &i(pl&. lg. &+hv&gplulg. & &%pl~. lW &+hv&fplulk &

(E„—

Epoch

v)5„„. (E„Epoch v)C"—
H +(—Epkhv)5 ~.

(9)

where C" can be replaced by the more general expression

M p thus defined is valid only for exact gp and g„wave
functions; this remains relevant when the approximate
functions used verify the hyper virial theorem with-
in a reasonable range (i.e., & /ply„ lg„& /(E Ep)
= & l(jp l u

l &I(&„& ) (see Ref. [2]).
With respect to our previous scheme [2] the contribu-

tion of the quasispectral series is now taken into account
by means of the last colun1n in M0 . The coupling factors
(E„Ep+hv)C" betwee—n the true spectral states g„and
the quasispectral series P can be zero if the Slater deter-
n1inants are diff'erent in the description of the spectro-
scopic states and quasispectroscopic series. Except for

the use of the extrapolation procedure the main advan-

tages of the gauge factor remain.
As a general rule, the dynamic polarizability com-

ponents are then given in atomic units by

+,n

+q g "*(&@,
I lP &

—&g lg && &) .
k, m

(Once more, it should be emphasized that a simplification
occurs when the origin is fixed at the electronic centroid,
& p &=0)
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III. RESULTS AND DISCUSSION OF RESULTS

Hydrogen atom

In order to demonstrate the efficiency of our polynomi-
al factor in the calculation of the polarizability, a first cal-
culation was carried out for the ground state of the hy-
drogen atom for which exact wave functions are known.

If the sum-over-states formula is used taking into ac-
count only the true spectral states $0, . . . , g„, the
discrete series converges on a a", value defined by

tained from the knowledge of a finite number N of
discrete states can be calculated from an extrapolation
technique [2]. This procedure consists in the use of an
extrapolation formula of the form

aG(N) —a (N)=([a(N)]~.

The value of the exponent g is determined by a least-
squares fit, and then the extrapolated polarizability is ob-
tained by a linear regression in which the computed
values of aG(N) are written as

adG(N) =a(N~ 00 )+ri[a (N)]~ .

0
1

10
100
200
300
400
500

a"(N)

0.000000
2.959 621
3.639 246
3.662 954
3.663 181
3.663 224
3.663 238
3.663 245

at.-(N)

4.000000
4.316847
4.398 945
4.401 826
4.401 853
4.401 858
4.401 860
4.401 861

a(N)

2.000 000 0
1.524 729 5

1.312 575 9
1.303 178 6
1.303 087 9
1.303 070 9
1.303 062 1

1.303 062 1

n =I+1

The ai dipole polarizability (l =1) reduces to the well-

known value (3.663 257 89) given by Tanner and Thakkar
[5]. An exact value of the polarizability ai can be ob-
tained by adding to al the continuum contribution al.
For the dipole polarizability of the hydrogen atom the
continuum contribution is then found to be 0.8367 a.u. ,
i.e., about 18.6% of the total electronic polarizability
(4.500 a.u. ) [3].

We have reported in Table I for the hydrogen atom,
taking into account only the true spectral states g„, the
value of the static polarizability with [a&(N)] and
without [a (N)] the gauge factor against the number N
of states. This table shows the large contribution of the
gauge factor to the dipole polarizability of hydrogen and
illustrates the fact that a large part of the continuum con-
tribution can be simulated through the polynomial func-
tion. Indeed, the convergence of such series a (N) and
aG(N) leads to discrete values of 3.6632 and 4.4018 a.u.
corresponding, respectively, to 81.4% and 97.8% of the
exact value. In other respects it should be noted that
convergence is most rapid in the gauge series where the
first state gives a predominant contribution (4.3168 a.u. )

even though the polynomial gauge value alone is found to
be 4 a.u. As pointed out by Kutzelnigg [6] an exact value
should be obtained from the more complex polynomial
function,

g "(r)=ax +bxr,

the exact solution of (1) leading in this case to a=1,
g —1

2

The final upper limit of the static polarizability ob-

TABLE I. Partial sums of discrete series for static po-
larizabilities of hydrogen. The extrapolated final value
a(N~ 00 ) =4.503 a.u. is obtained from the following equations:
aG(N) —a (N)=0.264956[a(N)] ' ", aG(N)/p =a(N~DD)
—0.036411[a (N)]"

In the case of hydrogen, the final a(N~00) value is
found to be 4.503 a.u. , i.e., 0.07% above the exact static
value of a.

To summarize, when exact wave functions are used as
in the hydrogen case, our results show the precise role
and the rigorous contribution of the polynomial part in
the calculation of the discrete value of polarizability and
the efficiency of the extrapolation procedure to obtain an
accurate value of the static dipole polarizability.

LiH molecule

Electrical properties of LiH have been theoretically in-
vestigated by several methods and at different levels of
calculations. Since an exact wave function is not avail-
able for this molecule, a true discrete value of the polari-
zability obtained from a sum over states generally speak-
ing is not directly accessible. On the other hand, in a
finite basis set the spectroscopic states 1i„can be obtained
like the quasispectral series P, allowing us to test our
time-dependent gauge method.

For LiH, the calculations have been carried out at the
ab initio configuration interaction (CI) level using the ex-
perimental internuclear distance 3.015 a.u. Our basis set
[2] consists in the segmented contractions scheme
(Ss5p3d/10s6p) for both Li and H, leading to reasonable
values for the energy and the dipole moment. Correla-
tion effects have been taken into account by means of the
multirefer ence, second-order many-body perturbation
theory through the configuration interaction with pertur-
batively selected interactions (CIPSI) algorithm [18,19].
Single and double excitations relative to the multirefer-
ence were included. At correlated level our ground-
state-energy ( —8.043 588 a.u. ) and dipole-moment (2.313
a.u. ) values compare very well with those obtained from
finite field perturbation theory with complete active space
(FPTCAS-SCF) and diffusion quantum Monte Carlo
(DQMC) methods by Karlstrom, Roos, and Sadlej [8] and
Vrbik, Legare, and Rothstein [14], respectively.

Static polarizability components of LiH have been cal-
culated according to our gauge method using the fo11ow-
ing hypothesis:

(i) the low-lying spectroscopic states P„only, followed
by an extrapolation procedure [2] as for hydrogen;

(ii) the same low-lying spectroscopic states g„, enlarged
by a quasispectral series P

(iii) the first spectroscopic state 1(t, and the quasispec-
tral series P

In the latter two cases the value of the threshold (5)
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TABLE II. Static polarizability components (a~~, a~) of LiH
calculated in a.u.

Hypothesis'

(iii)
(ii)
(ii)

(i)

Hypothesis'

(iii)
(ii)

(ii)

(i)

N=l
N=9
N=9

N= co

N=1
N=7
N=7

N= 00

sb

0.001
0.01
0.001
»1
Sb

0.001
0.01
0.001
»1

0.96
0.71
0.60
0

a&

0.97
0.88
0.82
0

25.83
26.08
26.25
26.9

29.70
29.75
29.90
30.8

~ O
Xo
~e

Oe
N
h

4
O
IL

Ch

O

~ 04ll
~ Ooll
oeaII

o.074 0.100
Inoryy(a. u.)

I

0.14o

'See text.
bSee Eq. (5).
'Parallel (a

~~

) and perpendicular (a j ) gauge coefficients.
FIG. 2. Plot of a~I against hv (a.u. ) (~ gauge and kets N

without extrapolation procedure).

used to construct the quasispectral series is fixed at 0.01
and 0.001, respectively, leading to spaces including 200 to
1000 determinants P

As in Ref. [2], the low-lying spectroscopic states g„are
obtained by diagonalizing a matrix ( = 10000 deter-
minants P' ) that includes the most important second-
order perturbational contributions of the multireference
zero-order wave functions. These wave functions
spanned over a subspace including the most significant
determinants (about 200) are built up iteratively from the
total set of canonical orbitals. For the two polarizability
components, the results are depicted in Table. II. The
overall agreement between the static values obtained us-

ing these different assumptions is very good, and the
discrepancies appear to be not greater than 4% for both
calculated polarizability components. The main cause of
this difference is likely due to the overestimation arising
from the extrapolation procedure. Improved and compa-
rable results are obtained when the quasispectral series

is added to the low-lying spectroscopic states g„.
Calculations carried out with several spectroscopic states
(seven for 'II and nine for 'X+ ) lead to the more reliable
values. These values depend on the quality of the
quasispectral series P selected from a fixed threshold.

The significantly better results obtained then are 26.25
and 29.90 a.u. respectively, for the parallel and perpen-
dicular components, in perfect agreement with the com-
plete active space self-consistent field (CAS-SCF) results
of Roos and Sadlej [10]. When only the first spectroscop-
ic state is taken into account, with the same quasispectral
series P, the value of the two components decreases by
about 1%. This latter approximation, which requires less
time than the former, gives, however, close results.

The decreasing gauge coefficients (a~~, a~) should also
be noted in Table II when the size of the quasispectra1
series increases (or when the threshold s decreases), show-
ing their complementary role.

The static anisotropy is slightly dependent on the kind
of approximation used, this electronic value is within the
range —3.65 to —3.90 a.u. , in perfect agreement with
multiconfigurational self-consistent field (MCSCF) [11]
and CAS-SCF [10] calculations. A particular emphasis
must be placed on the important role of the rovibrational
contributions [20]. These contributions amounting to 4.5
and 0.4 a.u. , respectively, the parallel and the perpendic-
ular component lead to a positive sign of the anisotropy
in agreement with the experimental data.

TABLE III. Dynamic polarizability components and anisot-

ropy calculated with $=0.01 and ¹ 7 or 9 (values in a.u.).

Ch

Cl

a

~e

O

e De~
Ime
00

I

O
CI

0 )L—
4
N

0.04 o.oo 0.0~

Ener Ny{a.u.)
0.12

FIG. 1. Plot of a~ against hv (a.u. ) (0 gauge and kets N
without extrapolation procedure).

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12

a)(

26.08
26.17
26.45
26.93
27.65
28.67
30.07
32.00
34.75
38.84
45.44
57.85
89.86

aj

29.75
29.83
30.09
30.52
31.16
32.02
33.16
34.63
36.52
38.98
42.24
46.66
52.92

—3.67
—3.66
—3.64
—3.59
—3.51
—3.35
—3.09
—2.63
—1.77
—0.14
+3.20

+ 11.19
+36.94
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Contributions of the polynomial factor, spectroscopic
states f„,and quasispectral series (() are analyzed in the
calculations of the dynamic components. Figures 1 and 2
illustrate the behavior of the dynamic polarizabilities in a
wide range of frequencies until the first resonance energy.

In the vicinity of zero frequency the performance of all
hypotheses studied, including gauge factor and spectro-
scopic states 1(„,gauge factor and quasispectral series p
and gauge factor and P„plus P~, is found to be reason-
ably good. The frequency dependence then is rapidly and
considerably affected by the accurate description of the
first spectroscopic states P„. Quasispectral series P give
poor quality of the polarizability components near the
resonance.

The most satisfactory results are those obtained
through the high-level approach. Accurate calculated
values of dynamic polarizabilities and electronic anisotro-

py are given in Table. III. The main conclusion that

emerges from the data is the rapid increase of the parallel
component leading to a change in the dynamic anisotro-

py sign when h v=0.09 a.u. Similar behavior is reported
by Sasagane er al. [15] in a multiconfigurational time-

dependent Hartree-Pock (MCTDHF) approach, but their
values are not accurate owing to the small size of the
basis set used.
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