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Theory for the experimental observation of chaos in a rotating waterwheel
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We study the chaos for a set of coupled, nonlinear partial differential equations that originate
from the equation of motion and the Fourier transform of the mass-conservation equation for the
Malkus waterwheel. Dissipation for this system is produced by an adjustable brake. The braking
force, proportional to the angular velocity of the wheel, is responsible for the appearance of chaos.
The variation of the moment of inertia with time is taken into account. In the large-time limit, the
moment of inertia of the composite system, consisting of the wheel and water, tends to a constant,
and the three controlling equations of the set of coupled limit equations reduce to a special case of
the Lorenz equations, in which the Rayleigh number p (here characterizing the distribution of water
inflow along the perimeter of the wheel) can also assume negative values. Chaotic attractors of the
higher harmonics of the water density have been investigated. Boundaries between various regimes
of the wheel s limit behavior (uniform rotation, periodic reversals of spin, chaotic reversals) in the
Lorenz parameter space have been found. The Lorenz parameter space has thus been explored in
considerably more detail than by previous authors.

PACS nnmber(s): 05.45.+b, 02.60.+y

I. INTRODUCTION

Over the years many papers have dealt with exam-
ples of equations whose solutions demonstrate nonperi-
odic behaviors. In this paper we study a classical system
that comprises the equations of motion subject to mass
conservation for water in a rotating cylindrical wheel.
This apparatus was built by Professor Malkus of the Mas-
sachusetts Institute of Technology to demonstrate the
nonpredictability of the motion of a dynamical system.
The derived equations are similar in nature to those de-

scribing fluid convection subjected to a gravitational field
as well as heating and/or cooling [I]. The differential
equations introduced by Lorenz [2] are a specific subset
of these equations in an infinite-dimensional phase space.
We now describe the system under consideration.

In this problem, water pours in at t;he top of a right
circular cylindrical wheel at a steady rate Q through jets
that are symmetrically located just above a portion of
its perimeter. The radius of the cylinder is r and along
its circumference there are thin compartments into which
the water from the jets enters. The axis of the cylinder is

tilted so that it,s axis of rotation makes an angle with the
vertical. An adjustable brake is attached to the cylin-
der. Each chamber has a hole in its bottom. Because of
the symmetrical location of the jets, the wheel can never
start when exactly at rest, initially. If most of the wa-

ter inflow Q is concentrated near the lowest point of the
wheel, the wheel comes back to rest rapidly regardless of
the magnitude of its initial spin. If the water inflow is

concentrated near the highest point of the wheel, what
happens depends on the rate of this inflow. If the flow

of water is slow, the top chambers never fill up enough

to overcome the frictional forces and the wheel comes to
rest shortly after it is given an initial spin. If the flow is
faster, the top chambers gain weight and set the wheel in
motion. The waterwheel can then settle into a rotation
that continues at a st,eady rate. But if the flow is faster
still, the spin can become chaotic, because of nonlinear
effects on the system. As the chambers pass under the
jets, how much they fill will depend on the speed of spin.
If the wheel is spinning rapidly, the water compartments
have little time to fill up. Also, for rapid motion, the
compartments can start up the other side before they
have time to empty. As a result, heavy chambers on one
side can cause the spin to slow down and then reverse.

This paper is organized as follows. In Sec. II we de-
rive the torque-balance equation as well as the equation
governing the conservation for the mass density of water
distributed around the wheel. Written in Fourier space,
three of these equations decouple from the rest and de-
termine the rotational spin of the wheel completely. In
the limit of large time, these equations are exactly the
same as the well-known Lorenm equations. The higher-
order harmonics can only determine the details showing
how the water compartments are filled. Our derivation
of the torque-balance equation and the conservation of
the mass density of water, as well as the analysis lead-
ing to the Lorenz equations, are based closely on the
work of Strogatz [3]. We also compare the limit equations
with their forms when friction is neglected. Section fII is
devoted to an analysis of the coupled equations for the
higher harmonics of water density. All solutions of these
harmonics are bounded in phase space. All trajectories
converge towards a single trajectory —an attractor—
which must lie inside or on a circle centered at the ori-
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gin. The nature of the limit behavior of higher modes is
fully determined by the angular velocity of the wheel. In
Sec. IV we present and discuss our numerical results and
compare them with those presented in the monograph by
Sparrow [4]. One of the important contributions of this
paper is obtaining a better understanding of the Lorenz
model itself. This has been achieved by exploring its pa-
rameter space in detail. Our results are summarized in
Fig. 11, which shows a previously unsuspected structure
of periodic windows embedded in the chaotic region.

II. MATHEMATICAL FORMULATION
OF THE PROBLEM

Let u(t) be the tangential velocity of a point on the rim
of the wheel so that u(t) = u(t)/r is its angular velocity
at time t. Let 8 be the angle of rotation in the laboratory
frame so that 8=0 refers to the highest point on the rim
of the wheel (see Fig. 1). Let A be the cross-sectional
area (perpendicular to the perimeter of the wheel) of the
compartments and P(8, t) the mass density of water, dis-
tributed as a function of angle around the wheel. We
now derive the partial-differential equations for P and u,
the first of which concerns the conservation of mass while
the second is the torque-balance equation.

For a volume R fixed in space, the mass in this region
at time t is

M(~) = f ~{& ~)av

However,

dM
P(8, t) u ndA+ Q(8) dV

aR R

It P(8—, t) dV,
R

where n is the unit outward normal of the boundary (c)R)
of R. The first term on the right-hand side of Eq. (2) is
the rate of transport of water across the boundary BR due
to the rotation of the wheel and the second term is the
infIow due to water being pumped in through the jets.

The third term is due to the leakage of water through
the bottom where the pressure head is proportional to
the mass of water and K is a constant. Invoking the
divergence theorem, we write all terms as integrals over
volume. Since V (Pu) = ~OP/08 and R is arbitrary,
Eqs. (1) and (2) jointly give the mass-conservation equa-
tion

Newton's law of motion yields the torque-balance equa-
tion

d—[I(&)~(t)] = —v~(t) + Agr' P(8, t) sin 8 d8,
dt 0

where I(t) is the total moment of inertia of the empty wa-
terwheel (Io) and the water added to the compartments
[I (t)]. The first term on the right-hand side of Eq. (4) is
the drag due to the brake where v ) 0 is a constant and
the second term is the gravitational torque. g is an ef-
fective gravitational constant, equal to the component of
the acceleration due to gravity in the plane of the wheel
perpendicular to the axis of rotation.

Assuming that I(t) =const (which is. true in the t ~ oo
limit; see below), Eqs. (3) and (4) have exactly the same
form as Eqs. (1.2) and (1.1) of Ref. [1] that describe
convection in fluid contained in a closed circular tube
under the combined effect of the gravitational field and
symmetrical heating/cooling. Heating corresponds in our
waterwheel problem to water inflow and cooling to the
leakage of water through the bottom of individual com-
partments. This is a nice example of the similarity of
two rather different physical processes based on similar
geometrical configurations of the two systems.

We solve Eqs. (3) and (4) by using Fourier analysis.
Since P(8, $) is 2x-periodic in 8, we write P as a Fourier
series

P(8, t) = ) [a„(t)sin(n8) + b„(t)cos(n8)] .

Also, since water is added symmetrically, not in a biased
way, we have

Q(8) = ) q„cos(n8),
n=O

where q„is independent of time since the flow is constant.
Making use of Eqs. (5) and (6) in Eqs. (3) and (4), a
straightforward calculation yields

da„
dt
" = n~b„—I&a„, (7a)

FIG. 1. Side view (section) and front view of the Malkus
waterwheel. The dashed line represents the tilted axis of the
wheel. The dashed arrows indicate the places where water
is pumped into the waterwheel at a constant rate Q(8) and
where it leaks out through the bottom of the wheel cornpart-
ments at a rate A P(8, t).

d—[I(t)~(t)] = —vcr+ 7rAgr ai .
dt

Equations similar to Eqs. (7) for n = 1 have also been de-
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rived in Appendix B of Ref. [4] when the axis of rotation
of the Malkus waterwheel is horizontal. However, in this
case, the derived equations correspond to a much cruder
approximation of a real system [4] than the case we in-
vestigate here when the axis is inclined, where the only
approximation we make is to replace the finite-sized com-
partments by a continuum of infinitesimally small ones.
Initially, the wheel is empty, i.e., a„=b„=0 for all
n. Before we further analyze Eqs. (7), we note that the
moment of inertia of the water is

( (t) = r'f P(g, t)dV = r'A P(8, t) d8. (8a)

Substituting Eq. (5) into Eq. (8a), we obtain

I (t) =2&Ar b (t) (8b)

~Age 2qp

K~v (10a)

Ix I(oo) I1 Io + 2 Irr Aqo
(10b)

I(oo) —I(0) 2xr Aqc

I(0) IiIo (10c)

and new variables z, y, z, and r such that

(1la)

Kp
an —— y,

sr Agr2
(lib)

Kv
-Ag"" K (11c)

(11d)

In terms of these variables, the set of three decoupled
equations becomes

Setting n = 0 in Eq. (7b), we solve the resulting nonho-
mogeneous differential equation for bo by introducing an
integration factor and using the initial condition bo

——0
at t =0. Our calculation gives

I(t) = I, + 2~rs A ".(1 ——.-~') .
I~

Therefore, the time dependence of the moment of inertia
I(t) is known in advance; it is completely decoupled from
the time dependence of the velocity of the wheel. That
is, we are left with Eqs. (7) in which I(t) is known and
given by Eq. (9).

Using this result for I(t), it is clear that the equations
for ma~, and ubq [Eqs. (7a) and (7b) for n = 1 and Eq.
(7c)] decouple from all the other modes. ~by and ~ay are
quadratic nonlinear, which results in a dynamical system
of three ordinary, coupled difI'erential equations. We now
introduce the following notation:

d (1+E) o (y —x) —Axe
dr 1+6(1—e )

(12a)

d—y= px —y —zz,
dr

(12b)

d—z=zy —z.
dr

(12c)

The empty wheel corresponds to y = 0, z = p. When
the wheel is at rest, we have z = 0. With these initial
conditions, the wheel would never start since it would
lie on the stable manifold of the fixed point at the ori-
gin. Thus one has to give the wheel an initial spin and
we shall start with the following plausible conditions:
z(0) = zo, y(0) = 0, and z(0) = p, where zo g 0 is arbi-
trary. During the initial transient period, the trajectory
can be highly dependent on zo as the moment of inertia
approaches its limit value. However, the behavior of the
wheel in the limit as r ~ oo usually depends only on the
parameters p and o, and is determined by the following
limit equations:

i = (r(y —z), (13a)

y= pz —y —zz (13b)

z =my —z, (13c)

(here, and in what follows, a dot denotes difFerentiation
with respect to the rescaled time r) These a. re just the
well-known Iorenz equations [2] with P = 1 [compare Eqs.
(13) with Eqs. (1.7—9) of Ref. [1] or Eqs. (7.5.8) of Ref.
[5]]. The main difFerence is that in the case of the Malkus
waterwheel, the "Rayleigh number" p (proportional to
the amplitude q~ of the first harmonic of the water infiow)
can have any real value, whereas ~ & 0. Note that only
the zeroth and first harmonics of Q have any effect on
the time dependence of the angular velocity of the wheel

[cf. Eqs. (10)]. The higher modes can only determine
the details of the filling of the compartments, as will be
discussed in the next section, but cannot influence its
speed.

Although the Lorenz equations correspond to a very
simplified model for real hydrodynamical flows, it has
been shown that there are other mechanical and electri-
cal systems that are accurately described by the Lorenz
model. For a discussion, see Ref. [5]. The properties of
the Lorenz model and especially its chaotic behavior have
been studied before [2—11]. However, most of these stud-
ies were done only for the following two one-dimensional
sets of parameters: a = 10, p = 8/3 and p ) 0, and
0' = 16, P = 4 and p ) 0 [6]. The type of the limit be-
havior of the Lorenz model is related to the character of
the fixed points for the given parameters. Let us briefly
review the situation for the special case of Eqs. (13). The
origin is always a fixed point. The Lyapunov exponents
at the origin are
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o+1 (o —I)'
I

+p~ A3 ——1.

(14)

described by Eqs. (12) and (13) as it would correspond
to the combination of 0 = 0 and p = oo. For v = 0, we
can still keep the relations (10c), (lla), and (lid), and
instead of the relations (10a), (10b) and (lib), (llc) in-
troduce the following modified formulas:

For p & ——( 2 ), Ai and A2 are complex with negative
real parts. Thus, there are inward spirals near the origin.
For p ) —-'

( ~'), all three exponents are real and A2

and A3 are always negative. Note that Ai & 0 if, and
only if, p ( 1. For all p & 1, the origin is an attractor
for all phase trajectories. This means that for p & 1,
the Malkus waterwheel comes to rest regardless of the
magnitude of the initial spin. This is what one would
expect, as this parameter range corresponds either to qi &
0 (i.e. , the inflow is concentrated near the lowest point
of the wheel) or 0 & qi & &

", (the inflow is not large

enough to overcome the braking force). For p ) 1, the
origin is a saddle point, and there are two other fixed
points C+, C [7]:

z=y=+(p —I)'i, z=p —1.

For u & 2 these two fixed points are always attractors.
For 0. & 2 they are attractors for p & p2

——
2 only.

Above p2 they become spiraling saddle points of index
2. At p~ they lose their stability in a Hopf bifurcation
[7]. Contrary to the original claim of Marsden and Mc-
Cracken [7], this bifurcation seems to be subcritical for
all values of o and P: it consists in the absorption by
C+ of unstable periodic orbits of the simplest type z
and y [4]. Originally [8], it was assumed that it is this
subcritical Hopf bifurcation that causes the immediate
transition to chaotic behavior discovered by Lorenz. Ac-
tually, the chaotic behavior starts below p2 [9, 4], and
no change in the global behavior can be observed at p2,
which was also confirmed by our numerical results (see
Sec. IV). It is well known at present that the prerequi-
sites for the transition to chaos are being prepared well
below p2 at a value of p = p' corresponding to homoclinic
bifurcation (first homoclinic explosion) [4]. At p' there
is a homoclinic orbit associated with the saddle point at
the origin (unstable manifold of the origin is contained in
the stable manifold). This leads to the appearance of an
unstable strange invariant set consisting of a countable
infinity of periodic orbits, an uncountable infinity of ape-
riodic orbits, and an uncountable infinity of trajectories
terminating in the origin. A subset of this strange invari-
ant set then becomes the stable strange Lorenz at tractor
at some value pi & p2. The fixed points C+ are always
the foci of the "eyes" of the Lorenz attractor. Below
p&, the strange invariant set cannot be detected by ran-
dom numerical simulations as all trajectories still seem
to tend to either of the two fixed points C+. However,
our numerical results presented in Sec. IV indicate that
the appearance of the strange invariant set at p' is re-
flected in the change of the character of the trajectories
corresponding to the initially empty Malkus waterwheel.

It is instructive to discuss also the idealized case of a
frictionless wheel, having zero braking force, which cor-
responds to v=0. This special case is not satisfactorily

and

%Age' qy

Ii. 2 I(oo)

I&I(oo)
gggp2

(17a)

I~ I(oo) qg (17b)

Using these modified definitions, Eqs. (7) for n = 1 be-
come

(1+a) y/Ii —a z e-'
1+6(1 —e ') (18a)

y= pz —y —zz, (18b)

z =my —z. (18c)

As for the case when v/0, the behavior of the wheel as
7 ~ oo is given completely by the limit version of the
above equations:

i = y/It, (19a)

y= pz —y —zz, (19b)

Z =Sy —Z. (19c)

&i2= —-+
I

—+ —
I

2 (4 Ily

For p & —4, both Ai and A2 are complex and there are
inward spirals near the origin. For all other p, all three
exponents are real. For —

4 & p & 0, all three are nega-
tive. Thus, the origin is a totally attracting point for all

p & 0, and even the frictionless wheel ultimately stops
in this case under the effect of gravity, regardless of the
magnitude of the initial spin imparted to it. When p ) 0,
we find that A2 & 0 and the origin is a saddle point. For a
nonzero initial spin, the initial conditions for the empty
wheel never seem to lie on the stable manifold of this
saddle point and thus the solution of Eqs. (19) always
escapes to infinity for p & 0. Our numerical calcula-
tions show that after some initial transient oscillations,
for large r the solutions of Eqs. (19) become monotonous
such that z p and zy p. Substituting

(20a)

For this set of equations, the origin is again a fixed point
for arbitrary p. However, in this case there are no other
fixed points. The Lyapunov exponents at the origin are
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into Eq. (19a) gives

z = +(2pr/Ii + C)'I, (2ob)

III. HIGHER HARMONICS
OF WATER DENSITY P

For each n, the two Eqs. (7a) and (7b) constitute an
autonomous system of two linear equations for the un-
known functions a„(t)and b„(t)with u(t) being a vari-
able coefKicient determined in advance by the solution of
the system of the three controlling equations (12). Using
definitions (lla) and (lid), one can write Eqs. (7a) and

(7b) for a particular n in the form

Co being a constant of integration. The approximate
results in Eqs. (20) together with z = p describe quite
well the numerical results for very 1arge v. Therefore,
provided q~ ) 0, a frictionless wheel with nonzero initial
spin would always monotonously increase its speed up to
infinity as r ~ oo as a consequence of the absence of
a braking term in Eq. (19a). Such a wheel would never
behave in a chaot, ic way.

Both sets of Eqs. (13) and (19) contain the same non-
linearities in the second and third equations. Only the
first, linear equations of the two sets are different. How-
ever, this seemingly small difference results in signifi-
cantly different behaviors of the respective solutions. In
particular, while the solutions of Eqs. (19) are never
chaotic, those of Eqs. (13) can be. Thus, it is the presence
of friction that is a prerequisite for the chaotic behavior
of this system. Also, unlike the solutions of Eqs. (19),
the solutions of Eqs. (13) are always confined to a finite
region near the origin of the (z, y, z) phase space [2, 5].

where outside the circle of radius C/2 centered at the
point (0, C/2). Therefore, all points on a trajectory ly-

ing outside of this circle move towards the origin and
those lying inside it move away from the origin. This
circle is fully contained in the circle of radius C' centered
at the origin. Therefore, as r —+ oo, all trajectories start-
ing outside of this larger circle are asymptotic to it. In
particular, any trajectory starting inside this circle can
never get out of it. Properties 2 and 3 are analogous to
the properties of the Lorenz equations [2, 5].

Property g. Equations (21) are equivalent to the fol-

lowing set of integral equations:

a(r) = e
~

a(0)+n z(r) b(r) e'dr ~, (24a)

a(r) = e '
~

a(0) cos[nf(7)]+ [b(0)—C]sin[nf(r)]

+c) (-&)"~"+'g„~,(r) ), (25')
k=0

7'

b(r) = C+ e
~ b(0) —C —n z(r)o(r)e dr)

0

(24b)

These equations offer the possibility of iterative solutions.
When substituting some starting approximations a&'1 and
b~'l for a and b on the right-hand sides of Eqs. (24), the
left-hand sides give new approximations a~'+ & and b~'+ ~

to start another cycle of iteration. For example, starting
with aI &(r) = b~ ~(r) = 0, one gets, after an infinite num-
ber of iterations, the formal solution

a+a = nlrb, (21a) b(r) = e '
~

—a(0) sin[nf(r)]+ [b(0)—C] cos[nf(r)]

b+ b = —nza+ C . (21b) (25b)

(a)+ (b) =
Da Ob

(22)

Proper&y 8. All solutions of Eqs. (21) remain bounded
in the phase space for all times. From Eqs. (21) we have

1 d ~ 2
C2

2 Cl——(a +b)= —a — b ——
~

2 dr 4 2) (23)

The right-hand side of' this equation is negative every-

Here we dropped the subscript n for convenience of nota-
tion and set C= q„/Ii.. Many properties of the solutions
of Eqs. (21) can be determined without knowing the exact
form of the function z(r), which can be either constant,
chaotic, almost periodic or periodic.

Property 1. For given ni the form of a(r) and b(r) is
independent of C with the amplitude of a and b propor-
tional to C. There is no such simple scaling with n.

Property 8. All volume (area) elements of the two-
dimensional phase space (a,b) do contract uniformly.
This follows from the fact that the divergence of the ve-

locity vector in phase space is equal to a negative con-
stant:

Here

T

f(r) = z(u)du,
0

go(r) = e',

7'

) ~i(r) = z(u)gi(u)du .

The domain of convergence of the series occurring in Eqs.
(25) depends on the form of z(r). The case of C = 0 is

special. It follows from Eqs. (25) that in this case the
trajectory always ends up at the origin of the phase space,
regardless of the initial conditions and of the form of z(r)
This is the only case when the origin becomes a fixed
point. This simply means that a given mode in the water
density (height of water in individual compartments) can
be excited only if the amplitude q„ofthe corresponding
mode in the distribution of water inflow is nonzero.

Property $. The form of Eqs. (25) leads us to the
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following important property: Let a(r) and b(7) be a
solution of Eqs. (21). Then the solution of Eqs. (21)
with arbitrary initial conditions a(0) and b(0) is

a(~) = a(7) + e {n cos[n f(7)] + Psin[nf(r)]j, (26a)

b(7) = b(7) + e (Pcos[nf(r)] —nsin[nf(i. )]), (26b)

where n= a(0)—a(0) and P= b(0)—b(0). This can be eas-
ily verified by direct substitution into Eqs. (21). There-
fore, knowing one solution, one can easily construct all
remaining solutions. Moreover, from Eqs. (26) it follows
that, as r ~ oo, all trajectories converge towards a sin-
gle trajectory —an attractor. From property 3 it then
follows that this attractor must lie inside or on the circle
of radius C centered at the origin. According to prop-
erty 1 the shape of this attractor is independent of the
magnitude of C. Therefore, for a given value of z(r)
(as determined by parameters p and o. in Sec. III), it is
sufficient to investigate (numerically) this attractor for a
single value of C and then scale appropriately for other
values of C. The character of this attractor is determined
by the character of z(7), i.e. , by the (attractor) solution
of the limit (Lorenz) equations (13).

Property 6'. For arbitrary T there is a solution a(r)
and b(7) of Eqs. (21) such that a(0) = a(T) and b(0) =
b(T). [For example, these two conditions lead always
to a nonsingular system of equations for two unknowns
a and P in Eqs. (26)]. Because of property 3, such a
trajectory must lie from its beginning (a(0), b(Q)) inside
the circle of radius C centered at the origin. As T ~ oo
this trajectory must approach infinitesimally close to the
attractor discussed above. Now, let z(r) be a periodic
function with period T, i.e., z(r + T) = z(7) for all r.
Because it then follows from Eqs. (21) that a(0) = a(T)
and b(0) = b(T), the trajectory (a(7 ), b(r)) must also be
periodic with period equal to T (or a fraction of T). Using
this periodic orbit as (a(7.), b(r)) in Eqs. (26), we can see
that it attracts all other trajectories and consequently
it constitutes the limit cycle of Eqs. (21). In this case,
there cannot exist any chaotic attractor. A special case
of a periodic function is a constant. If z(7 ) =z, = const,
then

a(~) = C ', , b(r) = C

at the origin [or in a cylinder in the (a„,b„,z) space], are
in a sense the projections of the Lorenz-type attractors
into the new subspaces of the full phase space.

IV. NUMERICAL RESULTS
FOR CHAOTIC DYNAMICS

We have carried out extensive numerical calculations
to study the dynamics of the rotating waterwheel and
thus explore in a detailed way the Lorenz parameter
space. This is done with the use of a somewhat mod-
ified program of Ref. [12] for the simultaneous solution
of Eqs. (12) and (21) for an arbitrary value of n. All the
calculations reported below were carried out for an ini-
tially empty wheel whose initial spin zo is nonzero, i,e.,

for z(0) = zs & y(0) =0, z(0) = p, and a„(0)=b„(0)=0 for
n&2. In this section, we report and discuss our results.

A. Attractors for the higher harmonics

10.

40 80 -10 0 10
I 'I 1

- 30

0' Z
- 20

—10-
- 10

In all (a„,b„)subspaces, any trajectory with the above
initial conditions is contained from the beginning inside
the circle of radius C„=q„/Kcentered at the origin (see
property 3 of Sec. III). Since the motion of the wheel
in the limit 7 ~ oo is determined by the Lorenz model,
we have found, as expected, the following four types of
limit behavior: rest, uniform rotation, chaotic reversals
of the spin of the wheel and periodic time dependence
of spin (periodic reversals). As discussed in Sec. II, the
wheel comes to rest for p & 1 when the trajectory in

phase space is attracted to the fixed point at the ori-
gin. Examples of the other three types of limit behavior
are presented in Figs. 2—4, consecutively showing chaotic
behavior, uniform rotation, and periodic reversals.

The z-z panel of Fig. 2 displays a typical Lorenz

20- - 20

is a fixed point attracting, according to Eqs. (26) again,
all the trajectories. Thus we have shown, that the char-
acter of the limit behavior of higher modes a„and b„
is fully determined by that of the controlling equations
(12). If z(r) [angular velocity a(t)] goes to a fixed point
(uniform motion), so do a„and b„.If z(7.) is periodic
for large times, so are a„and b„.The only possibility
for a„and b„to behave chaotically is when z(r) behaves
chaotically (ends up in a chaotic attractor). In the next
section we will discuss some numerical results indicating
that a„and 6„indeed always behave chaotically in this
case, and show the form of their chaotic attractors. These
attractors, which are contained in the circle of radius C

b2

0- -0
b2

—20
a2

I I I

20 -10 0 10

- —20

FIG. 2. Chaotic behavior: Phase-space trajectory of the
Malkus waterwheel for o = 4, p = 20, 4 = 20, Cq ——25,
xo ——0.01. Plot of the spin variable x as a function of the
dimensionless time r and projections on several coordinate
planes of the phase space are shown.
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FIG. 5. Bifurcation diagram of the Poincare return map
of the Malkus waterwheel equations (12). These equations
were integrated for 750 equidistant values of p in the interval
shown. The coordinates of the erst 500 downward crossings
through the plane z =p—1 were calculated. Of these, the first
200 (transient phase) were skipped, for the next 300 a dot was
plotted at the y coordinate of the crossing point. 0 = 1.76,
6=20, xo ——0.01. The regions of topologically identical limit
periodic orbits in various bifurcation diagrams are labeled by
identical letters.

behavior corresponding to areas continuously filled with
dots. (For the smallest values of o, a trajectory can end
up at one of the two fixed points C+, also for some values
of p above the chaotic region, such as in Fig. 5 when the
trajectory ends in a fixed point for p ( 61.6, and then
again for 122.3 ( p ( 154.9.) The chaotic region contains
many periodic-orbit windows of varying width. At one or
both edges of some of these periodic-orbit windows, one
can clearly observe cascades of period-doubling bifurca-
tions. We have labeled the widest windows by the letters
A, B, and C. The same letters in different bifurcation
diagrams correspond to topologically identical periodic
orbits near the center of these windows. The letter D
denotes the region of periodic orbits that most probably
extends up to p= oo. In Sparrow's notation, the periodic
orbits in the A and J3 windows are of type z2y2 while
those in the C and D windows are of type zy.

FIG. 7. The beginning of the bifurcation diagram of Fig. 6

recalculated at higher resolution.

In Figs. 5—10, only those windows are recorded that
conta, in at least one of the equidista. nt values of p at which
the Poincare return map was calculated. As the resolu-
tion was increased, new narrower windows were revealed,
as can be seen when comparing Figs. 6 and 7 or 9 and 10.
Note that chaos (some of which is definitely stable) and
limit periodic cycles occur also for e(2 where the fixed
points are stable for all values of p. At the beginning of
the chaotic region for o = 10 in Fig. 7, one finds the sig-
nature of metastable chaos [10] occurring for p( 14.97,
where some of the trajectories needed more than 200 or
500 loops to end up in one of the two fixed points C+.
The trajectory at p = 14.97 remains chaotic at least up
to 7 = 50000, which corresponds to about 30 000 loops
around C+ or C . This value of p is well below the Hopf
bifurcation at p~ ——17.5. p2

——
2 has a minimum of

14.928203 at o = 2(1+~3)= 5.4641016. For this value
of o and for z0 ——0.01, stable chaotic behavior starts at
p = 14.250493. In the region below p2, the final path
of the trajectory is highly sensitive to the initial condi-
tions. For example, for o =2(1++3), the trajectory for

p = 14.250493 goes to a fixed point for (zjjI ( 0.01 and
is chaotic for [zji[ & 0.01. For [zo( = 1 chaos starts at
p 13.84, while for (zo) = 100 it starts at p 13.0 (see
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is somewhat different in C and D T. he same is true for
the zzy2 orbits in the A and 8 windows. It thus seems
that the distribution of the periodic windows is roughly
"symmetric" with respect to the "axis" of the arrow re-
gion. This hypothesis remains to be checked thoroughly
for the narrower windows. However, it is immediately
obvious from the bifurcation diagrams in Figs. 5—10 that
the edges of the period-doubling windows at which the
period-doubling cascades occur are symmetric with re-
spect to such an axis of the arrow region.

The period-doubling edges are always those closer to
this axis where the windows run parallel to the axis (or
stem). Inside the narrow arms, these edges get closer to
the fixed-point region. Therefore, in the windows of the
A type, the cascade of the period-doubling bifurcations
always occurs at the bottom edge of a window. This is the
same situation as the one observed for P = 8/3, 0 = 10
[4]. On the other hand, in the windows of the 8 type, the
period-doubling cascade occurs at the bottom edge of a
window, only in the low-p arm portion of this window.
In its stem portion, the cascade occurs at the upper edge
of the window, and where the window bends, both at
the lower and upper edges, always assuming that one is
moving along a line on which a is constant. Therefore,
the natural directions along which the sequence of various
behaviors probably is always the same seem to be all the
directions perpendicular to the bent periodic windows in
the (0, p) plane, not the lines 0 = const. Figure 11 shows
that it is not sufficient to investigate the behavior (series
of bifurcations) of the Lorenz model for one value of o,
and assume that the results will roughly apply to all other
values of n, too.

The C window seems to have the same boomerang-
like form as the 8 window, though it is much wider.
To the right of it, there is another region with chaotic
limit behavior interspersed with further periodic windows
of various widths. One of these windows contains the
simplest periodic orbits z and y that loop around only
one of the two fixed points C+ (e.g. , at 0 = 100, p =
150, or 0 = 100, p = 700). Unstable orbits of this type
are involved in the Hopf bifurcation. To our knowledge,
stable orbits of this type have not been observed before
in the Lorenz model.

D. Noisy periodicity

The canonical region may be best described as that
part of the chaotic region that contains no periodic win-
dows. For example, we have not detected any periodic
windows in the area 4(o.~ 7 and p& 50 at the resolution
of 4p = 0.0625. The windows do bend before reaching
this region. This explains the form of the Lorenz attrac-
tor of Fig. 2 extending over quite a large region of the
(x, y, z) space. For most other values of the parameters
o and p, one can observe noisy periodicity or semiperiod-
icity [4], when the form of the chaotic attractor is influ-
enced by infinitely many unstable periodic orbits left over
from the period-doubling cascades in the nearby periodic
windows (see Fig. 12).

The chaotic trajectory of Fig. 12 is confined in a nar-
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FIG. 12. Noisy periodicity attractor for cr =40, p =36.5,
4 = 20, C4 ——25, xo ——0.01. This corresponds to a point in
the low-p arm of the arrowhead chaotic region of Fig. 11; cf.
also Fig. 10. Only isolated points of the trajectory were plot-
ted every 0.001 units of r. This enables one to distinguish
the initial transient phase showing up as dotted lines, where
the separation of adjacent dots is inversely proportional to
the phase-space velocity, from the limit chaotic attractor con-
tained in a narrow 2D band in the {x,y, z) subspace. The two

upper panels show the full x-z plot and a large magnification
of its central part. The attractors in the {a„,h, x) subspaces
have the form of Mobius-like helices.

row two-dimensional band in the vicinity of an unstable
periodic orbit. In the (a„,b„,z) subspace the chaotic tra-
jectory is also confined to a 2D band that appears to be
wound around the surface of a cylinder. The attractor of
Fig. 12 is an example of the asymmetric chaotic attrac-
tor. For this case, there is another attractor obtained
by a mirror-image transformation z ~ —z, y ~ —y, to
which the trajectory with the opposite zo would be at-
tracted. Figure 12 explains why the corresponding part
of the bifurcation diagram in Fig. 9 looks like a single line.
Namely, all the downward segments of the trajectory are
concentrated very close to the z = y = 0 axis. In this
region of the (o, p) plane where the braking force is large
and the water inflow small, this is true for both chaotic
and periodic limit behavior. The downward part of the
trajectory thus corresponds to the wheel practically at
rest.

Stable chaotic behavior occurs also in the other thin
arm of the arrowhead chaotic region. Here, the Anal des-
tiny of the trajectory is especially sensitive to the initial
conditions. As [zu( is decreased, the low-o arm of the
chaotic area extends higher along the left-hand side of
the dotted line separating in Fig. 11 the limit-fixed points
on the left from the D-periodic orbits on the right. For
example, we have observed a stable chaotic {at least up
to 7 = 26 000) trajectory of the noisy-periodicity type for
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0 = 1.7, p=80, 4 = 20, C2 ——25, and zo ——0.002. There
are also stable periodic orbits in this area of the (a., p)
plane. 4-

20
I

40 20
l

40
I

- 4

E. First homoclinic explosion

In the end, we show that the class of the Lorenz trajec-
tories due to an initially empty Malkus waterwheel with
very small initial spin with p ( p~ allows us to determine
easily the value p' at which the first homoclinic explosion
occurs. For the behavior displayed in Fig. 3, our calcula-
tions show that at least for some values of 0 and 4 there
exists p& & pq such that for p& & p ( pq a trajectory with

y(0) = 0 and z(0) = p ends up at the left fixed point C
if 0 ( zp ( z, i, while for zp & z,n, it ends up at the
right fixed point C . Here z,R & z, i & 0. A trajectory
starting with —zo will end up at the opposite fixed point
than that starting with zp because if (z(7), y(7), z(r)) is
a solution of Eqs. (12), so is (—z(r), y(7), z—(r)). In the
transition interval (z, i, z,n) there is an infinite number
of diferent types of trajectories ending either in C+ or
in C . The exact sequence of these trajectories seems
to depend on p, and is discussed in some detail in the
Appendix. For 1 & p & p& all trajectories with arbitrary
zp & 0 end up in the right fixed point C+. At p = pi,
z,R

——z, g ——0. As p increases above pg) z,R) z,g) and
z,R —z, q increase, too.

In the notation introduced in the Appendix, for p ( pg

the trajectories are of the type R for all zp & 0. For
p ) p& they are of this type for zo & z,R only, while for
0 & zo ( z, ~ they are of the type RL. From the nature
of the first homoclinic bifurcation [4] it is obvious that
p&

= p', the value at which the first homoclinic explosion
occurs. For a very small constant value zo ) 0 we thus
have an almost direct transition from the R trajectories
below p' to the RL trajectories above p', which can be
used to determine the value of p'.

V. CONCLUDING REMARKS

In this paper, we have shown that the limit behav-
ior of the Malkus waterwheel is fully controlled by the
Lorenz equations with P = 1. The higher modes of the
water density are just "slaves" of the controlling Lorenz
equations in the sense that these modes have strange at-
tractors only when the Lorenz equations have such at-
tractors. We have generated the map (see Fig. 11) of
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20
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40
I

20
I

40

FIG. 13. Sensitivity to initial conditions below the
chaotic region: different types of set tling into a fixed
point for cr = 3.75, p = 7.5, 6 = 20. Starting from
upper left, clockwise: RLR (xp = 0.000 677 2), RRRL
(xp = 0.0006774158), RRRLR (xp = 0.00067741585465),
RRRRL (xp =0.000 677 415 854 676 5).

the limit behavior in the (a, p) parameter plane. In this
plane the chaotic region has the form of an arrow with
periodic windows situated "symmetrically" with respect
to the axis of the arrow. In general, both p and 0 values
are important for the determination of the limit behav-
ior. Stable z and y periodic orbits have been observed.
First homoclinic explosion can be detected easily from
the change in character of the trajectories of the Malkus
wheel with small initial spins.
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TABLE I. Initial spin required for various types of trajectories for o =3.75, p=7.5, and A =20.0.

Trajectory type

RL
RLR
RRL
RRLR
RRRL
RRRLR
RRRRL
R

Lowest xo

0+
0.000 677 008
0.000 677 211
0.000 677 415 74
0.000 677 415 80
0.000 677 415 854 645
0.000 677 415 854 660
0.000 677 415 854 676 6

Highest xo

0.000 677 007
0.000 677 210
0.000 677 415 73
0.000 677 415 79
0.000 677 415 854 63
0.000 677 415 854 650
0.000 677 415 854 676 5

Estimate of x~, , —x, ,;

6 77 x 10
2x10
2 x 10
6 x 10

10 "
2x10 '4

2 x 10
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APPENDIX

In this Appendix we discuss the nature of the tran-
sition interval (z,i, z,tr) of Sec. IVE for cr = 3.75. In
this case pq 7.4663466. For p just above p&, while
the transition interval still remains extremely narrow, it
already contains an infinite number of further division
points z, q & z,2 & z,q . . « z,R, such that when

& & zo & z, 2, , the trajectory ends up at the right
fixed point C+, and when z, z& ( zp ( z& p&+» the tra-
jectory ends up at the left fixed point C

For all zo ) 0, the trajectory in the z-z plane first
makes a loop about the right fixed point C+. We denote
this part of the trajectory as R. Let us denote all later
loops of (almost) the same radius about the right fixed
point C+ again as R and those about the left fixed point
C as L. We refer to the final inward spiral about the
right and left fixed points as R and I, respectively. In
our notation, z,o

——0. A trajectory with z, 2; & zp
z, 2;+~, i=0, 1, 2, . . . , oo is of the type R'+ L, while that
with z, 2; ~ & zo & z, 2;, i = 1, 2, . . . , oo is of the type
R'LR, where R" means n subsequent loops about the
right fixed point. For example, the trajectory in Fig. 3
is of the type RL, , while trajectories of the type RIR,
RRRL, RRRLR, and RRRRL can be found in Fig. 13.
Finally, a trajectory with z,R & zp & oo is of the type
R. We conjecture that all trajectories with zo ——z„,
i = 0, 1, 2, . . . end up at the origin, the trajectory with
zp = z R is a periodic one, not ending in any of the three
fixed points, i.e. , of the type R~, and that the point z,R
is the accumulation point of the sequence (z„j.This
conjecture is based on numerical data we have obtained.

For o = 3.75, p = 7.5, and b, = 20.0 (see Fig. 13), we
have found examples of the following types of trajecto-
ries: RLR, RRL, RRLR, RRRL, RRRL R, RRRRL,
and, of course, the most common ones, RL and R. Using
the value of 0.005 for the time step of the fixed-step-size
Runge-Kutta fourth-order differential-equation solver of
Ref. [12], we have calculated more than 60 trajectories in
the transition interval (z,i, z,~) and its iirunediate vicin-
ity. The lowest and highest values of zo for which various
types of trajectories were found and the estimates for the
first few points z„based on these results are presented
in Table I. For this case, z,R—z, i 4x10 . In this very
narrow interval, the sensitivity of the form of the trajec-
tory to the initial conditions is extremely high. The same
picture was found when integrating the trajectories with
smaller precision. The consequence of the decreased pre-
cision was just the shift of all the points z« to the left by
the same amount. This seems to indicate that the above-
described structure of the transition interval (z,i, z,~) is
real, not just an artifact of the finite computer precision.

As p is increased further, z,R, z,~, and z,R —z, i start
to grow rapidly, and many more different types of trajec-
tories can be found between z, ~ and z,R than at p = 7.5.
For example, at p = 10, z, i 25.09, and z,R 70.63,
and some examples of the trajectories we found are
RLioR (25 099) RLs RL (25 1) RLsRzL (25 3) RL4RL
(25.5), RL4R~L (25.6), RL4R (25.8), RL RL (26.0),
RL R (27.0), RL R (30.0), RLRzLRL (35.0), RLR
(40.0), R L (50.0), R L R (55.0), R L (60.0), R LRzLR
(65.0), R L (70.0), R7LR (70.5), RsLR (70.6), and RisL
(70.62). The numbers in parentheses are the correspond-
ing values of p.
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