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INTRODUCTION

Density-functional theory [1], in a form useful for the
study of the electronic structure of atoms, molecules, and
condensed matter, can be systematically derived and for-
mulated avoiding both practical and formal inconsisten-
cies, even beyond the limitations imposed by working at a
Hartree-Fock-like level. Usually the theory is developed,
after considering the properties of the density operators,
with particular emphasis on three aspects as follows: (a)
definitions and existence theorems, (b) rules for construct-
ing density functionals, and (c) methodology.

The traditional presentation of density-functional
theory states first that there is a unique functional to
compute the total energy for a system with N electrons
interacting with an external potential v(r) (in their
ground state) (2],

E[v,y]1=E,[y]1=F[y1+ [v(rhy(r,n)dr §))

where y is the reduced first-order density operator, and
F[vy]is defined:

Fly]l=T[y]+V,. [v]. (2)

T[y] is the kinetic-energy functional and V,_[y] is the
total electron-electron interaction energy. Both function-
als are well defined but unknown. The one density ¥ can
be written within the one-particle approximation, consid-
ering that for each particle of the system there is at least
one auxiliary function ¥;, such that [3]

y(n,r)= 3 nl¢;(r)) (¢,(r)] . (3)

In this approximation the total number of electrons can
also be expressed as a density functional

N=N[y]= [y(r,0)dr @)

using the diagonal part of y.

On the other hand, the second Hohenberg-Kohn
theorem states that for whatever other approximated
electron density y’(r) the energy functional obeys the fol-
lowing inequality for the exact ground-state density:

E,[v']ZE,[y]. (5)
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A variational procedure can then be proposed to find
both y and E

5 [Ev[y]—y(f'y(r)dr—N) ]=o, )

where u is a Lagrange multiplier associated with the re-
striction of having N particles in the system. It has been
argued (Parr et al. [4]) that this constraint is enough for
the development and use of the theory, but recent evi-
dence indicates that other constraints are needed [5].

We can illustrate the use of further constraints with an
expression proposed by Keller and Ludena for the varia-
tion function G including auxiliary Lagrange multipliers
(4 and the matrix a')

G(I'™)= Tr(H,T")—p[ Te(T'") —1]— Tr[a' (L T"—7)] .
(7)

Here I'" is the density-matrix operator, H is the total
Hamiltonian operator, that is (in rydberg units),

—V%‘l' 2 i

ji>i Tij

H0=?+i7e_e=2

. (8)

The last term on the right-hand side of (7) represents the
restriction to correctly projecting the density matrix on
the one matrix, that is,

LIT">y(r,r); 9)

this we will call a symmetry constraint and the resulting
theory a ‘“‘symmetry-constrained density-functional
theory.” This last term on the right-hand side of (7) is
then added to warrant the first-order matrix being ob-
tained within the set of matrices that will map onto the
full density matrix.

reL) 'y(r,r) . (10)

The two constraints that have been introduced in (7) are
related to the following two important restrictions: first,
the conservation of the total number of particles of the
system, the same as in Eq. (6); and, second, the conserva-
tion of the internal symmetry of the system, which can
be, for example, described by a given shell structure of
the electronic cloud.

The first constraint is well known and widely used,
whereas the second is only implicitly used or appears ex-
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plicitly as a part of the methodology (the best known and
more widely used example is the so-called Kohn-Sham
procedure) where a full set of stationary states can be ob-
tained; however, for stationary states other than the
ground state, we do not know how useful it will be to use
the exchange-correlation terms as equal to the terms of
the ground-state theory. Within the Kohn-sham metho-
dology an ansatz is made so that the one density can be
written as in Eq. (3), where the occupation numbers n;
are either fixed beforehand or given in such a way that
the total energy is minimized for a given external poten-
tial and for a given approximation of the exchange-
correlation part of the total electronic energy.

The Kohn-Sham equations are then obtained from (6)
if the kinetic-energy contribution to E,[y ] is written with
the auxiliary functional

Tly1= [ Snl-Viy(rol, ., ldr

= [k(r)p(r)dr (11)
to obtain the well-known Kohn-Sham equations
ﬁ¢i:_vz¢i+V¢i+Veﬂ‘¢i=8i¢’i . (12)

As we said above, the internal symmetry of the system
within this procedure consists in assigning a set of {n;},
which in general are taken to be integers, either O or 1.

We can use this idea to include the internal symmetry
in the density functional itself. We have discussed this
problem before [6,7], stating that “the formal structure of
density-functional theory . . . should be stated in at least
three theorems.

(1) The total energy of the system, in any stationary
state, is a unique functional of its particle density.

(2) There exists a variational principle for the energy
functional of a stationary state of the system.

(3) The internal symmetry of the system, through a set
of parameters {n; v}, is a necessary part of the theory.
The variational equations should read

8 [Eliny) 1= | [ pliny)1at =N || =0,

and the parameters n; y included either in the construc-
tion of the density function (as in the Kohn-Sham pro-
cedure) or in the energy functional itself.”

Here we will use the second proposition of Keller’s
theorem; 3, that is, we will include the occupation param-
eters or their equivalents in the construction of the ener-
gy functional itself. This procedure will allow us to con-
struct an equation for the square root of the electronic
density p(r)=y(r,r).

EQUATION FOR THE SQUARE ROOT
OF ELECTRONIC DENSITY AND CHEMICAL
POTENTIAL

Levy, Perdew, and Sahni proposed that within the spir-
it of density-functional theory, there should exist an ei-
genvalue equation for the square root of electronic densi-
ty [8], that is,
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heﬁpl/Z(r)Z“pl/Z(r) , (13)
where the Hamiltonian A is given by the expression,
hog=—V*+v(r)Fv4(r) . (14)

If v (1) could be properly modeled, it could simplify the
methodology of obtaining electronic density, using only
two self-consistent equations instead of N+1 self-
consistent equations as in the Kohn-Sham methodology.
One could adapt a Kohn-Sham program [for atoms, as an
example, solve for a 1s-like orbital to obtain pl/z(r), or
for solids systems p'/%(r) would satisfy k=0]. Levy and
Ou-Yang [9] further discuss how to construct Eq. (13).

Here we will also consider the approximation for the
kinetic energy,

T,[p]l= [ p"Ar)(—V2)p! )+ Tylp] (15)

where T, [p] is the kinetic-energy functional for nonin-
teracting particles. Ty[p] is the correction due to the
fact that the first term, a functional using the square root
of the density, may not be enough to represent all the ki-
netic energy, and in our case, may not be enough for the
introduction of some of the shell-structure effects. Equa-
tion (15) is introduced into the variational procedure,
that is,

8T;[p] _ v/
o) pl +ogl[pli)+Vss(lplir),  (16)
with the variation of Ty[p],
8Tylp]
T+ r)=— 17
ve([plir) ss([plir) Bp(r) a7

If we make a Euler-Lagrange variation for the Kohn-
Sham (KS) energy functional we should obtain a func-
tional for the chemical potential,

8T;[p]

Sp(r)

Equations (16)—(18) result in the desired equation

+ugs([plir) =gy . (18)

=V 2 +uks([plirip'”?
+{vg(lpln)+Vss([plin)}p' *=up'/? . (19)

In (19), there is an effective potential v4(r)+ Vs(r),
which should contain all the information related to the
system’s structure and the uncertainty principle, and
from these considerations it is named the Pauli potential
[10].

As discussed above, to obtain a realistic density with
(13) we have to define an effective potential that includes
the effect of the internal symmetry (shell structure). The
possibility discussed below is to define a shell-structure-
dependent energy correction

Ag(r)p(r)= 3 &9, (r)[2—%p(r) , (20)

where NE= 3 ;n;e; corresponds to the sum of the
Lagrange multipliers €;, in the Kohn-Sham procedure,
which are associated with each auxiliary function ;.
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Then A%Z(r) represents the effect of the shell structure of
the effective potential, and can be taken as an approxima-
tion to Vgg(r) obtained by construction.

We could have written a functional

Q=E[p]—p {fp(r)dr—N]

-1 | [ S eiln)de— [ep(ndr |, 1)

with A a new Lagrange multiplier associated with the
shell structure imposed as an internal symmetry (to be
taken as A=1 below from our method of construction
considerations), performed a variation with respect to
[p'/%(r)]*, and written the kinetic energy as in (19) above.

Let us now find a valid equation for p'/2. We can start
from the well-known Kohn-Sham equations

_V2¢l' +[vxc(r)+vCou](r)+vext(r)]¢i :8i¢i . (22)

As usual, v, (r) is a local exchange-correlation potential
and vc,, is the Coulombic potential produced by all the
electrons. If we multiply (22) by ¢ on the left and sum
over the one-electron-state index, the resulting expression
is

zhi(r)xs=2€i|¢i|2 , (23)

where we have introduced

h(0)XS8= —*V2h, + ¢ [0, () F 0 cou(T) Ve ()]0, 20
We can then add, both on the right and on the left, the

two terms (1/N) 3 g;p'/? and —V?p!'/%, where N is again
the total particle number, to obtain, cancelling p!/? on
both sides, the equation

—Vzp‘/2+vFK(r)pl/2=Ep”2 (25)

(where again € is the sum of the KS Lagrange multipliers
divided by N), and the effective potential

UFK(I’)=ch(r)+vCoul(r)+UBXt(r)

+p 72V 2+ k(1) — A1) . (26)

In the effective potential appear k(r) and Ace(r) [see
Egs. (11) and (20)]. These terms contain the proposed KS
structure constraint. In particular, we have introduced a
new term in the effective potential, the symmetry-
constraint potential A€

AE(r)= 3 n;g;l¢;(r)|*/p(r)—E . QN

The procedure we have followed, a summation over
Kohn-Sham equations, has been used before to obtain re-
lations for the kinetic energy within density-functional
theory, see Bartolotti and Acharya [11]. The possibility
of using this procedure to obtain an equation for the
square root of the density has been proposed by Levy and
Ou-Yang [9]. A term similar to (27) is shown and dis-
cussed in those articles. The energy € can be replaced by
other characteristic energies.

This construction procedure, an algebraic sum, can be
directly derived from a variational principle starting from
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(21), when an adequate constraint from our theorem 3 is
introduced. Then, behind the construction, there is al-
ways the variational principle supporting the Kohn-Sham
equations.

We could use Thomas-Fermi theory or similar con-
siderations to approximate these two terms, instead of us-
ing, as we have here, the results of the Slater-Gaspar-
Kohn-Sham procedure. The results will change with the
chosen starting point for the use of density-functional
theory.

To show the usefulness of Eq. (25), we have integrated
this expression using the KS p(r)l/z,

fp“z(—Vzp“z)dr+ fpl/vaK(r)p1/2= Sne . (28)

The results are presented in Table 1.

We have found that a direct numerical integration of
(25) is not difficult; we directly obtain the correct eigen-
values and density. There are several algorithm prob-
lems, though. First, we have to change the atomic pro-
grams in order to introduce the correct boundary condi-
tions for the case of our potential. Second, the extra term
arising from the difference of the actual and the pseudo-
kinetic energies can be very large near the origin or at
large distances and special care has to be taken to avoid
numerical errors in those regions.

The equation proposed originally by Levy, Perdew, and
Sahni is different from Eq. (25) (in fact, it is also different
from one proposed by us in a previous paper [12]). The
problem is that those equations do not include the sym-
metry constraints.

If we introduce the correct symmetry constraints, we
can obtain as a Lagrange multiplier either the chemical
potential or quantities like € because, by construction,
there is in fact a family of equations for the square root of
electronic density [13],

_V2p1/2+vle:é_((r)pl/2=epl/2 , (29)
with vEK (r);

veff(r)=vxc(r)+UC0ul(r)+vext(r)

1

+ p1/2

V3! 24+ k(r)—Ae(r) ;

TABLE 1. Numerical solution of Eq. (28) (in hartree energy
units).

Sum of eigenvalues Left-hand side

Atom (KS) Eq. (28)
He —1.1648 —1.1715
Li —3.8929 —3.8929
Be —8.1658 —8.1657
B —14.0060 —14.0165
C —21.3627 —21.3769
N —30.2514 —30.2499
(0] —40.7088 —40.7092
F —52.7705 —52.7645
Ne —66.3759 —66.3730
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and the series of possible Ae(r)= 3 |¢;|%;n; /p(r)—c¢,

1
where € can be given the desired physical meaning. We
have tested several possibilities, but none has a special ad-
vantage.

CONCLUSIONS

This work shows the necessity of an extra principle to
density-functional theory; that is, to include a symmetry
constraint for the projection of the density matrix into
the one matrix in the variation principle. As a result, we
have found that it is indeed possible to construct an equa-
tion for the square root of the electronic density, but it is
necessary to include an extra term in the effective poten-
tial, which imposes a symmetry constraint into the ac-
ceptable electronic density. It should be pointed out that
our procedure, in its present form, is aimed at obtaining
p(r) and not at the development of the series of equations
needed to obtain wave functions (orbitals) containing the
square root of the density of the form

fe=(p/N)"72%"% (30)
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as discussed, for example, by Nyden and Parr [14].

In the work of Nyden and Parr, the variable 6, con-
tributes to the local orbital kinetic energy k,(r); each k,
equals a fraction of the total local kinetic energy of the
N-electron system. The sum of the “kinetic” energies
ki (r) of the f, orbitals adds to k(r), then those orbitals
could be used to construct the vEy (r) potential in the
same form as in our Eq. (29). The energy term Ag(r) in-
tegrates to zero; it only produces local variation of the
reference energy. Also in our Eq. (29) a pseudokinetic en-
ergy is used that needs to be corrected, cancelled, and the
k(r) terms of which introduced.
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