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Asymptotic approximations from quadrature rules
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We examine the ability of one- and two-point Gauss-Laguerre quadratures in correctly describing the
asymptotic behavior of Fourier transforms. We illustrate the effectiveness of this method with the exam-

ple of the neon atomic form factor and compare it to the results obtained from the familiar expansion in

terms of inverse powers of the independent variable and the derivatives of the charge density at the ori-
gin.

PACS number(s): 31.15.+q, 02.60.+y

I. INTRODUCTION

F(k) = f rp(r)sin(kr)dr
k o

which may be expressed as

F(k)= Irn f "rp(r)e'""dr
k . o

(3)

However, experimental data are only attainable for a lim-
ited range of small k which necessitates a knowledge of
the asymptotic behavior of F(k}, in order to perform a
correct analysis of these data.

For an inftnitely differentiable density [2] p(r), the
asymptotic behavior of F(k) for large k has been shown
[3,5] to be

F (k) 8~ g ( 1 }nnp(2n —1)(0)k —2n —2

n=1
(4)

and the first two terms of the expansion in Eq. (4} have
been given for the heliumlike ions by computing
p'(0), p' '(0) from highly accurate wave functions [6,7].
[The result of Eq. (4} may be derived [3,6] using the
method of integration by parts. ] If we truncate the ex-
pansion in Eq. (4) after the first term and use the cusp
condition [4], the asymptotic behavior may be expressed
as [8]

F(k}=16nZp(0)k +ri, (k)

where gj- is the error introduced by truncating the infinite
series in Eq. (4) and the subscript is an index to denote
the number of terms retained. In order to estimate the

The atomic form factor F(k} remains one of the most
important quantities in structure determination and is ac-
cessible from x-ray and electron scattering experiments
[1]. This quantity is defined as a Fourier-Bessel trans-
form

F(k)=4m f r p(r)jo(kr)dr

where jo is a zero-order spherical Bessel function and

p(r) is the spherically averaged charge density of the sys-
tem. For our purposes, we choose to work with the alter-
native formulation

II. QUADRATURE RULES

We have recently shown [9] that Gauss-Laguerre quad-
ratures may be used to compute the Fourier transforms
of functions with an exponential-type behavior. This type
of method was suggested by Wong [3,10] and is based on
a transformation into the complex plane as follows. Let
us consider the general Fourier transform

T(k)= f g(r)f (r)e'""dr . (6)
0

The three variations of the method discussed in Ref. [9]
consisted of considering the following: g(r)=r
m ) —1 and the variable change z= ikr (metho—d I)
[10]; imposing an exponential behavior, g(r)=e " and
the variable change z =(1—ik)r (method II) [11]; and
finally g (r) =r e ', a a positive, real parameter and the
variable change z =(a ik)r (method—III) [9]. Substitut-
ing these, respectively, into Eq. (6) yields

' m+1

T (k)=
k f f —z e 'dz (method I ),

o k

(7)

T (k}= . f "f . e 'dz (method II),
1 —ik o 1 —ik

Tn'(k) =
a —ik

m+1

f f z e 'dz
o a —ik

(method III), (9)

which may be treated with Gauss-Laguerre quadratures.
In this manner, Eqs. (7}—(9) may be expressed as

m+1

T'(k)= — g f '
to, +&N(f, k),

k .
1

k
(10}

error resulting from this truncation, it has been proposed
[7] to subtract half of the smallest term from the result.
Thus the maximum error would be plus or minus half the
smallest term retained. However, this proposal lacks in
its ability to express q. in an analytical form.
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a —ik

N
T"(k)= g f t, +E~(f,k),

1—ik .
1

1 —ik
m+1

a ik
L

(12)

two-term expansions in Eq. (4), i.e., we will compare gI
and g2 with E, F and E2 F, respectively, to determine
which method yields the best approximation to F(k) at
large k. Such a numerical investigation is required since
the question of whether the error of quadrature is smaller
than the error of termwise integration is difficult to
answer for the general case [12].

where x~, t~ in Eq. (11) are the abscissas and weights of
the ¹ rder Gauss-Laguerre quadratures and the z, ~ in

Eqs. (10) and (12) are the abscissas and weights of gen
eralized Gauss-Laguerre quadratures, i.e., those derived
from polynomials orthogonal with respect to the weight
function, r e '. The error terms Ez (f,k) may be es-

timated as
' 2N+m+1

N!I (N+m+1) i
(2N)! k

(13)

II(f k)N!I (N+ 1)
(2N)!

1

1 —ik

' 2N+1

yf (2N) 0&6& ~,
1 —ik

' 2N+m+1

(14)

gIII(f k)
N!I (N+m + 1)

(2N)! a —ik

)(f(2N) 0&g& ooe —ik
(15)

where the superscript M on Ez™(f,k) labels the method
used. The form factor may be computed from the charge
density via Eq. (3) using the three different methods, i.e.,
the imaginary parts of Eqs. (10)—(12),

F(k)= Im[T (k)]+Et'~(f, k)

where the error of the form factor is

E~F(f,k)= Im[E)v(f, k)] . (17)

We use f (z)=p(z), m= 1 in Eq. (10), f (z)=zp(z)e' in
Eq. (11),and f (z) =p(z)e ', m = 1 in Eq. (12). The results
[9] obtained from a judicious choice of the parameter a
illustrated that method III was the superior method for
the whole range of k. In fact, all three methods were
shown to perform better as k became larger [9].

The purpose of this paper is to examine the ability of
these methods in yielding effective asymptotic approxi-
mations. Indeed, the ability of method I to yield good
asymptotic approximations to simple test cases has al-
ready been demonstrated [3,10]. We hope to examine the
applicability of this method along with methods II and
III, for a more complex physical property such as the
atomic form factor. We will compare the quality of re-
sults obtained from one- and two-point quadratures in
Eqs. (10)—(12) with those obtained from the one- and

III. RESULTS AND DISCUSSION

We have computed p'(0), p' '(0) for the neon atom
from the near-Hartree-Fock wave functions of Clementi
and Roetti [13], which are given in terms of Slater-type
one-particle functions. We chose not to use the cusp con-
dition [Eq. (5)] for the one-term expansion since the wave
function only satisfies this condition approximately [14].
These values are then used to compute one- and two-term
asymptotic approximations to the form factor from Eq.
(4). Likewise, we have used the respective one- and two-
point Gauss-Laguerre quadratures to compute the form
factor for large k from Eqs. (10)—(12). Formulas are
available to calculate F(k ) analytically [6). Thus we may
use these analytical results as a basis for the comparison
of the results obtained from Eq. (4) with those obtained
from Eqs. (10)—(12). We have presented the relative er-
rors (deviations from the analytical results) from the
one-term results of Eqs. (4) and (10)—(12) in Table I and
the two-term results in Table II. All calculations were
perfortned in double precision on a SUN 3/50 computer
which yields about 15 figures of accuracy. The real pa-
rameter a in Eq. (12) was chosen to be seven in method
III since the normalization condition F(0)=N (number
of electrons) was quite closely held for this value as k ap-
proached zero. However, it should be noted [9] that
there is no universal value of a that is the best for all
values of k.

In Table I we present errors resulting from the one-
term expansion in Eq. (4) and the one-point quadrature
rules of methods I—III along with the F(k) values for
various values of k. Note that the independent variable k
and the relative errors in the tables are given on a loga-
rithmic scale to make the behavior of the errors as func-
tions of k more clear. We have included values of k that
cannot be considered strictly asymptotic, to illustrate
that these methods perform better as k becomes larger.
However, it has been shown [9] that correct values may
be attained for the small k regions with the use of
higher-order quadratures than the ones considered in this
paper. The results show that methods I and III perform
the best with method III yielding about a half order of
magnitude better results than the conventional one-term
expansion of Eq. (4). All methods with the exception of
method II are seen to perform better as k gets larger and
the asymptotic limit is approached. On the other hand,
method II does not converge to the analytical values and
is the least effective of all the methods presented.

For large values of k one can see the k-dependent rela-
tionship of F(k) and the errors resulting from the various
methods used. The second column illustrates that F(k)
has a -k behavior for large k in accordance with the
leading term in Eq. (4). Since the logarithms of the rela-
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TABLE I. F(k) and the logarithm of the relative errors of the one-term approximations to F(k) at various values of k. Numbers
in square brackets denote powers of 10.

log&o(k/ao '
)

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00
8.50
9.00
9.50

10.0

F(k) (anal. )

8.6362[0]
3.7614[0]
1.2144[0]
1.5750[—1]
2.8764[—3]
3.0966[—5]
3.1201[—7]
3.1225 [—9]
3.1227[—11]
3.1228[—13]
3.1228[—15]
3.1228[—17]
3.1228[—19]
3.1228 [—21]
3.1228[—23]
3.1228[—25]
3.1228[—27]
3.1228[—29]
3.1228[—31]
3.1228[—33]
3.1228[—35]

g, /F (k)

4.5582[0]
2.9187[0]
1.3930[0]

—7.5730[—3]
—1.0672[0]
—2.0732[0]
—3.0738[0]
—4.0739[0]
—5.0739[0]
—6.0739[0]
—7.0739[0]
—8.0739[0]
—9.0739[0]
—1.0074[1]—1.1074[1]
—1.2074[1]
—1.307[1)
—1.40[1]—1.5[1]
—1.5[1]—1.5[1]

Ei F/F(k)

3.0067[0]
1.2058[1]
7.1800[—1]—3.2409[—1]—1.2564[0]

—2.2506[0]
—3.2500[0]—4.2500[0]
—5.2500[0]
—6.2500[0]
—7.2500[0]
—8.2500[0)
—9.2500[0]
—1.0250[1]
—1.1250[1]
—1.2251[1]
—1.325[1]—1.42[1]
—1.5[1]—1.5[1]
—1.5[1]

E) p/F(k)
—2.9740[—1]

7.6825[—1]
5.4179[—1]

—1.2402[0]
—3.6085[—1]
—3.2686[—1]
—3.2362[—1]
—3.2330[—1]
—3.2327[—1]
—3.2327[—1]—3.2327[—1]
—3.2327[—1]
—3.2327[—1]—3.2327[—1]
—3.2327[—1]
—3.2327[—1]
—3.2327[—1]
—3.2327[—1]
—3.2327[—1]—3.2327[—1]
—3.2327[—1]

E"' /F(k)
—1.0864[—1]
—1.4176[—2]—1.3312[—1]
—7.8737[—1]
—1.5639[0]
—2.5419[0]
—3.5397[0]
—4.5395[0]
—5.5395[0]
—6.5395[0]
—7.5395[0]
—8.5395[0]—9.5395[0]—1.0539[1]
—l.1540[1)
—1.2539[1]
—1.352[1]
—1.5[1]
—1.5[1]
—1.5[1]
—1.5[1]

'Note that the logarithms of all relative errors with an absolute value ~ 10 '~' are reported as —l.5[1].

tive errors, i.e., logio[t) /F(k)], log, o[EN ~/F(k) ] are re-
ported, we may surmise that the error g& taken from the
expansion in Eq. (4) is k dependent, i.e., the order of
magnitude of the first neglected term. This same k
dependence is observed for methods I and III which may
be explained via Eqs. (13) and (15). Take, for example,
the error term for method I in Eq. (13). For very large k,

we may consider the Taylor (MacLaurin) expansion of
f ' ' around zero argument. Since the remaining factors
in Eq. (13) are real we are only interested in the imagi-
nary terms of the expansion. It is easy to show that the
imaginary terms are odd inverse powers of k starting
with k '. Since we are in the large k regime it is a good
assumption that the first (k ') term will dominate over

TABLE II. F(k) and the logarithm of the relative errors' of the two-term approximations to F(k) at various values of k. Num-

bers in square brackets denote powers of 10.

logio(k/ao F(k) (anal. ) qq/F (k) E',,F/F(k) E~,F/F(k) Ei~uF /F(k)

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00
8.50
9.00
9.50

10.0

8.6362[0]
3.7614[0]
1.2144[0]
1.5750[—1]
2.8764[—3]
3.0966[—5]
3.1201[—7]
3.1225[—9]
3.1227[—11]
3.1228[—13]
3.1228[—15]
3.1228[—17]
3.1228 [—19]
3.1228[—21]
3.1228[—23]
3.1228[—25]
3.1228[—27]
3.1228 [—29]
3.1228[—31]
3.1228[—33]
3.1228[—35]

7.4838[0]
4.8401[0]
2.2838[0]

—1.6123[—1]—2.2272[0]
—4.2334[0]
—6.2340[0]
—8.2341[0]
—1.0234[1]
—1.2235[1]
—1.42[1]
—1.5[1]
—1.5[1)—1.5[1]—1.5[1]—1.5[1]—1.5[1]
—1.5[1]
—1.5[1]
—1.5[1]—1.5[1]

2.9179[0]
1.3709[1]
3.4973[—1]—1.1755[0]—2.7925[0]

—4.7605[0]
—6.7573 [0]—8.7570[0]
—1.0757[1]
—1.2752[1]
—1.5[1]
—1.5[1]—1.5[1]—1.5[1]—1.5[1]—1.5[1]—1.5[1]—1.5[1]
—1.5[1]—1.5[1]—1.5[1]

4.1619[—1]
8.9624[—1]
2.1905[—1]—1.0952[0]

—2.0182[0]
—2.9258[0]
—3.9174[0]
—4.9165[0]
—5.9164[0]
—6.9164[0]
—7.9164[0]
—8.9164[0]
—9.9164[0]
—1.0916[1]
—1.1916[1]
—1.2912[1]
—1.386[1]
—1.5[1]
—1.5[1]
—1.5[1]
—1.5[1]

—4.0667[—1]
—2.9527[—1]
—1.3367[0]
—2.3941[0]
—3.4147[0]
—5.3431[0]
—7.3360[0]
—9.3353[0]—1.1335[1]
—1.331[1]
—1.5[1]
—1.5[1]—1.5[1)—1.5[1]—1.5[1]
—1.5[1]—1.5[1]—1.5[1]
—1.5[1]
—1.5[1]
—1.5[1]

'Note that the logarithms of all relative errors with an absolute value ~ 10 ' ' are reported as —1.5[1].
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For f (z) =rp(z)e' and k large,

iz, iz Zp(0)+p'(0)+p' '(0)
k

=P'
k

I

X — + (method II) .
k

For f (z) =p(z)e ' and k large,

f —=p(0)+ [ap(0) +p'(0) ]k k

(19)

a'p(0)+ 2ap'(0)+ p"'(0)
2f

'2
Z

X — + . (method III) .
k

(20)

Also, substitution of the imaginary terrors of the expan-
sion in Eq. (18) into Eq. (7), and multiplication by 4m /k,
yields the same result as the familiar expansion in Eq. (4).
This is equivalent to Watson's technique for asymptotic

the remaining terms. Thus the overall behavior of
F. ', z(f, k) for large k would be k dependent. A similar
argument holds for EP'F(f, k) in Eq. (15) if we assume
that for large k, [1/(a —ik)] behaves as (i/k) .Analo-
gously to method I, the Taylor expansion off' ' around
zero would yield a dominant k ' imaginary term which
would give an overall k behavior to Eq. (15).

For method II in Eq. (14) the situation is different. As
in the case of method III, we assume that [1/(1 ik—)]
behaves as (i/k) N. ote that this factor in Eq. (14) is
raised to the (2N+1) power which is always odd, thus
yielding imaginary values. Therefore we are interested in
the real terms that occur in the Taylor expansion off '

around zero. It is again easy to show that the first real
term is k independent with subsequent real terms having
an even inverse power dependence on k. With the as-
sumption that the k-independent term dominates at large
k, we can see that Ei F(f,k) will have a k dependence.
Since F(k) also exhibits a k behavior, the relative er-
ror should give a constant dependence on k as is indeed
the case in Table I. [Note that f(r) in method I differs
from f (r) in methods II and III by a factor of e" and e ",

respectively. ]
The relative performances of the three different

methods may be explained in a similar manner. Consider
the Taylor expansion around zero, of the integrands
f (iz/k), f(i/(1 ik)), f—(1/(a ik)} as—defined in Eqs.
(10}—(12) for the three different methods, assuming that
1/1 ik, 1—/a ik beh—ave as i /k for large k. For
f (z) =p(z) and k large,

f —=p(0)+p'(0)
k k

T

p(2)(0}z + (method I) . (18)
2t k

expansions [3] by expanding the integrand in a power
series.

The construction of Gaussian quadrature defines these
rules to be exact for polynomials of order (2N —1). This
may easily be seen by noting that the error terms in Eqs.
(13}—(15) will vanish for a polynomial of order (2N —1)
or less. Thus the one-point Gauss-Laguerre rule is exact
for polynomials of order one. In this manner consider
the Taylor expansions around zero [Eqs. (18)—(20)] up to
the linear term including only the imaginary terms for
methods I and III and real terms for method II. Clearly
since we are using a one-point quadrature we should be
able to integrate up to the linear term exactly. For
methods I and III, the first imaginary term is linear so we
are able to integrate this exactly. On the other hand, the
first real term in method II is the quadratic term which
falls outside the precision of the one-point quadrature
rule. Hence the superiority of methods I and III over
method II.

The superiority of method III over method I may be
explained by considering the linear term in Eqs. (20) and
(18), respectively, which are represented exactly by the
one-point rule. The additional ap(0} term present in
method III may be considered as approximately
representing the numerical values of the higher-order
terms that lie outside the precision of the quadrature
rule. Thus method III is superior to method I. Both
methods I and III are seen to perform better as k be-
comes larger since we are approaching zero and the ap-
proximation to f (i /k) by a Taylor series up to the linear
term becomes better. It is interesting to note that substi-
tution of the linear term of the Taylor expansion for
method I into Eq. (10) and noting that z, =2, co, =1 for
N=1, will give the same result for the asymptotic form
factor as the first term in the familiar expansion in Eq.
(4). Method I is superior to the traditional method of Eq.
(4) since we are integrating over f (iz/k) and not just the
linear term of its expansion, i.e., we consider all terms of
the expansion. This implicit integration of all higher-
ordered terms, although not necessarily exact by
definition of the quadrature rule, is the source of su-
periority of method I over the traditional expansion since
the error in the quadrature rule would be less than the
complete neglect of the integral.

Similar results are observed from the two-term expan-
sion and two-point quadratures in Table II. It is again
methods I and III that are shown to yield the least error
with method III showing about one order of magnitude
superiority over the two-term expansion of Eq. (4) for
smaller values of k. For these methods the correct values
of F(k) are approached at smaller values than in the
one-point case since the integrals of the third-order terms
of the Taylor expansions are exact, which makes the ap-
proximation to f (iz/k) better at smaller values of k.
Thus the superiority of these methods over Eq. (4) is even
greater for the two-point case. For very large values of k,
the superiority diminishes as we approach the machine
precision. Note also that the absolute errors exhibit
—k behavior in accordance with the magnitude of the
first neglected term in Eq. (4) and the expressions in Eqs.
(13) and (15). The two-point rule of method II, while the
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least effective of the three methods, yields better results
and does converge to the analytical results, in contrast to
the one-point rule, as we go farther into the asymptotic
regions. This method performs better for the two-point
rule since the quadratic term of the Taylor expansion in
Eq. (17) is now within the precision of this rule. It is infe-
rior to the traditional method since its absolute error ex-
hibits -k -dependent behavior as expected from Eq.
(14) in contrast to the k behavior of the traditional
method.

It is interesting to compare the one-point rule of
methods I and III in Table I with the two-point rule of
method II in Table II. The linear term of method I has a
contribution from p'(0} while method III has a contribu-
tion from p(0) as well. However, the quadratic term of
method II has contributions from p' '(0) as well. In a
sense, the two-point rule of method II is thus able to de-
scribe the behavior of the density at the origin better than
the one-point rules of the other two methods due to the
inclusion of p' '(0) in the quadratic term which is treated
exactly by the two-point rule. Thus we would expect it to
perform better than the other two methods as is evident
from a comparison of the two tables.

Methods I and III are better than the traditional
method for the two-point case since we implicitly include
all terms of the Taylor expansion by integrating over
f(iz/k), f(iz/(a —ik)) instead of just considering a
truncated expansion as is the case of the traditional
method of Eq. (4}. This relative performance of the tradi-
tional method to methods I and III should also hold for
the higher-order quadratures since the traditional
method only considers a finite number of terms while
methods I and III implicitly consider all terms.

IV. CONCLUSIONS

We have shown the superiority of one- and two-point
Gauss-Laguerre quadratures over the familiar expansion
[Eq. (4)] in terms of inverse powers of k and derivatives of
the charge density at zero, in yielding asymptotic approx-
imations to the atomic form factor. The quality of the
two-point quadratures is even better than the one point,
in relation to the familiar one- and two-term expansions,

suggesting that methods I and III are converging to the
true answer at a faster rate than the corresponding one-
and two-term versions of the familiar expansions.

Furthermore, these methods have error formulas
which may be formulated in an analytical manner in con-
trast to the expansion in Eq. (4). Moreover, they do not
necessitate the evaluation of higher-order derivatives of
the density at zero, but the evaluation of the density at
points in the complex plane. On the other hand, it must
be mentioned that if one is interested in higher-order
terms in Eq. (4) one can simply add the new terms to the
ones previously calculated. This is not the case for the
methods presented here since the quadrature abscissas
and weights are different for different orders of quadra-
tures. Thus one would have to evaluate all new terms in

Eqs. (10)—(12).
The restrictions on these methods are that f (r) be

readily evaluable at complex arguments and be analytic
in the respective complex domain. Furthermore, the
Fourier transform to be evaluated has to possess an
asymptotic behavior analogous to Eq. (4). This excludes
functions whose odd-order derivatives vanish at zero,
e.g., Gaussian-type functions. Another class for which
Eq. (4} is invalid are those functions that do not have a
simple expansion in r around the origin [2]. However, for
the large class of trial functions of exponential type, such
as the one used in this work, Eq. (4} is valid. The applica-
bility of method III to functions with nonexponential be-
havior depends on the extent with which a Gauss-
Laguerre quadrature is able to effectively perform in-

tegrations over such functions, and would have to be
evaluated individually. The demonstrated effectiveness
coupled with the availability of useful error formulas
makes these methods attractive for the asymptotic ap-
proximation of Fourier transforms.
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