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We have measured the hyperfine structure (hfs) of 12 levels in the configurations 3d4s, 3d, and 3d4p
in singly ionized scandium by collinear fast-ion-beam —laser spectroscopy. The hfs of the four levels in

the configuration 3d4s has to our knowledge not been measured before. From these levels the ions were
excited to levels in the 3d4p configuration by the frequency-doubled output of a ring dye laser with an
intracavity mounted LiIO3 crystal. Levels in the 3d configuration were excited to levels in the 3d4p
configuration with visible laser light. The resulting magnetic dipole ( A) and electric quadrupole (8) hfs
constants are analyzed in Sandars-Beck effective-operator formalism. The multiconfiguration Dirac-
Fock method has been used to calculate the hfs constants for levels in the configurations 3d4s, 3d5s,
3d6s, 3d, and 3d4p. Within the framework of the configuration-interaction method, an approach is
presented for the calculation of the core polarization, which uses a virtual basis set localized inside the
core. For all levels, this approach gives better results compared to previously published calculations.

PACS number(s): 35.10.Fk, 31.30.6s, 32.30.Jc

I. INTRODUCTION

High-resolution measurements of hyperfine structure
(hfs) provide a test of ab initio calculations, and thus a
step towards a satisfactory description of the interaction
between the nucleus and the electrons. Knowledge about
the hfs is also useful for a correct interpretation of spec-
tra from stars. A broad hyperfine splitting can have a
large effect on the elemental abundance deduced from
lines with low excitation energy in stellar analysis [1].
Several investigations of the hfs in 3d elements (e.g., Refs.
[2] and [3] and references therein) show that the contact
contribution to the hfs induced by the 3d shell on the
core shells, i.e., the core polarization, is large. To find a
means of predicting the hfs for levels of, e.g., astrophysi-
cal interest we must first understand the effect of core po-
larization. In this paper we present an experimental and
theoretical investigation of the magnetic dipole ( A) and
electric quadrupole (8) hyperfine coupling constants for
levels in the lowest configurations in singly ionized scan-
dium.

We have measured the hfs of 12 levels in the
configurations 3d4s, 3d, and 3d4p in Sc II. The hfs of
levels in the two latter configurations has been investigat-
ed previously. The first article was published by Arnesen
et al. in 1982 [4], and since then accurate measurements
have been reported by Young et al. [5] and Mansour
et al. [6]. The knowledge of the hfs of the 3d and the
3d4p configurations is almost complete due to the ul-
trahigh resolution obtained with the laser-rf double-
resonance technique used by Mansour et al. [6];but until
now no measurements have been performed in the lowest
configuration 3d4s. The reason for this is that the levels
in the closest odd configuration 3d4p are not accessible
by single photon excitation with visible laser light. We

have used frequency-doubled laser light to avoid this
problem. Figure 1 shows a partial energy-level scheme of
the lower levels in Scil where the transitions we have
studied are indicated. The experimentally determined
magnetic-dipole ( A ) and electric-quadrupole (8) cou-
pling constants are analyzed in the framework of the
effective-operator formalism [7] in order to extract infor-
mation about the most important contributions to the
hfs.

The singly charged scandium ion is a fairly simple sys-
tem, having two valence electrons, which makes it a suit-
able object for theoretical studies. The only stable iso-
tope is Sc with nuclear spin I=—', . The nuclear
magnetic-dipole moment is pt =4.7559 piv (hatt is the nu-
clear magneton) and the electric quadrupole moment is

Q = —0.22 b [8]. Mansour et al. [6] used the
multiconfiguration Dirac-Fock (MCDF) method for ab
initio calculations of the hfs coupling constants. They
showed that the MCDF approach gives good results for
the singlet states, but that the core-polarization effect
must be included in order to compute accurate A values
for the triplet states. We have obtained theoretical values
for the A and 8 constants for a number of configurations
(3d4s, 3d Ss, 3d 6s, 3d, 3d 4p, and 4s 4p), using the
MCDF method in an attempt to understand the disagree-
ments between experiment and theory in Ref. [6]. Partic-
ular emphasis has been given to the calculations of the
hfs constants for the two lowest even configurations,
since they are most sensitive to a polarization of the core
shells.

The configuration-interaction (CI) approach is often
used to describe the spin density at the nucleus caused by
the core polarization [9—15]. This kind of calculation
employs a large set of single-particle basis functions,
where configuration interaction between various levels is
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FIG. 1. Partial energy level scheme of the lower configurations in singly ionized scandium. The transitions we have studied are in-

dicated.

accounted for. Slater-type orbitals (STO's) are often pre-
ferred for the description of basis functions [11,16], but in
some cases a Gaussian basis is employed for computa-
tional reasons [17—20]. One of the aims of the present
study is to suggest an alternative approach for the
description of core polarization. The emphasis will be on
the construction of a basis from sophisticated atomic
wave functions [such as Dirac-Fock (DF) functions], in-
cluding a set of virtual states with one-electron excitation
of the core shells, without excessive demands for comput-
er storage. The CI wave functions are given in terms of a
full set of modified DF functions which are located inside
the core.

In the first part of the paper we describe the experi-
mental setup (Sec. II A) followed by the experimental re-
sults for the A and 8 constants (Sec. II B) and an inter-
pretation of the constants in the effective-operator for-
malism (Sec. II C). In Sec. III we introduce our approach
for the MCDF calculations. The first step is to calculate
the hfs coupling constants assuming a frozen core (Sec.
III B), and in Sec. III C this approach is extended to the
application of core polarization.

II. EXPERIMENT
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mass analyzed through a double-focusing magnet. The
ion current is monitored by deflecting the ion beam into a
Faraday cup after the laser-interaction region. The scan-
dium ions are excited by light from a stabilized cw ring
dye laser (CR-699) pumped by an argon ion laser. The
frequency scans are calibrated by directing a portion of
the visible output of the dye laser through a confocal
Fabry-Perot interferometer (FPI), with a free spectral
range of 298.6(5) MHz, corresponding to 597 MHz in the

A. Experimental setup

The main features of the experimental setup at the
Uppsala isotope separator are shown in Fig. 2. The ions
are produced in an arc-discharge ion source, extracted
through a circular aperture, and accelerated to a kinetic
energy of about 30 keV. After acceleration, the ions are

Electrostatic Postacceleration
deflection

and Faraday cup

FIG. 2. Main features of the experimental setup for hfs mea-

surements at the Uppsala isotope separator. (FPI = Fabry-
Perot interferometer, PM = photomultiplier, and DAaC
data acquisition and control).
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TABLE I. A list of the studied transitions in Sc II.

Lower

3d4s 'Dz
3d4s Dz
3d4s Dl
3d4s 'D
3d4s Dz
3d4s D3

Levels

Upper

3d4p 'I'3
3d4p Pz'
3d4p P,
3d4p Po'
3d4p Pl'
3d4p Pz'

Laser A.

in air (A}

3353.73
3359.68
3361.27
3361.94
3368.95
3372.15

Number of
spectra

UV, and the wavelength is measured with a scanning
Michelson interferometer. Table I gives a list of the stud-
ied transitions.

The visible laser light used for the excitation of the 3d
configuration was stabilized with a commercial laser-
power stabilizer to keep the laser background constant.
Filters are used to suppress detection of scattered laser
light. For the excitation of the levels in the 3d 4s
configuration we have used an angle-tuned, intracavity-
mounted, frequency-doubling crystal (LiIO3). The power
of the UV radiation is of the order of 1 mW.

The laser-induced ffuorescence (LIF) is directed into a
photomultiplier tube by an elliptical mirror with a light-
collecting efficiency of near 50% including solid angle
and reflectance. The metallic elliptical mirror has a con-
ducting wire grid in front of it; the mirror and the grid
constitute a Faraday cage, which defines the laser —ion-
beam interaction region. When the ions reach this region
they experience the postacceleration potential of the
Faraday cage and are Doppler shifted into resonance
with the counterpropagating laser beam. Typical LIF
spectra for Sc II recorded with UV light are shown in Fig.
3. The observed linewidth full width at half maximum
(FWHM) is about 60 MHz for the lines excited with visi-
ble laser light and 120 MHz for UV excitation. The
width results from natural lifetime broadening and
Doppler broadening. The transit time broadening is
negligible since the ions are in resonance much longer
than the natural lifetimes.

The first hfs measurements in Scil, reported by Ar-
nesen et al. [4], were performed using an acceleration
voltage of 230 kV. The spectral linewidths achieved in
that experiment were typically 150 MHz. This is more
than a factor of 2 larger than in the present experiment.
As stated in Ref. [4] the gain in resolution due to more
efficient velocity bunching with the 230-kV accelerator is
concealed partly by a larger energy spread in the ion
source and partly by a larger ripple in the acceleration
voltage than in our low-energy accelerator. Also, a
misalignment between the laser and ion beam will con-
tribute more severely to the linewidth at higher accelera-
tion voltage. In the present experiment the common
beam path of the laser and ion beams is defined by circu-

lar apertures of 2-mm diameter at the entrances to the
Faraday cage confining the interaction region. The align-
ment can be optimized by maximizing the throughput of
the transmitted laser light and ion-beam current.

B. Experimental results

The frequency scale is obtained by fitting the positions
of the reference peaks from the FPI to a Legendre poly-
nomial. The positions of the spectral lines are then deter-
mined by fitting the line profile to a Gaussian function.
From these data, the hyperfine coupling constants A and
8 are derived using the well-known expression

3C(C + 1) 4I(I—+ 1)J(J+ 1)
2I(2I —1)2J(2J—1)

where C=F(F+1) I(I+—1)—J(J+1) and J, I, and F
are the quantum numbers of the electronic angular
momentum, the nuclear spin, and the total atomic angu-
lar momentum, respectively. Contributions from higher-
order terms cannot be resolved in our experiment. The
experimentally determined A and 8 constants are given
in Table II, columns 3 and 6. The first column in Table
II lists the energy of the levels in the studied
configurations. In the second column we give the percen-
tage of the LS-coupled leading term. This is discussed
further in Sec. II C. The best results obtained with the ab
initio calculations described in Sec. III are given in
columns 4 and 7, followed by the difference between ex-
periment and theory. Since there are misprints in Ref.
[6], Table III, we list our results together with previous
measurements. The uncertainties presented within
parentheses are two standard deviations of the mean, cor-
responding to an almost 95% confidence interval. They
result mainly from random fIuctuations of experimental
parameters such as the acceleration voltage and the ener-

gy spread in the ion source. The Doppler shift correction
(b,voU/c ) is accounted for in the 2 and 8 constants. For
scandium ions, accelerated with 30 kV, the Doppler-shift
correction will be 1.2 MHz/1000 MHz (0.12%). There
are some disagreements between present and previous
measurements, but they are not systematic. All results
for the 8 constants agree within error bars but only three
agree for the A values.

The spectrum of the transition 3d4s D, ~3d4p Po'
has only three components, so the two constants have to
be derived from two equations, which is an unfavorable
situation. The result for the 3d 4s D

&
leve1 is

A = —478. 9(8) MHz and 8 = —14(2) MHz. (Uncertain-
ties are given in parentheses. ) The values derived from
the transition 3d4s D, ~3d4p P, ' are A = —483(2)
MHz and 8 = —4(8) MHz. The weighted means of these
results are presented in Table II, but we must point out
the fact that there are large uncertainties, both in value
and in sign, of the 8 constant for this level.

3d P
3d P
3d Pz
3d P

3d4p D3
3d4p 'Dz
3d4p Dz
3d4p D)

6245.63
6279.76
6300.70
6309.90

C. Interpretation of results in the effective-operator
formalism

An extensive investigation of the spectrum of singly
ionized scandium in the region 1100—11000 A was made
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by Johansson and Litzen [21]. There is a high degree of
overlap between the two systems 3dnl and 4snl in Scil,
which may cause configuration interaction of the levels
we are studying. However, for the high even

configurations it was found that the interaction between
the 3dnd and 3d(n +1)s, n =4, 5, was weak. In order to
see if this holds also for the low even configurations 3d4s
and 3d, we have made a least-squares fit of

Sc II 3d4s D -& 3d4p F
2

(b)
Sc II 3d4s D -& 3d4p P

Z'.
tJJ

A
P3

Cd A

P)

Cd

|j,
~

Ii, A

j (U
I

Ch

/ I (

N
Nl

AN A

Lo
A (h

N
(CJ

N

N
CV

A

Cd

A

Cd

(I
I i

I
Jj

C
I

C

0-

(0z
Z

A

N

t

A

N
(h

A A NI

Ch
A
I

N
IA
A
I

N

N
Ch
A
I

N N

A
I

N

A

irJ

N
(A
A

NA

0

FREQUENCY (GHz)

0

FREQUENCY(GHz)

10

(c)

K
LU
I—

N
(A
A
I

N
lA

N

A
I

N
(A

N
lA
A
I

N

Sc II 3d4s D -& 3d4p P&

N
Ch
A

N

N

A
I

N
Ch

Ch
A
I

N
Ch

V)

C
I

JD

I—
GO

Z
QJ

I

Z

N

h

Cd

(A

A

N

If t

fT'I

/
/J

Sc II 3d4s D -& 3d4p P

N

A
I

Ch

3 4 5 10
FREQUENCY (GHz) FREQUENCY (GHz)

(e)
Sc II 3d4s D -& 3d4p P Sc II 3d4s D -& 3d4p P

N

(h
CO J'

CV

65
Ij

II—
(J)

Ch
A
I

N (o
Ch A

LLJ I

IJJIj AJI

Cd

A

N
p

CV

((J
A

N N
lrJ LA

(d A

N
A

05

UJ

Z',

N
(h
A
I

N

N

A

N

N
Ch
A
I

N

A
I

N

N
(A
A

N
(CJ

N

A
I

N
N

A !

FREQUENCY (GHz)

8 10 0 12

FREQUENCY (GHz)

18

FIG. 3. Recorded hfs spectra for the transitions from the ground configuration 3d4s t
'

n 3 4s to the lowest odd configuration 3d4p in Sc II.
1 ht. (a) The transition 3d 4s 'D2 ~3d 4p 'F3'. (b) The transitionThe transitions are induced by frequency-doubled laser light. (a) e ran

3 n 3d4s D ~3d4 Po'. (e) The transition3d4s 'Dz~3d4p P2 . (c) The transition 3d4s D, ~3d4p P, . (d) The transition d I ~ p
3d4s 'D, ~3d4p P, '. (f) The transition 3d4s D3 ~3d4p P2'.



45 EXPERIMENTAL AND THEORETICAL STUDY OF THE. . . 6245

131"F,' ) =131 "F,),
13d F3 ) =13d F3 &,

13123F' ) =131"F )

131 'D2 ) =0.995131 D2 ) 0.0761314s 'D2 )
—0.06213d "P,&,

13d P')=13d P &

13d P' ) = —0.99813d P ) —0.06313d 'D )

(3)

13d4s D I ) = 1314s D, ),
13d4s 'D,' ) =0.99913d4s 'D, ) +0 03.513d4s 'D, ),
13d4s D3) =13d4s D3),
13d4s 'D,') =0.99613d4s 'D, )+0 07613d' 'D, )

—0.03513d4s D2);

(2)
131 G' ) =131 Gg ),
where g3d(314s)=71 cm ', and (3d(31 )=48 cm ' with
a y of 17 cm '(y=[g„h /(n —m )]'~; n is the number

intermediate-coupling theoretical level energies in terms
of Slater integrals and fine-structure coupling constants
to experimental level energies [22], as described by, e.g. ,
Condon and Shortley [23]. The level 31 'So was exclud-
ed in the fit. The corresponding eigen vectors are,
neglecting terms smaller than 0.1 /o,

TABLE II. A list of experimental and calculated hyperfine coupling constants for the configurations 3d4s, 3d4p, and 3d in Sc II.
The uncertainties presented within parentheses for the experimental values are two standard deviations of the mean. The calculated
values are the best obtained with the methods described in Sec. III.

Level

3d4s D1
3d4s D2
3d4s 'D3
3d4s 'D2

3d F2
3d F3
3d F4
3d 'D2
3d P

3d P

3d 'G

Energy
(cm ')

0.0
67.72

177.76
2 540.95

4 802.87
4 883.57
4 987.79

10944.56
12 101.50

12 154.42

14 261.32

Leading LS
term (%)

100
100
100
99

100
100
100
99

100

~ meas

(MHz)

—480(2)'
510(1)'
654.8(6)'
128.2(8)'

290.67(4)
113.672(6)b
38.357(4)

149.361(4)
—108.1(4)'
—107.501(4)
—27.2(4)'
—27.732(4)
135.232(2)b

A,,],
(MHz)

—473.3
518.8
608.5
146.8

277.6
137.5
60.9

146.0
—63.6

—0.03

154.6

hA
(MHz)

7
9

—46
19

—13
24
23

—3
44

27

19

Bmeas

(MHz)

—13(3)'
—30(12)'
—63(23)'
—39(11)'

—10.5(2)
—12.62(8)b
—16.5(2)

7.818(6)b
—13(2)'
—12.30(2)

26(3)'
22.127(6)

—63.44(8)

Bea]c
(MHz)

11.8
—13.0
—35.5
—25.5

—8.9
—28.9
—38.1

10.4
—16.9

18.2

—99.1

hB
(MHz)

25
17
28
14

2
16
22

3
—4

—36

3d4p 'D2'

3d4p 'F2'
3d4p F3'
3d4p 'F4'
3d4p D1'

3d4p D2'

3d4p D3'

3d4p P, '

3d4P P2'

3d4p F3'

26 081.34
27 443.71
27 602.45
27 841.35
27 917.78

28 021.29

28 161.17

29 742.16

29 823.93

32 349.98

99
99
99

100
100

99

92

94

215.7( 8)'
366.8(3)
205.4(12)d
102.3(2)
307(2)'
304 7(4)
125.7(3 )'
125.3(2)b
101.8(6)'
99.5(2)

258(2)'
255.0(4)
105.6(5 )'
106.2(2)'
193.1(8 )'
191.1(6)

202.5
425.3
193.7
115.6
267.7

149.0

128.3

148.0

87.2

184.9

—13
58

—12
14

—39

23

27

—110

18(7)'
—40(28)
—70(36)
—84(4)

1(8)'
4(2)
6(3)'

10(2)
24(9)'
21(4)
12(6)'
10(16)

—21(4)'
—20(2)
—65(14)'
—82(8)

—10.8
—31.7
—58.5
—76.0
—07

—11.7

—13.1

11.4

—13.6

—86.3

—29
8

12
8

—2

—18

—37

—21

'New measurements.
Reference [6].

'Reference [4].
Reference [5].
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k k( I 0 PI g 3yksk
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2
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(4)

where a„'& is the contact parameter. For light elements,
where relativistic effects are likely to be negligible, this
contribution to the hfs from the nl (1%0) electron comes
from interaction with the core shells 1s, 2s, and 3s
(core polarization) or via configuration interaction with a
neighboring configuration containing an s electron. The
contact parameter may be large for 3d elements. The
effective Hamiltonian taking into account configuration
interaction between levels with the same L, S, and J has
the same form as the effective Hamiltonian for relativistic
effects [7], and therefore the configuration interaction in

(2) and (3) is included in the radial parameters derived
from experiment. We assume that other configuration-
interaction effects are negligible, Then in the nonrela-

As a test of the importance of relativistic effects, we have
performed a least-squares fit of the accurate data for the
3d levels in Ref. [6], given in Table II, to the linear corn-
binations of radial parameters in both the relativistic and
the nonrelativistic limit. The result in the pure LS case is
summarized in Table III (V, is the root-mean-square

of levels included in the fit (n = 12) and m the number of
parameters (m =8)[24]). The levels have high purity in
the LS coupling scheme. Furthermore, Mansour et al.
[6] estimated the off-diagonal hfs interactions for the lev-
els in the 3d configuration and found that only perturba-
tions from members of the same fine-structure multiplet
were significant. In the most severe case (3d P, ) this
was reported to inhuence the A value less than 70 kHz,
and the B value less than 1 MHz.

Johansson and Litzen [21] concluded that also the lev-

els of the 3d4p configuration have clear LS character
(Table II). Even though there is a high degree of overlap
between the configurations 3dnl and 4snl, they found that
the only significant interactions are those between 4s4p
and 3d4p in the 'P] and the Po & 2 levels. Fitted values
of the fine-structure constants for the odd configurations
(3d4p+3d5p+4s4p) were reported to be (3d=79 cm
and g~ =179 cm

We have analyzed the results in the framework of the
semiempirical effective-operator method [7]. The A and
B hyperfine coupling constants are expressed as linear

k, k
combinations of the effective radial parameters a„I' and

k, k(b„&', using the matrix elements given by Childs [25].
The effective radial parameters are defined as

a 3d
= 143.3 MHz, a 3d

= —229.6 MHz,

b3d = —55.0 MHz .
(6)

The contact contribution to the 3d shell is large and neg-
ative in sign with respect to the a3d parameter.

For the 3d4s configuration we have a system of four
equations with two unknowns, a3d and C, where
C=a4, +a3d. A least-squares fit in the pure LS case
yields

a3&=180.4(5) MHz, C=3388(4) MHz,

V, ,=36 MHz;

b3d = —90(19) MHz, V, , =9.1 MHz .

(7)

(8)

The errors presented originate from the uncertainties
(two standard deviations of the mean) in the A and 8
constants derived from experiment. If we only consider
the levels that are purely LS coupled, we get a solution
that is exact for the dipole parameters

a3d = 175.8(7) MHz, C =3325(3) MHz . (9)

For the 3d4p configurations we have ten levels, eight of
which have a 99—100% LS coupled leading term, and
three unknowns: a3d, a4p and C', where C'=a3d+a4p.
The system is solved by using the weighted averages of
the measured hyperfine coupling constants given in Table
II. The result is, assuming pure LS coupling,

a3d=223. 8(2) MHz, a4 =139.3(5) MHz,

C'= —13.7(7) MHz, V, , =31 MHz;

b3d = 72(9) MHz b4 = 98(9) MHz

V, ,=6.0 MHz .

Using only the eight levels with high purity in LS cou-
pling yields

a3d=189.3(2) MHz, a4 =216.0(5) MHz,

C'= —182.6(7) MHz, V, ,=9.7 MHz;
(12)

value (V, ,=[+„h in]' )[24]). The fact that we have
nonzero values for b 3d and b 3d, and that a 3d is smaller
than a3d, can be explained by the unstable situation of
the coupled equations caused by the small contributions
of these parameters. We therefore conclude that relativ-
istic effects are small and derive other parameters in the
nonrelativistic limit. The result for the 3d configuration
is then, from Table III,

TABLE III. Effective radial parameters for the 3d configuration derived from experimental A and
B constants in Ref. [6] given in Table II.

(MHz)

Relativistic

01

144.0

12
~3d

128.8

10
a3d

—235.1

Vrms

5.6

b02
3d

—54.8

13

6.0

b3

—5.7 2.2

Nonrelativistic 143.3 143.3 —229.6 6.1 —55.0 0.0 0.0 2.3
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TABLE IV. Effective radial parameters derived from experi-

mental A and B constants in Table II. (a) The magnetic dipole

interaction. C=a3&+a4, and C'=a3~+a4~. (b) The electric

quadrupole interaction.

(a)

be estimated in the effective-operator approach if the con-
tact parameter could be derived.

III. THEORY

(MHz) a3g a4~
10 C' A. The MCDF formalism for calculation of hfs constants

3d4s
3d2

3d4p

(MHz)

175.8(7)
143.3
189.3(2) 216.0(5)

(b)
b

—229.6

3325(3)

—182.6

b4p

3d4s
3d2

3d4p

—90(19)
—55
—71(9) —98(9)

b3&
= —71(9) MHz, b4&

= —98(9) MHz,

V, , =6.6 MHz .
(13)

(r )«=g„,[a hcR a Z;H(I, Z;)] (14)

where H(l, Z, )is a relativ. istic correction factor [26].
Table V lists the obtained values for the effective radial
parameters from the spin-orbit coupling constants

g3g 79 cm ' and g4
= 179 cm ' given by Johansson

and Litzen [21] for the odd configurations (3d 4p
+3d5p+4s4p) and the values (3&(3d )=48 cm ' and

(3&(3d4s)=71 cm ' obtained in the calculation of the
eigenvectors (2) and (3) for the even configurations
(3d4s+3d2). The ratio a3&(3d4s)/a3&(3d4p) is 0.93
from experiment and 0.90 from the spin-orbit coupling
constants. Corresponding values for
a3&(3d )/a3&(3d4p) are 0.76 and 0.61. The rather good
agreement between the values of the effective radial pa-
rameters obtained from experiment and from spin-orbit
constants (Tables IV and V) indicates that the hfs could

TABLE V. Effective radial parameters derived from the
spin-orbit coupling constants f3~ (3d4s ) =71 cm
(3j(3d')=48 cm ', $3&(3d4p )=79 cm ', and g4, = 179 cm

(MHz)

3d 4s
3d2

3d4p

157
106
175

a4~

232

—63
—42
—70

b4p

—93

Omitting the two levels 3d4p P& 2, which have a mixing

of 6% of 4s4p P, 2, has a large effect on the magnetic-

dipole parameters, and naturally a most dramatic effect
on the induced contact parameter. It has no significant
effect on the electric-quadrupole parameters. We summa-

rize the result for the effective radial parameters from

(6,8,9,12,13) in Table IV. The a3& and b3& parameters are
clearly not configuration independent. The value of the
radial integrals in the effective radial parameters a„i [Eq.
(4)] and b«[Eq. (5)] can be expressed in terms of the
spin-orbit coupling constant g«as

The atomic hyperfine structure is caused by several in-

teractions. The strongest of these is the magnetic-dipole
interaction involved in the coupling of the nuclear spin I,
the electron orbital angular momentum L, and spin S if
I%0. The next strongest is the interaction between the
nuclear quadrupole moment Q, and the electric field gra-
dient produced at the nucleus by the surrounding elec-
trons.

The magnetic interaction can be separated into two

parts: the dipole or anisotropic interaction and the iso-

tropic interaction. The magnetic-dipole coupling con-
stant A contains contributions from both these parts.
The isotropic interaction A;„ is produced by the spin of
unpaired electrons inside the core, whereas the dipole
contribution A,„;„can be obtained assuming that all

core shells have zero total angular momentum and no un-

paired electrons. This means that the spin density at the
nucleus produced by the core electrons in filled shells is

zero. We will calculate A,„;„using the MCDF method,
assuming that the core wave functions are frozen and
taking into account mixing between closely lying
configurations [27]. There are various ways to choose a
frozen-core potential, keeping in mind the different kinds
of configurations of valence electrons in the self-

consistent field process. Section III 8 contains concrete
details of this procedure.

Unfortunately, the above-mentioned method often fails
in reproducing experimental results. In this case a
significant contribution to the A constant originates, as
expected, from the isotropic part. It has been recognized
for two-electron systems [6] that this term should be im-

portant mainly in triplet atomic states. A solution to this
problem is to use different wave functions for electrons in
the closed shells that differ only in their spin directions,
i.e., we introduce a polarization of the core shells. We
have used the CI formalism to describe the core polariza-
tion. The virtual basis set has been represented through
functions offering similar properties to Sturm's functions.
They are localized inside the core and include the contin-
uum. The specific property of our approach is the small
size of the basis set (Sec. III C). It is well known that the
full set of Hamiltonian eigenvalues of the atomic system
contains both discrete and continuous components. This
means that the total set of eigenfunctions includes the
continuous functions as well. As a result, not only sum-
mation over the discrete levels, but also integration over
the continuum, should be made in the calculation of ma-
trix elements with mixing of configurations. This is
difficult to realize. In order to overcome this problem we
use a full set of discrete functions in our approach. The
development of a full set of eigenvalue functions for the
discrete spectrum was first suggested by Schrodinger in
1926 [28]. This kind of function has been used by Hyl-
leraas [29] for two-electron atomic calculations. The role
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of the continuum in the superposition of configurations
was investigated by Shull and Lowdin [30]. It was shown
that the absence of continuous functions in the full basis
set leads to a significant improvement of the convergence
compared with the hydrogen functions. An early appli-
cation to hfs calculations was made by Lunell [31],using
a spin-polarized frozen-core approximation.

B. MCDF frozen-core approximation

bE„(F,mF)=(F, mFI W„IF,mF), (16)

where

where mJ, mI, and mF are the magnetic quantum num-
bers, and (F,mF II,J;mI, m 1 ) the Clebsh-Gordan
coef6cients. In first-order perturbation theory the energy
contribution from the magnetic-dipole interaction to the
hyperfine structure levels is

The total wave function of the atomic state contains
both an electron part 4(J,m J ) and a nuclear part
8(I,mi), and can be written as

W„= g r, grp. x(I[r; Xa, ]), (17)

4(F,mF)= g (F,mFII, J;ml, mz)Cg(J, mj)8(I, ml),
ml, mJ

and gi is the gyromagnetic ratio, pN =eh /(4nmc )., and a
is the Dirac matrix. Inserting (17) into (16) we obtain
after some transformations

bE&(F,mz)= g g (F,mFII, J;ml, mJ )(F,mFII, J;mi, mz)
J mi, mJ

I I

Xgr)rag( —1)"(I, rm(I, (I,m )(r, ImrXr; '(r;Xa;)„ I,mr
V l

(18)

where v=mJ —mJ. Using the relation

(I,mi I
I„II,m I ) = (I,mi I I, 1;m I,v ) [I(I+ 1 ) ]

'

and the relation (J,mcIJ, 1;mc,o) =mc[J(J+1)]
(JAO) leads to the hyperfine energy

bE„(F,mF)= A [F(F+1)—J(J+1) I(I+1)]/2—. (22)
(19)

we transform the matrix elements of (18) in the frame of
irreducible-tensor operators using the Wigner-Eckart
theorem. This leads to the following expression:

bE„(F,mF) =glplv [J(J+1)(2J+1)]

Here,

A(I)=gry, „(I,mc Xr '[r, Xa, )c I mc
l

mc

(23)

X [F(F+1)—J(J+1) I(I+1)]—
X J r rXa; p J 20

l

where the reduced matrix element is independent of the
quantum numbers m, so we may choose mJ=mJ, i.e.,
v=0. However, taking into account that the DF wave
functions are linear combinations of Slater determinants,
which are eigenfunctions of the operator J„we may cal-
culate the total wave function for a fixed value of
mj=m&. Here we have applied the so-called M repre-
sentation. After diagonalization of the energy matrix it is
possible to obtain a set of states that are eigenfunctions of
the operator J. These states have different values of J,
but the same mJ. A second application of the Wigner-
Eckart theorem gives, with V =g; r [r; Xa,. ]0:

ig, (r)/r 0— (24)

where P, is the large and Q, the small component of the
radial wave function, Qk its spin-orbital part, and c are
coefficients of mixing of configurations. After evaluation,
the one-electron matrix element takes the form

(air [rXa]olb ~ =[(2jb+1)/(2j, +1)]'

is the magnetic-dipole coupling constant, which depends
only on the electronic states.

Consider now the matrix element of (23) in the many-
configuration approximation, where

I J,mc ) =g c det
is expressed through the Dirac spinors Ia )

P, (r)/r

( —1) (J,mc IVI J,mc )(2J+ 1)'
v

(J,mcIJ, 1;mc,o)

(21)

X(k. +kb)( j., m. Ijb, 1;mb

x (J., —,'I l,jb, o,2)—
X dr r Pa b+ a (25)
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=pc,ce(det, Zr;'[r;xa;]c dete).
a,P l

(26)

The expressions for the quadrupole interaction can be ob-
tained in a similar way. The one-electron matrix element
is given by

(a(r Y2c[b) =[(2jb+1)/(2j, +1))'

X (j„m, ~ jb, 2;mb, 0) (j„—,'~2, jb, 0, —,')
X Jdrr 3(I'ah+gogh) (27)

Here we have used the M representation of the matrix
elements in the same way as above. The total matrix ele-
ment has the form

J,mc Zr 'Yte J, mc)
l

=Zc,ce(det, Zr Yte dete).
a,P l

(28)

The shift of an energy level due to the quadrupole in-
teraction is given by the relation

8[3F(F+1) 4I(I+1—)J(J+1)]™2[2I(2I—1)2J(2J—1)]
(29)

where

8=2Q[2J(2J —1)(2J+1)/(2J+2)(2J+3)]' '

X(J™c~r YzolJ™c'™c (30)

is the electric-quadrupole coupling constant in atomic
units and Q is the nuclear quadrupole moment.

C. Core-polarization approach

Numerous attempts have been made to calculate the
core-polarization effect in atoms. Most of these calcula-
tions have employed the CI method, using a large basis
set. For example, CI treatments based on a Gaussian
basis set need a few thousand configurations to recover
more than 90% of the correlation energy [15]. The CI
method with mixing of various levels of sophistication is
very similar in spirit to our approach, but there are major
distinctions.

One is that the conventional method uses DF solutions
as a virtual basis set, while we construct special func-
tions, which have similarities to Sturm s basis, in order to
describe the correlation problem. The full set of DF solu-
tions contains the wave functions of both discrete levels
and the continuum. This means that the continuum
should be included in the basis set in order to obtain ac-
curate values of hfs constants, which, however, leads to
serious computational problems. This is why it is prefer-
able to include the continuum in the functions.

where k, and kb are the relativistic quantum numbers of
the states a and b.

The total matrix element is

J,mc Zr, '[r;Xa;]c J,mc)

Another distinction is that DF solutions generate or-
bitals with average radii, which grow very rapidly with
increasing excitation energy. In other words, the tradi-
tional method uses a basis set, which has to be very large
in order to obtain accurate values of the hfs constants. In
this work, the radial parts of the virtual orbitals have the
form

P, (r)=f,(r)r", (31)

where n = 1,2, . . . , and f, (r) is the radial DF function of
a core orbital. The orbitals (31) are then orthogonalized
with respect to the low-lying orbitals. These virtual or-
bitals have the same average radii as the f, functions,
and a large basis set is, therefore, not needed to describe
the correlation interaction efficiently. Moreover, they in-
clude both discrete and continuous spectrum com-
ponents. Basis sets similar to ours have been used before
in the frame of the HF method, e.g., in Refs. [30—33].

We have calculated the polarization effect for the
ground and several excited states of Sc II. The partly oc-
cupied valence shells cause an uncompensated spin densi-

ty at the nucleus via the fully occupied core shells. As a
result, the magnetic hfs constant A of the valence levels
must be corrected by the addition of A;„. We do not aim
to calculate the total value of A;„, summing the spin-
density correlations of all core shells, but we find the
most important correlation corrections for the levels we
consider.

First we separate all single-electron orbitals of an atom
into three categories: core, valence, and virtual states.
We will construct the value of A from two parts: The
first has been described and is given by Eq. (23), and the
second can be represented in a similar form as

A,„=pc,ce(4, Zr [r, xa, ]e fc (32)
a,P i

D. Theoretical results and comparison with

experimental data

A numerical calculation of hfs constants was carried
out for scandium ions in two different approximations:
frozen core and polarization of the 3s and 3p core shells.
The discrete spectrum of Sc II includes two-electron
states with the ground configuration 3d4s. The excited
configurations are formed as a result of excitation of the
3d and 4s electrons. Our calculations include two groups
of levels belonging to both even (3d3&24s, 3d5&24s,
3d 3&2 5s, 3d 5&25s, 3d 3&26s, 3d 5&26s, 3d 3&2, 3d 5&2,

3d3zz3dsn p3n 4p]n4p3rz) and odd (3d,~24p]n,
2

3d~zz4p»z, 3d3&24p3&2, 3ds&24p3&2) configurations in the

jj coupling scheme.
The core shells were calculated in the presence of the

3d3/24s ground orbitals for the even configurations and

Here f& are determinant wave functions, defined by the
DF procedure and 4 are determinant wave functions of
virtual orbitals. It is now evident that the calculation of
A in the frozen core approximation is based on the DF
basis set only, while virtual orbitals are used for the cal-
culation of A;„.
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TABLE VI. MCDF values of the hyperfine coupling con-
stant A for the configurations 3d4s, 3d', and 3d4p in Sc II. The
core shells, which were polarized in our theoretical model, are
shown within parentheses.

Level

3d4$ D
&

3d4s D2
3d4s D3
3d4s 'D2

Acmic

(MHz)

—279.7
453.4
608.5
161.9

a
Acmic

(MHz)

A„],
(MHz)

Core polarization

—473.3
518.8

146.8

3d 'F2
3d F3

3d F4

3d 'D2

3d p
3d P
3d 'G
3d4p 'D2'
3d4p F2'
3d4p 'F3'
3d4p F4
3d4p 'D, '
3d4p 'D2
3d4p D3'
3d4p P)'
3d4p 'P2
3d4p 'F3

'Reference [5].

277.6
179.2

138.6

146.0
10.3

113.1
154.6
202.5
425.3
193.7
115.6
267.7
149.0
128.3
148.0
87.2

184.9

146.6
—1.8
85.9

143.2
202.4
309.2
193.8

278.3
165.5
134.4
167.1
96.6

178.2

143.5 (3p3/p+3$)
137.5 (3p3/p+3p)/2)
85.6 (3p3/2)
63 3 (3p3/2+3pl/2)
60.9 (3p3/2+3s)

—63.6 (3p, /2+3s)
—0.03 (3p3/2)

the 3d3/24p, /2 for the odd configurations. The theoreti-
cal values of A obtained in the frozen-core approxima-
tion are given in Table VI, column 1, and the values of B
with this method are given together with experimental re-
sults in Table II. The experimental and the theoretical B
values of the ground level have opposite signs, which may
be caused by several reasons. The most important reason
is probably that this level is the leading candidate to be
perturbed by the Sternheimer shielding effect. We must
also consider the large uncertainties in the experimental
B value for the ground state, which was pointed out in
Sec. II B. It can be seen in Table II that in general the
agreement is good for the B values, particularly for the
3d4s and 3d configurations. However, some 3d4p levels
show different signs for measured and for calculated B
values. There is no obvious explanation for this
discrepancy.

A comparison between our calculated A values and the
values obtained with the same method in Ref. [5] is given
in Table VI, columns 1 and 2. There is good agreement
for most levels of the 3d4p configuration, which indicates
a weak dependence of the numerical results on the
specific features of the MCDF approach.

It is of special interest to compare experimental (Table
II, column 3) and theoretical (Table VI, column 1) A

values for the 3d configuration, because it is the first
candidate to be affected by core polarization. We have
very good agreement for the levels F2, 'D2, and 'G4,
while there are dramatic discrepancies for the levels P&

and P2. This discrepancy is, as expected, directly related
to the core-polarization effect. The same situation is ob-
served for the 3d4s configuration. Disagreement between

A„~, and A „,is about 42% for the ground state in the
frozen-core approximation, but the sign is the same. The
other values of A for the 3d4s configuration have better
accuracies: 10.8%, 7.0%, 26.5% for the D2, D3, and
'D2 levels, respectively.

There are different sources for the discrepancies be-
tween experimental and theoretical A values in 3d4s and
3d configurations. In particular the 4s electron in the
ground state penetrates deeply into the atomic core,
where it perturbs the core s electrons. We expect that the
3s orbital is dominant in this interaction because of the
greater overlap between 3s and 4s electrons than, e.g. , be-
tween 2s and 4s electrons. The explanation of the poor
theoretical values for some of the levels in the 3d
configuration requires the consideration of several fac-
tors. The amplitude of the 3d wave function at the nu-

cleus is significantly smaller than for the 4s electron, so at
first sight it seems that the interaction at the nucleus due
to polarization effects should be weaker for the 3d elec-
trons. On the other hand, the small amplitude of the 3d
function at the nucleus should be very sensitive to various
influences, such as polarization of the 3p»2 and the 3p 3/p

shells.
We have included the core-polarization effect for those

levels in the 3d4s and 3d configurations that have poor
agreement with experimental results. The computation
procedure was organized in the following way. First we
calculated a basis set of DF functions of Sc II for the con-
sidered configurations. Then we constructed the virtual
orbitals as shown in Eq. (31) by exciting one of the core
electrons to the virtual orbital. In the present work we

take into account the polarization of three core shells:
3s, 3p, /2, and 3p3/2.

2 2 4

The excitation of 3s into virtual states [Eq. (31)] was

used to improve the value of A for the 3d4s D& level.

Column 3 of Table VI gives the new values of A, which

we obtained in the frame of the core-polarization approx-
imation, using only the three first terms [n = 1,2, 3 in Eq.
(31)] of the basis set. A comparison with experimental
values now shows excellent agreement for D, and D2,3 3

and some improvement for 'D2. To obtain better
theoretical values of A for the 3d configuration we excit-
ed both the 3s and the 3p core shells. This was first done
for only the 3p3/p shell, taking into account only one
term with n = 1 of Eq. (31), then we also opened the 3p, zz

shell (n =1) and in some cases we excited the 3s shell

(n =1) as well. These data are shown in Table VI,
column 3.

Our best theoretical A values, obtained with frozen-

core or core polarization, are presented in Table II,
column 4 together with the experimental values (column
3). The diFerences between experiment and theory are
given in column 5. In our experiments only the 3d4s lev-
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TABLE VII. Theoretical values of the hyperfine coupling
constants for the 3d5s and 3d6s configurations in Sc II.

Level

3d5s D,
3d5s D2
3d5s D3
3d5s 'D2

Energy
(cm ')

57 551.88
57 614.40
57 743.92
58 252.09

(MHz)

85.3
293.4

—130.8
151.2

&ca]c
(MHz)

22.4
—12.3

23.4
—25.0

3d6s 'D,
3d6s D2
3d6s D3
3d6s 'D2

77 195.19
77 256.99
77 387.17
77 833.88

337.1

266.0
225.2
142.6

11.0
—13.8
—35.6
—25.3

IV. CONCLUSION

We have measured the hfs of levels in the lower
configurations in Sc II. A frequency-doubling system
offered the opportunity to measure the hfs of the ground
configuration. The experimental results were analyzed in
terms of effective parameters. The semiempirical
effective-operator method has the advantage of being a
straightforward technique that provides information
about the most important contributions to the hfs. It is

els of the 3dns series were measured. An extension of hfs
measurements to the next terms of this series should be
very interesting, since theoretical values of A constants
for the 3d5s levels show an irregular behavior (Table
VII).

not possible to extract very detailed knowledge about the
fundamental interactions by examining the effective radi-
al parameters. This is due to the difticulties in distin-
guishing between the different effects included in the pa-
rameters. We can, however, extract some qualitative in-
formation about the hyperfine interaction from the
analysis.

The MCDF calculation in the frozen-core approxima-
tion gives, as a rule, realistic values of the A and B hfs
constants for Sc II. The exception is represented by a few
low-lying levels, for which A and B are comparable in
magnitude but opposite in sign. In order to improve
these data we made a core polarization calculation, using
an alternative approach. In the frame of this approach
we created a virtual basis set, with similar properties as
Sturm s functions, i.e., orthogonalized and localized in-
side the core. By using only a few of these orbitals we
reached significant improvement of A for the 3d4s levels
and enhanced agreement for the 3d levels. It is possible
that the hfs calculations may be improved with reason-
ably increased calculational efforts by increasing the
number of terms of the virtual basis set Eq. (31).
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