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Theory of bound states in the Coulomb three-body system with unit charges

Alexei M. Frolov* and David M. Bishop
Department of Chemistry, University of Ottawa, Ottawa, Canada KIN 6N5
(Received 7 October 1991;revised manuscript received 31 January 1992)

The existence of bound states and the discrete-spectrum classification in the three-body Coulomb non-
relativistic system with unit charges is considered. It is shown that in such systems the bound states ex-
ist not at arbitrary, but instead only at definite values of the mass ratios, which must lie in a "stable re-
gion. ' The position of this "stable region" is studied for the bound ground S states.

PACS number(s): 31.10.+z, 31.20.0i, 36.10.—k

I. INTRODUCTION

Three-body Coulomb systems are of increasing in-
terest: they play an important role in the diagnostics of
high-temperature and laboratory plasmas, solar physics,
and muon-catalyzed nuclear reactions. In some recent
publications a number of highly accurate calculations
have been reported and it is now possible to discuss the
theory of the spectra of such systems. However, the
problem is complicated since it involves six physical pa-
rameters: three masses and three charges. In this article
we will consider those systems which have unit charges
and for which the Hamiltonian (in atomic units) is

H(rrtx, mr, mz "x rr "z)
= —

—,'(m 'b, +m 'b), +mz ~z)

+qgq y /7xy +qxqz I xz +q Yqz Yz

where q, (i =X, Y, Z) are charges and m, are masses We.
shall study only the bound-state spectra in such systems;
hence one of three charges has a different sign. Without
loss of generality we choose q~=q~=1 and qz= —1.
We can apply the charge-conjugation operator Q
(Qq, = —q;) which commutes with the Hamiltonian,
from which it follows that the initial Coulomb three-body
system and its charge-conjugated system have the same
total and binding energies. Because of this there is no
difference between two such systems and we shall use the
notation X+ Y+Z for the general type of three-particle
system. Here X+, Y+, and Z are the point particles
which have unit charges and masses m~, m ~, and mz.

The choice of the Coulomb three-body systems with
unit charges is governed not only by their importance in
applications (e.g., so-called exotic systems Ps, Mu
H, mesomolecules), but also by the desirability of

analyzing various types of discrete energy spectra as a
function of the three particle masses E(mx, m&, mz). It
should be noted that the type of discrete spectrum is
determined by the asymptotic form of the potential V(r)
as r~ ~ in the lowest-energy two-body channel of the
system, e.g. , for mz ~ m z the lowest channel will be

X Y+Z =XZ+ Y .

In the general case, systems with arbitrary charges, the
asymptote of the pair potential V(r) at r~00 between
the cluster XZ, and the ion Y can be either Coulombic at-
tractive, Coulombic repulsive, or non-Coulombic. If the
pair potential of the interaction V(r) between X+Z and
Y+ is the Coulombic attractive potential then the
discrete energy spectrum contains an infinitely large
number of levels, which converge to the three-body disso-
ciation threshold. If V(r) is the Coulombic repulsive po-
tential then the energy spectrum of bound states is emp-
ty. These statements are true for arbitrary masses of par-
ticles in such systems. Therefore, in these cases the
dependence of the total energy of the system on the parti-
cle masses E ( mx, m r, mz ) has a very simple form. The
more interesting dependence of the type of discrete spec-
trum and its structure as a function of particle masses can
be observed only in the case of a system with a non-
Coulombic asymptotic form of the pair potential V(r) in
the channel in Eq. (2). For definite mass ratios the in-
equality

E (X+Y+Z ) (E(X+Z ) = —0.5mxmz/(rnx+ rrtz )

(3a)

will be obeyed for some state. Then this state is bound.
The case of the equality

E (X+ Y+Z )=E(X Z ) = —0.5mxmz/(mx+ mz)

(3b)

is of special interest and we shall use it as the definition of
the threshold. Here we want to study the case of the sta-
bility of bound ground states in the three-body Coulomb
systems with unit charges with respect to mass variation.
In other words, we will consider the function

(Em xm mr)zfor the ground state in such systems. It
is shown that in such systems the bound ground states ex-
ist only for definite mass ratios, which must lie in a
"stable region. " The position of the "stable region" is
studied for the ground S states in detail.

The problems related to studying E (mx, mr, mz ) for
the Coulomb three-body problem with unit charges have
been formulated in Ref. [I]. In earlier papers [2—4] the
threshold problem has also been investigated and the in-
teresting examples of three-body Coulomb systems with
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unbound ground states or empty spectra have been
presented. In Ref. [5] the stability of the ground and
some excited states in the three-body Coulomb symmetric
systems (Ps, Mu, H ) was considered (see also Ref.
[6]). In a previous paper [7] the binding energies of a
number of symmetric systems such as X+X+Z with
m~ mz were considered. Finally, we note that the sys-
tematic study of the three-body systems with unit charges
was started more than thirty years ago [8—13] and a
number of methods have been used: variational expan-
sions in relative coordinates [8—10], the adiabatic repre-
sentation [11], the three-particle Faddeev-equation
method [12], and the hyperspherical-harmonic method
[13].

where 5 equals 1 in the case of a symmetric system (two
particles having the same charges and mass) and 0 in all
other cases. P,2 is the permutation operator and I j are
interparticle distances. The nonlinear parameters a;, P, ,
and y; are selected quasirandomly from three intervals.
The ranges of the parameters a;, p, , and y; are

TABLE I. The total energies (in atomic units) and the bind-
ing energies (in electron volts) of three-body Coulomb
systems X+Y+Z, where mz =m &

=A,m„mz =m, .
E&=4.3597482X10 "Jand 1 eV =1.6021773X10 ' J. In
the case of these systems the threshold energy equals
E, (A, ) = —0.5/(1+1, ). Negative binding energies correspond
to bound states.

Total
energy (EH)

Binding
energy (eV)

II. CALCULATIONS

Here we use the exponential variational expansion in
relative coordinates to compute the bound states. In the
case of the ground S state, this expansion takes the form

L =0(r31~r32~r21)

=( I+5P,2) g C; exp( —a,.r32 P; r» y;r2—, ), —(4)

TABLE II ~ The total energies (in atomic units) and the bind-
ing energies (in electron volts) of three-body Coulomb systems
X+Y+Z, where m+ =1.5m&=1.5i,m„mz =m, . In the case
of these systems the threshold energy equals

E,(A, )= —0.5/[1+1/(1. Q.)], if A. ) 1 and E() )= —0.5/[[1
+1/(1. 5A, )]A.},if A, (1 and )(., =0.985.

5.0
4.0
3.0
2.0
1.6
1.4
1.2
1.1
1.06
1.0
0.99
0.95
0.9

Total
energy (EH )

—0.467 615 14
—0.449 405 26
—0.423 183 95
—0.381 365 12
—0.356 303 55
—0.340 752 24
—0.322 363 30
—0.311 794 03
—0.307 255 21
—0.300 070 06
—0.298 825 41
—0.293 702 63
—0.286 956 23

Binding
energy (eV)

—0.719433 1
—O.S66 917 8
—0.383 491 2
—0.173 203 8
—0.091 494 8
—0.055 580 9
—0.025 435 3
—0.012 878 4
—0.008 3104
—0.001 906 3
—0.000 897 6
+0.003 202 5

+0.008 399 6

0~a; ~ 1.45, O~P; ~ 1.334, and —0.3 min [a;,P;}
~y; ~1.098, respectively. Note that the rapid conver-
gence of Eq. (4) enables us to use the same fixed values of
the nonlinear parameters for di6'erent systems. Equation
(4) with a quasirandom choice of a;, p;, and y, was first
used by Thakkar and Smith [14] and details of our appli-
cation of this method are given in Ref. [15]. In all calcu-
lations we used 600 basis functions, except for Ps where
we used 900. To calculate the binding energies we used
the conversion factor of EH =27.211 396 1 eV.

Our numerical results are given in Tables I-VIII. In
order to discuss them we introduce three dimensionless

TABLE III. The total energies (in atomic units) and the
binding energies {in electron volts) of three-body Coulomb sys-
tems X+Y+Z, where mx =2m &

=2A, m„mz =m, . In the case
of these systems the threshold energy equals
E,(&)= —0.5/(1+0. 5/k) and A., =1.456.

1.0'
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
15.0
20.0
25.0
30.0
50.0

100.0
p+p+e

—0.262 005 070 232
—0.352 687 35
—0.400 267 04
—0.430 962 39
—0.450 780 24
—0.466 088 87
—0.477 943 60
—0.487 441 06
—0.495 248 64
—0.501 800 15
—0.523 534 60
—0.536 021 01
—0.544 290 28
—0.550 246 20
—0.563 748 89
—0.576 414 52
—0.584 928 65

—0.326 674 72
—0.526 649 9
—0.687 551 4
—0.842 529 8
—0.928 278 0
—1.020 901 9
—1.100 527 0
—1.169997 9
—1.231 278 7
—1.285 866 8
—1.490 765 6
—1.628 072 3
—1.728 496 5
—1.806 162 7
—2.001 474 7
—2.214 05S 7
—2.376 512 Ob

ap

In this case the muonic mass was m„=206.768 64m, .

10.0
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.5
2.0
1.8
1.6
1.55
1.5
1.45
1.4

Total
energy (E&)

—0.518 73448
—0.513420 01
—0.507 10742
—0.499 461 14
—0.489 969 15
—0.477 807 59
—0.461 553 67
—0.438 496 30
—0.422 788 90
—0.402 590 32
—0.392 726 86
—0.381 449 49
—0.378 356 72
—0.375 13493
—0.371 771 82
—0.368 253 66

Binding
energy (eV)

—1.157 681 8
—1.081 266 7
—0.993 737 9
—0.892 383 4
—0.773 638 8
—0.632 995 2
—0.465 565 9
—0.270 069 5
—0.166 594 6
—0.070 486 1
—0.038 708 5
—0.013 527 1
—0.008 379 6
—0.003 671 6
+0.000 627 3
+0.004 5S4 9
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TABLE IV. The total energies (in atomic units) and the bind-
ing energies (in electron volts) of three-body Coulomb systems
X+Y+Z, where mz =3m &

= 3A,m„mz =m, . In the case of
these systems the threshold energy equals E, (A. ) = —0.5/[1+
1/(3A, )] and A, , =1.925.

TABLE VI. The total energies (in atomic units) and the bind-
ing energies (in electron volts) of three-body Coulomb systems
X+Y+Z, where m&=mz=km„m&=m, . In the case of
these systems the threshold energy equals E,(k)= —0.25K, and
~r =1 3775

9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.5
2.0
1.8
1.5

Total
energy (EH )

—0.520 535 26
—0.514 908 89
—0.508 141 95
—0.499 822 37
—0.489 309 51
—0.475 552 97
—0.456 71045
—0.444 381 32
—0.429 127 32
—0.421 800 99
—0.408 433 98

Binding
energy (eV)

—1.044 7110
—0.949 9197
—0.839 994 8
—0.711 256 0
—0.559 452 9
—0.381 354 2
—0.182 600 8
—0.087 208 4
—0.015 127 0
+0.002013 8

+0.017 877 6

1.0'
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1 ~ 36
1.37
1.375
1.378
1.38

ap

Total
energy (EH )

—0.262 005 07
—0.271 909 80
—0.282 104 52
—0.292 609 84
—0.303 438 44
—0.314 593 16
—0.326 060 87
—0.337 81022
—0.340 188 87
—0.342 576 02
—0.343 772 62
—0.344 491 51
—0.344 971 16

Binding
energy (eV)

—0.326 674 7
—0.256 053 9
—0.193323 9
—0.139046 0
—0.093 564 8
—0.056 957 7
—0.028 867 7
—0.008 441 5
—0.005 139 3
—0.002 068 5
—0.000 615 5

+0.000 230 9
+0.000 784 9

parameters ux, u„, and vz where u; =m;/g;m;
(i =X, Y,Z). It is obvious that vx+ur+uz= 1 and
0~v, &1, i.e., only two v coordinates are independent.
%e choose these as vx and vz. In general, the total ener-

gy of the three-body Coulomb system can be written as

E(m xmas mz)=mE(ux vz)

where m is a dimensional mass parameter, e.g. , the
minimum of the three masses and without loss of general-
ity can be made equal to unity. v~ and vz are two dimen-
sionless parameters and E is a function of these parame-
ters only. Let the minimal mass m be fixed (=1), then
the use of the v parameter makes it possible to plot an ar-
bitrary Coulomb system with unit charges as a point in-
side a triangle with unit height, with triangular coordi-
nates vx = ab, v r =ac, uz =ad (see Fig. 1), and also
ab +ac +ad = l. The condition vz ) v ~ makes it possi-
ble to consider only the right side of the triangle. It
should be remembered that one point on the v plane

TABLE V. The total energies (in atomic units) and the bind-
ing energies (in electron volts) of three-body Coulomb systems
X+Y+Z, where m&=4m&=4k, m„mz =m, . In the case of
these systems the threshold energy equals E,(k) =
—0.5/[1+ 1/(4A )] and A, , = 1.986.

TABLE VII. The total energies (in atomic units) and the
binding energies (in electron volts) of three-body Coulomb sys-
tems X Y Z, where mz= 00m„mz=km„mz=m, . In the+ +

case of these systems the threshold energy equals E, (A, ) = —0.5

and A, , =2.335.

Total
energy (EH)

Binding
energy (eV)

represents two Coulomb three-body systems with unit
charges X+ Y+Z and its charge conjugate. Some
difficulties are related to the existence of singular points
on the v plane at the corners of this triangle. Each such
point does not correspond to only one (or two) Coulomb
systems, but rather to an infinite number of such systems.
At a singular point two v coordinates equal zero and the
third one equals unity, or in terms of masses two masses
have a finite value and the third one has an infinite value.
Such systems form a one-parameter series. The parame-
ter is the ratio of the finite masses. For example, at point
Z (see Fig. 1) we have A, =mx/mr, mz = ae and at point
X we have A, =mr/mz 1, mx = ~.

Table I presents the numerical results (the total and

5.0
4.0
3.0
2.5
2.0
1.98
1.9
1 ' 8

1.5
1.0

Total
energy (E~)
—0.495 585 20
—0.483 294 16
—0.466 983 65
—0.456 725 31
—0.444 493 97
—0.443 943 60
—0.441 670 89
—0.438 641 66
—0.427 766 40
—0.398 576 22

Binding
energy (eV)

—0.527 757 4
—0.345 746 0
—0.148 171 2
—0.059 3170
—0.001 347 6
+0.000 070 5
+0.005 158 5
+0.010414 5
+0.021 906 0
+0.038 743 1

10.0
5.0
4.0
3.0
2.7
2.6
2.5
2.4
2.35
2.3
2.25
2.2
2

—0.540 099 10
—0.516707 61
—0.509 746 57
—0.502 872 09
—0.501 271 41
—0.500 844 27
—0.500 483 88
—0.500 195 15
—0.500 077 48
—0.499 97644
—0.499 89045
—0.499 817 61
—0.499 618 85

—0.091 152 4
—0.454 637 3
—0.265 217 6
—0.078 153 7
—0.034 596 9
—0.022 973 7
—0.013 167 1
—0.005 3103
—0.000 210 8

+0.006411 8
+0.002 981 0
+0.004 963 1

+0.010371 6
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TABLE VIII. The total energies (in atomic units) and the
binding energies (in electron volts) of three-body Coulomb sys-

tems X+E'+Z, where mz =k,m„m z =m„mz = ao m, . In the
case of these systems the threshold energy equals E, (A, ) = —0.5A.

and A, , =1.237.

1.0'
1.05
1.10
1.15
1.20
1.225
1.235
1.2365
1.2375
1.24
1.25
1.3

Total
energy (EH)

—0.527 751 016 507
—0.542 346 92
—0.559 600 03
—0.579 285 77
—0.601 156 30
—0.612 786 86
—0.617 539 89
—0.618 256 70
—0.618 735 29
—0.619933 65
—0.624 751 85
—0.649 237 05

Binding
energy (eV)

—0.755 143 90
—0.472 038 4
—0.261 230 1
—0.116621 9
—0.031 464 5
—0.007 806 0
—0.001 085 7
—0.000 182 4
+0.000 400 3
+0.001 805 5
+0.006 752 4
+0.020 760 8

'"H

Z( H)

x( K+e )

FIG. 1. The equilateral v triangle for the Coulomb three-
body system with unit charges.

binding energies) for a number of symmetric systems
X+X+Z with the mass ratio mx/mz~ l. These re-
sults include our previous results [7], where we con-
sidered the inverse condition mxlmz 1. The results in
Table I and in Ref. [7] can be represented in terms of the
v plane as the points which lie on the line OZ below and
above the point A (Ps ). An arbitrary system has at
least one bound state. Below point A the discrete spec-
trum of the system X+X+Z consists in the general case
of a number of bound states. From Ref. [7] we know that
the 'P state appears at mz/mx =0.237026, the 2 'S state
at mz lmx =0.097 998, and the 'D state at
mz/mx =0.087070 1. In the limit mz/mx~ 00 the
number of the bound states increases to infinity ("H2+
ion). Note that the equation of the line OZ in the v trian-
gle is v~=vz, vz=1 2' ~ The energy of the positroni-

um ion ( —0.262005 0702E& ), which was calculated us-

ing 900 basis functions, is the best value to date.
Tables II—VIII show the typical situation when a

threshold point exists. We consider in Tables II—V the
systems which, respectively, have the parameters

1.5u&=vx, vz =1—2.5ux,

2U~= vz, vz =1—3U~,

3Vy =Ux,

4vy =
U~& vz = 1 5'

(6a)

(6c)

(6d)

The thresholds points and the equations for the threshold
energies are listed with each table. The lines generated
by Eq. (6) in the v triangle cross the OX axis at the points
Oz, 03, 04, and 05 (Oi =—0) and contain the Z singular
point. In Table VI the results for systems which are
determined by the equation V~=1 —2V~, uz=u~ are
presented. This line contains the Ps system and crosses
the XZ side of the u triangle at the middle point. It also
has a threshold point.

The situation at the singular points X and Z is present-
ed in Tables VII and VIII. These points have the thresh-
old values listed in the tables. Note that at A, =1 the sys-
tem at the point Z ( "H ) is bound and the system at the
point X ( "H+e +

) is unbound.
All threshold points in Tables II—VIII determine the

boundary of the "stable region" for the Coulomb three-
body systems with unit charges. The equation of the
boundary has the form of Eq. (3b) and can be presented
in terms of the binding energy and v coordinates as fol-
lows: s(vz, vz)=0. Note that the vanishing of the bind-
ing energy is related to the large difference in particle
mass. Above the threshold the third particle (Y+, say)
cannot polarize the neutral "quasiatom" (X+Z )

enough (to produce a real bound state) if the mass ratio is
less than the threshold value.

III. CONCLUSIONS

We have considered the bound-state spectra in the
Coulomb three-body system with unit charges. It has
been shown that the bound states in such systems exist
not at arbitrary, but only at definite, values of the mass
ratios; these lie in the "stable region. " We have deter-
mined the position of the boundary of this "stable re-
gion" for the ground state in the dimensionless v coordi-
nates. The situation is presented in Fig. 1. The use of a
triangular description is similar to the one used to depict
the composition of a three-component mixture in thermo-
dynamics [16].

In conclusion, let us note a number of problems which
should be investigated in the future. First, it will be im-
portant to consider in the same manner the excited states,
including the states with L ~1. For the moment we
know only that the boundary of the "stable region" for
the general excited state crosses the OZ altitude at point
B; which lies below point 3 (Ps ) in the v triangle (Fig.
1). The singular point X lies also on an arbitrary bound-
ary. The threshold points can be determined only as a re-
sult of numerical calculations. Without these calcula-
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tions we can only give a few typical qualitative boun-
daries for the "stable regions" in the v triangle, as in Fig.
1. However, at present the question of the intersection of
different boundaries on the v plane is not fully clear. It
can be shown that these threshold energy curves do not
intersect in the cases of ground states with different L. In
the case of exited states, this is not so clear. Hence, in
principle, the order of the appearance of a new bound
state in the discrete spectrum may be changed with con-
tinuous mass variation. In this last case additional de-
generacy will be present at such intersection points. It
will be interesting to test the central potential V (r) in Eq.
(16) found with the data of the ground-state calculations
in the cases of excited states, including states with L 1.

Second, for such systems the problem related to the ex-
istence of quasistationary states (prethreshold resonances)
seems very interesting. These quasistationary states exist
in the vicinity of the "stable-region" boundary. Such res-
onances are well known for a number of exotic and meso-
molecular systems.

Third, it will be important to test a condition which

follows from the general theory of weakly bound states.
This condition can be formulated as the vanishing of the
normal derivative of the binding energy on the boundary
of the "stable region. " If we use the equation of the
boundary on the v plane as s(v~, vz)=0 we can obtain
the condition

(VE.n)~v=0,

where n [ =n( vz, vz ) ] is the unit normal vector to the
boundary of the "stable region" (I ) on the v plane. This
equation follows form the general theory of weakly bound
two-body states in the field of an arbitrarily fast decrease
in the potential (faster then r ).
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