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Vector parametrization of the N-body problem in quantum mechanics: Polyspherical coordinates
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The configuration of an N-body system can be entirely represented by N —1 relative position vectors
after separation of the center-of-mass motion. Many of the sets of coordinates that are commonly used
for describing molecular configurations can be viewed as spherical coordinates, for the various vectors,
collected together. The spherical angles are local; i.e., they are defined for frames that change from one
vector to another. Each particular set of coordinates of that nature (polyspherical coordinates) consists
of three Euler angles for the overall rotation of the body-fixed frame and 3N —6 internal coordinates:
the N —1 vector lengths, N —2 planar angles between pairs of vectors, and N —3 dihedral angles be-

tween two vectors around a third one. This article aims at developing an example of this type of parame-
trization, where the body-fixed-frame z axis is parallel to one vector. The quantum-mechanical kinetic-

energy operator for the system so described is derived. The operator action on the angular part of the
functional basis set is studied (%'igner rotation matrix elements for the Euler angles and spherical har-
monics for the internal angles), and the structure of the matrix representing the kinetic-energy operator
is described in detail. The advantages and drawbacks of the present vector parametrization and the po-
lyspherical coordinates are discussed. The principal advantage is in numerically calculating the matrix
elements of the kinetic-energy operator: The integration over all angles turns out to be analytically
achieved, so that the numerical effort is to be concentrated only on the N —1 radial coordinates. Radial
basis functions are to be selected according to the physical context (collisonal or vibrational, or any oth-
er). Thus the angular basis set proposed constitutes an adequate finite-basis representation for the
kinetic-energy operator and, combined with a discrete-variable representation for the potential energy, is

likely to provide an eKcient collocation framework for the dynamical study of more-than-three particle
systems.

PACS number(s): 31.15.+q

I. INTRODUCTION

The growing interest in (i) the highly excited rovibra-
tional states of polyatomic molecules, including the states
where the molecules are floppy (i.e., at energies higher
than isomerization barriers) or dissociative and (ii) the
dynamics of van der Waals complexes, calls for exact
quantum-mechanical expressions of the kinetic-energy
operators for X-body systems. First, the system can be
described in terms of internal (and curvilinear) coordi-
nates. The normal-mode description of molecules [1],
which is well adapted to the vibrational regime, is actual-
ly no longer well suited at high energies or for weakly
bound systems. Then other treatments based on the use
of curvilinear internal coordinates and differential cal-
culus are more appropriate [2—13]. A thorough discus-
sion of the various requirements the coordinates must
fulfill for the rovibrational Hamiltonians to be adequately
expressed has been presented in a recent article by Bram-
ley, Green, and Handy [14].

Why are the matrix representations of such operators
required in most cases? For bound systems, it is because
the variational method has been extensively used to find
rovibrational levels and wave functions. A large amount
of work has been performed on triatomics using various
coordinate systems (see, for instance, the reviews by
Sutcliffe [15], Carney, Sprandel, and Kern [16], Carter
and Handy [17],and Chapuisat, Nauts, and Brunet [18]).

These systems are described in terms of (i) normal coordi-
nates (e.g., Whitehead and Handy [19] used the Watson
[20] normal coordinate kinetic-energy operator), (ii)
scattering or Jacobi coordinates (Smith [21], Tennyson
and Sutcliffe [22], Bacic and Light [23], and Leforestier
and co-workers [24—26]), which suit isomerization pro-
cesses particularly well, (iii) valence coordinates (see Refs.
[18,27]), and (iv) a few others (for instance, Radau coordi-
nates [21] and hyperspherical coordinates [28—38] which
turn out to be particularly well suited for the homonu-
clear triatomics [39—42]). In these references, the work
has been a success. In Ref. [14], a well-documented dis-
cussion of the advantages and drawbacks of all usual
coordinate systems is presented, particularly with regard
to the extent to which the corresponding kinetic-energy
operators have or have not the two desirable properties of
separability and factorizability. The requirements for vi-
brational coordinates and rotational coordinates are ex-
amined separately, in great detail.

In weakly bound systems, a similar approach has been
used with great success, for example, for the calculation
of the spectra of van der Waals complexes involving
closed-shell molecules [43—58] (for reviews, see the works
by Le Roy and Carley [59] and Hutson [60]). More re-
cently, the dynamics of open-shell van der Waals com-
plexes has been studied, for instance, the theory for
atoms and open-shell X and H diatomic molecules by
Dubernet, Flower, and Hutson [61]. The same approach
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also turned out to be successful in evaluating the molecu-
lar states in the floppy regime [62], for example, the work
of Light and co-workers [63—66], Wyatt and co-workers
[25], Bowman and Gadzy [67], Mladenovic and Bacic
[68], and Leforestier [69].

Extending the problem to more atoms is one of the
goals of this article. If no model constraints are imposed
(allowing a reduction of the problem dimensionality, see
Sec. VII below) and if the complete spectrum is sought
(i.e., all the bands), this means four atoms, in practice,
since the present state of the computational possibilities
is such that the calculations would get out of hand if
there are five atoms. There are a few pioneering works in
that field. Maessen and Wolfsberg [70] and Handy and
Carter [71] have used the Watson [20] normal coordinate
operator to study HzCO, a molecule also studied by Aoy-
agi, Gray, and Davis [72), Maessen, Bopp, and
McLaughlin [73] have studied NHi, Carter and Handy
[74] used valence coordinates for C2H2, and recently Wil-
letts et al. [75] and Ming-der Su et al. [76] have studied
OzH2 and S2Hz, respectively, using the same coordinates.
In the field of the weakly bound systems, Hutson [77] has
studied the angular momentum coupling scheme and the
dynamics of the Ar-HzO complex, by means of a coordi-
nate system which can be considered of the Jacobi type
since the water vibrations are small. For more than four
particles, Iung and Leforestier have calculated, with the
help of normal coordinates, the partial spectrum corre-
sponding to the v, -v~ chromophore bands of CD3H [78].

Getting rid of the unwieldiness of differential calculus

in the derivation of exact quantum kinetic-energy opera-
tors is an important goal. A breakthrough in that field
has been the use of computer algebra, as advocated by
Handy [27]. The present work is an alternative attempt,
at least for angular coordinates. It relies upon the fact
that various sets of N —1 vectors can be associated with
an N-body system, describing its shape as well as its
orientation, and that the rovibrational motion of the sys-
tern can be viewed as resulting from the rovibrational
motion of each vector. These vectors can, in turn, be as-
sociated with a set of coordinates, hereafter called poly-
spherical coordinates, which are actually (i) the N —1

vector lengths, (ii) N —2 planar angles between pairs of
vectors, (iii) N —3 dihedral angles between two vectors
around a third one (these 3N —6 first coordinates are
internal coordinates) and, finally (iv) three Eulerian an-
gles orienting the body-fixed (BF) frame with respect to
the space-fixed (SF) frame. In many practical cases, these
3N —3 coordinates actually turn out to be local spherical
coordinates for the N —1 vectors. Here, local means
that, in order to identify spherical angles, the vectors
must be viewed in frames which are not the same for all
vectors. It should be emphasized that, in this work, the
coordinates are mentioned only for identifying which
Hamiltonians derived in terms of curvilinear coordinates
actually belong to the family of the polyspherical opera-
tors introduced, thus allowing us to check our results in a
few cases. However, the principal ingredients used below
are clearly the algebraic (operational and matricial) con-
siderations relevant to the rotation of the N —1 relative

(a)

R,

FIG. 1. Polyspherical coordinates constitute a class of internal coordinates, not a particular set of coordinates. Thus, for four par-
ticles, the four coordinate sets illustrated here are of the polyspherical type. In all cases, P denotes the dihedral (internal rotation) an-
gle between R& and R2 around R3. The coordinates in (a) are advisable for a dissociative system 1234 ~~13+24, for instance, a dimer;
they are Jacobi coordinates. The coordinates in (b) suit well a floppy system in which particles 1 and 2 can turn around the 34 strong-
ly bound core, and those in (c) and (d) are usual valence coordinates, respectively adapted to a linear (acetylenelike) molecule and to a
branched (ammonialike) molecule.
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vectors and no longer the differential calculus rules that
are required for using curvilinear coordinates.

There are obvious sets of curvilinear coordinates which
are not polyspherical, such as the so-called hyperspheri-
cal coordinates, initially defined for three particles by
Delves [28] and Smith et al. [29,30], and generalized (in-
cluding to more than three particles) by several authors
[31—38]. However, many sets of internal coordinates,
which are often resorted to for practical calculations on
polyatomic molecules, are of the type considered here.
This is illustrated for four-particle systems in Fig. 1,
where four different sets of internal coordinates are de-
scribed, all of them belonging to the poly-
spherical coordinate family under discussion. Let us note
that Handy [27] used computer algebra to derive the
kinetic-energy operators for the precise coordinate sys-
tems Figs. 1(c) and l(d). All the coordinate systems
which are of either the Jacobi type or the valence type be-
long to the polyspherical family.

The aim of this paper is to propose a possible parame-
trization of the polyspherical type. Here, one of the vec-
tors plays a particular role; i.e., it is parallel to the z axis
of the BF frame. In addition, the N —2 planar angles are
those between this vector and the N —2 other vectors,
and the N —3 dihedral angles are all taken around this
vector, between a second given vector (parallel to the xz
plane of the BF frame) and the N —3 remaining vectors.

It should be emphasized that all the raw classical as
well as quantum-mechanical ingredients which are used
below are basically not new. Anyone who has attended
the appropriate courses in classical and quantum
mechanics could, in principle, write the equations below
as a lengthy exercise problem. Therefore, the interest is
more in the way the problem is put and in the nature of
the final solution. A generic exact quantum-mechanical
kinetic-energy operator is proposed for more than three
particles (there is no restriction in the number of parti-
cles), covering many different sets of internal coordinates.
Furthermore, the operator derived has an advantage: the
integrals over the angles appearing in the calculation of
the matrix elements representing the kinetic-energy
operator in an appropriate basis set are analytical. This
property is well known for the Eulerian angles, with the
standard basis of Wigner rotation matrix elements; it
turns out to also be true for the internal angles, provided
that appropriately contracted products of associated
Legendre functions for the planar (bending) angles and
imaginary exponentials for the dihedral (torsion) angles
are used as basis functions [14]. In practice, this reduces
the numerical effort for deriving the Hamiltonian matrix,
concentrating it only on the integrals over the N —1 radi-
al coordinates. Let us remark that (i) nearly all the work
to date on triatomics and tetraatomics [27] has this desir-
able property, as a mark of the fact that many coordinate
systems belong to the polyspherical family and (ii) the
dominant numerical cost is actually matrix diagonaliza-
tion.

II. CLASSICAL MECHANICAL BACKGROUND

Let r&, r2, . . . , r„(n =X—1) be Jacobi vectors (i.e.,
vectors pointing from one atomic group center of mass to

R„ n

be any vectors, also describing the system uniquely, i.e.,
such that A is a constant nonsingular matrix. In prac-
tice, A depends only on the masses and is of unit deter-
minant (see Appendix A).

The classical kinetic energy is, by definition,

2T=(r„rz, . . . , r„)p

=(Ri,R2, . . . , R„)A "pA

R]

R2

(2)

R„

where p is the diagonal matrix of the reduced masses as-
sociated with the Jacobi vectors. Following the usual
definition of the conjugate momentum vectors,

P)

P2

P„

BT/BR)

8T/BR~

BT//BR„

R,

R2

R„

Eq. (2) can be rewritten in the form

P)

P2
2T=(PI, P2, . . . , P„)M

P„

where

M= Ap
—1 At

(3)

(4)

is a mass-dependent constant symmetric matrix.
The total angular momentum vector is defined as usu-

al,

J= g p;r, X r,. = g R. X P,. = g L, , (5)

where I. is the orbital angular momentum vector canoni-
cally associated with the position vector R .

If e; denotes the unit vector along R;, we can write

e,- XL;
P,. =e,-P,'—

1

another) describing the system uniquely. It is worth not-
ing that the choice for a Jacobi vector set is not unique
(see Appendix A for N =4). Let

R,
R2
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so that

L2
p2 (pl )2+

l l

(e, XL, ).(e, XL, )

,J~
~. j~+

J

L; L.
+(e Xe ) P" P'—

J J g l J

where 8;, denotes the angle (e, , e ).

III. BODY-FIXED FRAME
AND ANGULAR COORDINATES

Let the z axis of the BF frame be parallel to vector R„
(whence L„'=0). All angular momentum vectors being
measured in the BF frame, the (purely mathematical)
constraint on L„(perpendicular to z) is removed by re-
placing L„everywhere by

FIG. 3. Illustration of the relative orientation of the position
vectors R; and R, (iWj ). Various vectors are also represented,
the angular momentum vectors L; and L, , on the one hand,
and, on the other hand, the momentum vectors P; and P, , by
their radial (P, ,P,". ) as well as perpendicular (P;,P,. ) vector com-
ponents.

n —1

L„=J—g L;,

so that

n —1JZQLZ
i=1

(9)

(10)

where J is the total angular momentum vector. In addi-
tion, the x and y axes of the moving frame are oriented in
such a way that R„& is parallel to the xz plane, with a
positive x component. Therefore, the three Euler angles
defining the orientation of the BF frame relative to the SF
frame are

n

n —1

where O„and P„are the spherical angles for R„ in the SF
frame; moreover, P„, (a rotational angle around R„)
and a„„the planar angle between R„and R„„are
the spherical angles for R„,viewed in the intermediate
frame obtained by the first two Euler rotations.
Definition (11) implies that, in the BF frame,

y„=O,

=X e„=O, (12)

FIG. 2. The BF frame of reference, whose origin is at the
center of mass 6 of the system, is oriented in such a way that
the z axis points parallel to vector R„and vector R„, lies
paralle1 to xGz plane, with a positive x component. A11 the oth-
er vectors, R; (i = 1, . . . , n —2), are oriented in this frame by
means of spherical angles (a; and g; }. The 3n —3 internal coor-
dinates are therefore R „.. . , R„, ai, . . . , a„„and
[Pl) ~ ~ ~ ) fn —P ~

so that the remaining nonzero spherical angles of the vec-
tors in the BF frame, namely, a;=(e;,e„)
(i =1,2, . . . , n —1) and y,. (i =1,2, . . . , n —2), can be
considered pure internal coordinates (see Fig. 2). If the
overall symmetry allows the permutation of identical par-
ticles, the symmetric embedding of the axes requires fur-
ther study (see [14] and Sec. VII below).

From Eqs. (3)—(9), it is clear that (Fig. 3)
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n 1 n —1 n —1

n —1 L2
T= ' g M, , (P,") .+ i + —,'M„„(P„")+

~

I R

Ji—2J. Q L+$ L+2 $ L; L~

n —1 (e,. XL;) (e XL )

j(i =1 R;R ~

I

n —1 n —1

+ g M„; cosaP„"P;"+ . (e;XL;) e„X J—g L/
i=1 j=1

n —1 Pr—(e„Xe;). P„" — J—g L.

P,.'L, P,"L,

R R;

RnR;

(13)

Equation (13) can be rewritten in the form

Mnn 2T=— J-
R 2

J n —1

XR .
1

Mnn
L —Mnl

n

cosa;L; —e;L +sina; E;P;"
R;

n n

n —1 Mnn

R„
Mni Mnj M,Jcosa; — cosa + cosO;J.

n i n j i j

—g P," g

L; L, — ' (e; L, )(e~ L;)
J

MJ M„
(e; Xe.)+ sina;E; LJ,R ' J R„

(14)

where

cos8; =cosa;cosa +sina;sinajcos(p —y;)

(i,j=1,2, . . . , n —1),

+—1

(Hermitian momentum operator),

8„;=a; (i =1,2, . . . , n —1),
sina;E; =e„Xe;,
and

E; =(sinter;, —cosy;, 0) (i =1,2, . . . , n —1) .

p p
f
p

a, a
R23R BR

'

8 2 8
2p QR2 R BR

fi 1 8
2p R QR~

(kinetic-energy operator)

IV. LINEAR MOMENTUM OPERATORS
AND VOLUME ELEMENT IN R "

The polyspherical parametrization used here consists,
for each vector R, , of local spherical coordinates. For
current spherical coordinates R, a, y in 8, there is, by
definition,

s=R sina (Jacobian),

a
ps = —iiri (linear momentum operator) .

Now, owing to the results of Refs [18,27,79.,80], various
normalization conventions can be considered. In the Eu-
clidean case, i.e., for the volume element of
)8l, dr =sdR da dq&, the following relations hold:

[see Eqs. (2.17) and (2.18), (2.21) and (2.32), along with
g" =1/p, in Ref. [79]].

In the general case, i.e., for the volume element
dv=pdR dady, where p is any function defined in IR

which can be zero but only in sets of measure zero of lR

(i.e., surfaces), the Hermitian momentum operator and
kinetic-energy operator are [see, respectively, Eqs. (4.12)
and (4.21) in Ref. [79]]

~H g 1/2 —1/2a
PPR= ' P

HARP

1/2 —1/2 P 1/2 —1/2
R S P RP

so that, in the particular case where p =sina,

~B
liri =pg

aR
8 2

PR = lA +-
BR R

(adjoint momentum operator), $2 Q2
Y

2p BR
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Xsina„~da„&dR„dgsinOd8dg . (15)

Thanks to the orientation chosen for the BF frame, d ~
is the product of the usual Eulerian solid-angle element
(so that the overall rotation and the Coriolis effects are
going to be treated in the usual way) by the following
internal coordinate volume element:

n n —1 n 2
dr'"= g dR; P sina;da; g dy;

We must, nevertheless, keep in mind that the volume ele-
ment is no longer Euclidean. We shall take advantage of
this later on.

In the direct product space R "=R 1
Rz. . . R„,

the volume element is dr=11," &dr, . For the Euclidean
volume element dr, =R, dR;sina, da, dp, , P;" and P;" are
to be replaced in Eq. (14) by, respectively, —ih'8/BR, and
—(A' /R; )(8/BR; )R; (8/BR; ). In addition, L, is the usu-
al orbital angular momentum operator defined through
its components in terms of polar angles, or, alternatively,
through the commutators of its components (see Sec. VI
below).

For the volume element dr; =dR;sina;da;dpi (and for
it only), the vector operator P;=e;P;"—(e, XL, )/R; is
Hermitian in )R; if (i) P,"=—i'(B/BR;) (see Sec. V) and
(ii) L; is still the usual orbital angular momentum opera-
tor. Then, in virtue of

n 2

dr= P dR, sina;da;dp; dR„

R„. It is worth recalling here that, in particular, all
Jacobi-type coordinate sets (matrices A=1 and M=@,)

are, by construction, polyspherical.

V. QUANTIZATION

To obtain the quantum-mechanical expression of the
W Jkinetic-energy operator, T, we must substitute, in the

classical expression, Eq. (14), P;" for —i'(B/BR, ), (P,")
for either —(A' /R; )(8/BR, )R; (8/BR; ) or —fi (I) /BR; )

(depending on whether the Euclidean or the non-
Euclidean normalization convention is used), and L, by
the vector operator L;. However, when the normaliza-
tion convention is not Euclidean, we must examine the
question of the occurrence of an extra-potential term in
T~F. According to Refs. [79,80], this term is equal to
V =(s'» p

'» TEp'» s '» ), where the parentheses indi-
cate that tE does not operate beyond them, so that V~
actually is a multiplicative quantity. Here
p'» s '» =(R, R, R„) '. See Appendix B for
more details on the non-Euclidean normalization conven-
tion.

After relatively simple calculations, in which use is
made of the familiar relations

L, L, =L,'L&'+ 'i(L;+L +L; L ),
SlnQ I

e; L, =cosa;LJ'+ (e 'L, +e 'LJ ),
2

where L,+ =L "+iL» and L =L, iL», f'J ca—n be put in
the form

and
n —1 n 2

T =T +Tco +Tot (16)
dr'" = P R dR; g»na;da; g dp;, where

Mnn ~2T =— Jrot
n

(17)

accounts for the overall rotation of the BF frame of refer-
ence and

n —1

R„,. 1 R„
J'L + coscx;

n

+,J
R; 2

IJ+ fiJ
+M„;sina; (18)

BR; 2l

where R, (i =1, . . . , n) denote the vector lengths, a;
(i =1, . . . , n —1) denote the planar angles between vec-
tors R; and R„, and finally g, (i =1, . . . , n —2) denote
the dihedral angles between vectors R, and R„,around

I

+J L;

accounts for the Coriolis energy.
An interesting form of the internal deformation kinetic-energy operator Tz is

A. 2
g2 n

1 g2 n g2 n —1 L. n —1 n

f'z= — g M, , R,.—A g M, cos8, + —",
' g "+ g A,"+g2, "R; ()R,. ', ,

' ' BR;BR ', I;;

where

Mnn Mii Mni+ —2 cosa, (i =1,2, . . . , n —1),
R R RR.

n —1 a—
I, h (19)

A;. =a'~E L'+a/
e 'L; +e 'L,.

L'+a'.
2

L +
2

M" ' 'L E + ' 'f.L.
2RR. ' Jsina;sinu

2
(20)
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sina. sina;sin(ip, . y—j }Ll'.—cosa;
J

—fg. ~+ f/7. ~
J J

2l
+b'

—lg. ~ + gg7. ~
J J (21)

The coefficient functions in Eqs. (20) and (21) are (j (i = 1,2, . . . , n —1)

M„„M,-a'j= + sina. sina cos(y. —y ),R2 RR
n J

a'=
J

M„;

R„
M; sina, .—cosa.

J
(22}

and

M„„
a lJ R2

1

R„
Mni Mp j Mij l g . lipcosa; + cosa + (cosa; cosa j + ,' e '—sina;e 'sinai. ),

I J E J

bl
J

M„;
R„

M;.
+ cosaj sina; (i =12, . . . , n, j=12, . . . , n —1) .R.

(23)

The operators f'„„A,",and A,', in the forms above, are real.
Moreover, in regard to the operator fE, bearing only on the internal deformations, it may be useful to rewrite it, as

far as the angles a; (i =1, . . . , n —1) and ip; (i =1, . . . , n —2} are concerned, in terms of partial derivatives, and no

longer in terms of angular momentum operators. The result is

2 "R 2 '
. 'j 'jMM.

i =1 & ~R1 j(i=1 i j
g2 n —1

~ g2 8 1+cota; +
2;=1 I;; aa2 ' aa; sln2u, aV2

n —1 a2 a2 ~ a2 a2X" ' +K ' +E ' +E,
aa, aaj ' aa, a~j

' aa, a~i " a~, a~,

2""' a a a—ill g g Nj + n~'

i=lj=l j Pj ~i
(24)

where

M„„
R n

M„; M„.
cosa; — cosa,

n i n j
MiJ+ cosa;cosa cos(ip, —pj)

J

M;.+ sina;sina. ,R;R

Mnn Mni
cosa . — cosa; cosa,.

R„R,

(25)

n'=
J

M„; M; sina;
cosa, + . sin(ip, —

ip, ),
Rj sinaJ

where nJJ=O. The expression of i E in terms of internal0 ~

coordinates (24) is given in order to allow the comparison
with previously derived operators for four particles
[27,74,80], see Appendix C. But clearly it is not the no-

velty of this work. What is seemingly new and will be
used below is the expression [(16)—(21)] of f' in terms of
the angular momentum operators J, J', J+,J, L;, L;*,

E;+, L; (i =l, . . ., n —1).

where EJ=O,

M„„
Kij 2

+
R„

nn ni
COSai COSaj cosaj

M„M;
cosa;+

R RJ
' R RJ

cos(q&; —
q&j )

sina;sina.

M„M; sin(ip; —
ip )+ cosai

R R RR ' sinu

VI. ANGULAR MOMENTUM OPERATORS
AND ANGULAR BASIS FUNCTIONS:

INTEGRATION OVER ANGULAR COORDINATES,
MATRIX REPRESENTATION

The eigenfunctions of the total angular momentum
vector operator J are noted ~J, Q, M &, with the eigenval-
ues fi J(J+1),fiQ, and fiM for J, J', and J, respective-
ly. Z denotes a SF axis and

&y, e,ylJ, n, M&=nJ* (y, e,r)
M„;

N' = . cos(y; —y. )
R„sina;

M;.+ [sina, .cosa cos(y; —
~p ) —cosa;sinaj ], (26)

J
J*lJ,n, M & =wc+(J, n)~J, a+1,M &, (27)

are Wigner functions. Owing to the commutation rela-
tions of the BF components of J, e.g., [J",J"]= ifiP, —
the action of J is given by [81—83]
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where

c+(J,Q)=&J(J+1)—Q(Q+1) . (28)

n 2

2) * (P, e,g) Q Y '(a;, y;) (
—1) "

The eigenfunctions of the orbital angular momentum
operator L, are noted IL;, Q, ), and

L, IL, , Q, ) =Pi L, (L;+1)IL;,Q;),

L IL, , Q, ) =fzQ; IL, , Q, ),
0,.

where (a;,y; IL;, Q; ) = YL '(a;, y;) are spherical harmon-
y

ics. Hereafter, the following definition of the spherical
harmonics is used:

2L„,+1 (L„,—iQ„,i)!

i+ I Q„)I)!

XPI (cosa„ i),
where Q„,=Q —g"„:fQ, . It is adapted to describe a
bound state, such as those studied in ir spectroscopy or
for the Aoppy molecular states observed by means of
stimulated emission pumping techniques [25,62 —69], for
which the complete definition of the BF frame of refer-
ence is necessary. We write the corresponding basis func-
tion

Ym(e ) ( 1)m
2i+ I

4~ (i+ imi )!

' 1/2

Pi (cose)e'
IJ1Q, M, Li, Qi, . . . , L„q,Q„q,L„))

where Pl denotes an associated Legendre function,
along with the convention P I

~
I
—

(
—
1) I

~IP I
~

I

which operates on the internal coordinates only, is
defined directly in the BF frame, with the usual commu-
tation relations [L, , L~) =ifiL and so on, where
[c+(i)=c+(L;,Q;)]

L; I L;,Q; ) =A'c+ ( i)
I L, , Q, + 1 ) .

The alignment of the BF frame z axis with R„ imposes
that Q=g,":,'Q; and J ~ g,":,'L; (equal if, and only if
L„=O). Two cases are considered. (i) If the third Euler
rotation is not performed +=0 g 1 is a variable. The
current angular basis function is

or still, in shorthand notation,
I

). It is worthwhile
noting that 2n independent quantum numbers appear in
both cases, as must be the case when describing n rotat-
ing vectors.

M JWe calculate now T, the matrix representing T [cf.
Eqs. (16)—(21)] in the basis [ I

. ) ]. The integration is
over the angles only, i.e., the matrix elements are ex-
pressed in terms of J, Q, M, L, , Q, (i = l, n —2), and
L„„on the one hand, R, and r)ldR; (i = l, n) on the
other hand. J and M are fixed (in particular, the energy is
independent of M, as a consequence of space isotropy in

the absence of external field), i.e., T is a block at con-
stant J. In the basis j I

) j, the action of f'„„f'„„L;,
A;, and A, is trivial, and the matrix elements are easily

derived, for instance,

g2 M
'IT"„'., I ) = "," J(J+ I)5„,, „, ,

n

(29)

This basis suits well asymptotic conditions corresponding
to a fragmentation along R„. (ii) If the third Euler's rota-
tion is carried out (see Sec. III), the following basis set is
more profitable:

where ( 'I denotes the current angular basis function
with all quantum numbers primed, and the collective
Kronecker symbol 5,11,&1

indicates a pure diagonal con-
tribution. In a similar way, we obtain

(''' If'„I ''')=El Q5@rgi
R„

$2

2R„

n —1

. c (J,Q)5„„,g c (i) 5, 5„,
i =1

(L,'Q,'icosa; iL;Q, —I )
I

A,-

+M„;
I

(L Q,'Ie ' sinu, IL;Q, ) 5„„,'„'„
BR;

n —1

+c+(J,Q)5n „+, g c~(i) 5, 5, ,
— (L,'Q,'Ic s oiLa, Q, +I)

+M„, + (L,'Q,'Ie ' sina; IL, Q, ) 5„,t, '„',t (,
R; BR;

(3O)
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we obtain

+ (I + hami )Pi, (cosg) ],

(QL,.Q,- )
where the collective Kronecker symbol 5„„.'„,', concerns
all the quantum numbers except the ones explicitly indi-
cated as upper indices in parentheses, namely, here 0, L, ,
and 0, .

Remarkably, in Eq. (30) as well as in Eqs. (36)—(40)
below, there appear two (and only two) types of matrix
elements. These integrals can be calculated from the re-
cursion relations of the associated Legendre functions.
From

cosgpi (cosg)= [(I —imi+1)pi+, (cosg)
1

8+ (L;,Q, )=

8 (L;,Q;)=

(L;+Q;+1)(L;—Q;+1)
(2L, +1)(2L,+3)

(L;+Q;)(L;—Q;)
(2L;+ 1)(2L;—1)

(32)

and from

=8+ (L; —1,Q; },

( L Q'
, ~

cosa; ~L;Q, ) =5,„[8+(L;,Q; )5,
1 t I

+8 (L;,Q;)5, , ], (31)
I

where

I

singp — (cosg) =+ [p-&~ ' +'&( cos g) —p —t' '+"(cosg)]
I 2l +1 I —1 7

&L,'Q,'~e
'

'sina, ~L, Q, ) = WB+(L;,Q;)5~.~+,5„.„
(33)

where

8+(L;,Q;)=
(L;+Q;+1)(L;+Q;+2)

(2L;+1}(2L;+3)
(34)

(L, +Q,. —1)(.L, +Q, )

(2L; —1)(2L;+1)

Inserting Eqs. (31) and (33) into Eq. (30) yields

=8~+(L, 1, —Q, +1)—.

(
f2

5nn ic (J Q—)
n

n —1

xg 5„,„5,,
~

1
I t 1 i i

c (i)M„„
R„

L.L.+1
c (i)B+ (L;,Q; —1)

R; R;
8+(L;,Q;) M„;

a
BR;

L L.—1
t

c (i)B (L;,Q; —1) Q;

R;
+

R;
(QL,.Q,. )

i & Qi } Mni 5rest', rest
BR;

c+(i)M„„+5n n+ tc+ (J'Q }g 5n „
~

1
l l+1 l t R

L,. L,. +1
c+ (i)8+ (L;,Q, +1) Q,.

R; R,
8+ (L, , Q, ) M„,

l

L.L.—1
r

c+(i)B (L;,Q,. +1)
R,

fl fl + ~all' all &

R„

0,
R,

+ (QL
—(Li ~ i ) Mni '5rest', rest

(35)

Q varies from —J to +J. In view of Eq. (35), T is block-tridiagonal in Q. In the extra-diagonal blocks Q, Q+1 (re-

spectively, Q, Q —1), the only nonzero elements are of the type Q, , Q,.+ &
(respectively, Q;, Q; —1), as must be the case to
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preserve the equality between Q and the sum of the 0 s. Otherwise, the nonzero elements are diagonal in all the other
quantum numbers, or nondiagonal in one (and only one) of them, namely, L, ,L, +l. Although neither SF axes nor
Eckart axes [84] are used, and whatever the merits of these options recently advocated by Natanson and co-workers,
see, respectively, Refs. [85,86], in view of the distribution of the nonzero elements of T owed to f'„, and T „„wesee no
reason why the BF axes used in the present article would be liable to produce particularly large rotation-vibration cou-
plings.

We still have to calculate ( . 'i TF i

. ). Equation (19) yields

'I TE I

R,
g2 n —1

+ g L;(L;+1)(
2

a a-
n —1

)+ y (.

(36)

where

'icos8„;i ) =(L Q,'icosa;iL;Q;)5„,',. „'„, (i =1, . . . , n —1),
'icos8ji )=((L Q,'icosa;iL;Q;)(L~'Qjicosaj L~Q~). (37a)

n —1

+ —,'(L Q,'ie 'sina, iL, Q, )(L'Q'ie 'sina iL Q )

+ ,'(L Q;'ie—'sina;iL;Q;)(L'Q'ie 'sina iL Q ))5„,', ,'„', ' (i' =1, . . . , n —1),

n —1(''' iA&i ''')=f75 s&]&QQQ&
R

(37b)

(38)

g2 n —1

(L Q,'. ie 'sina;iL;Q; ) (LJ'Q~ ie 'sinaj iLJQJ. )i' =1 l j

+ c+ (i)( L~'QJ i
e 'sinaj

i LJ QJ )
J

X
" 5, 5,„,— (L Q,'icosa; iL;Q;+ 1)

X
M„

+c (i)(L'Q' ie 'sina, iL Q. )

(L,'Q,'icosa; iL;Q; —1) )
M;

+c+(i)c (j) 5 ~ 5
n

5, 5, , (L,'Q,'icosa, iL, Q, +1)

5, 5, ,
(L'Q'icosajiL Q —1).

+ ((L Q,'icosa, iL, Q, +1)
R;R.

X ( L 'Q' icosa, i L,.Q,.—1 )

+ —,
' (L', Q,'ie 'sina; iL;Q;+1)

X(L'Q'ie 'sina iL QJ —1))
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4 R;R. [c+(i)c+(j)(L,'Q,'Ie 'sina;IL, .Q,. +1)

X (LJ'QJ Ie 'sina. IL, Q+. 1)

+c (i)c (j)(L Q,'Ie 'sina;IL;Q; —1)

X(L O'Ie 'sinaJILJQi —1)] '5„,', ,'„', ' (39}

g2 n —1

2 .
1

R. ((L,'Q,'Ie 'sina; IL;Q; ) (L'O'Ie 'sina. IL Q. )

—(L,'Q,'Ie 'sina;IL;Q, )(L~'Q~Ie 'sinai ILJQ~ &).
+c+(j) (L O,'Ie 'sina; IL;Q; )5z.~ 5n. n +,R„

+ ' ((L,'Q,'Ie 'si an;IL;Q;)(LJQ IJc soaIL~Q~+1)I I I l J J

—(L,.'O,'Icosa, IL, Q, )

X(L'O'Ie 'sinaJ ILJQJ+1. ))

+c (j) (L O'Ie 'sina IL Q )5, 5,nR

+ ((L,'Q,'Ie 'sina;IL;Q;)(L&'Q~ Icosa IL&Q~
—1)

R l l I l 1 J

—«,'Q; Icosa, IL, Q, &

X(L'O'Ie 'sina IL QJ
—1)) 5„,', ,'„', '

In particular, in view of Eqs. (29), (35), (36), (38), and (39), the current diagonal element of matrix T is

( Q, L„Q„.. . , L„2,Q„2,L„—) I ~E I Q, L„Q„.. . , L„2,Q„2,L„,)
Mnn n —2 n —2

J(J+1)—2Q +2Q g Q; —2 g Q;QJ
R„ i =1 j~i =1

(i =l, n) . (40)

3f„„M;;—g I;; 8; + g + L;(L;+1) (41)

Moreover, the nonzero off-diagonal elements in an 0 di-
agonal block of T are very few. They are of two types.
Those of the first type are diagonal in all quantum num-
bers but one, namely L;,L;+1 (i =1, . . . , n —1); they
originate from terms (37a) and (38}. The others come
from terms (37b), (39) and (40): they are nondiagonal in
four quantum numbers (at most), namely, L;, Q, , LJ ,and.
Q~. (j &i=1, . . . , n —1). More precisely, all the com-
binations of L;L;+1 with Lj Lj+1 are possible, and each
one is only compatible with one of the three following

possibilities: (i) Q;Q;, Q.Q; (ii) Q;Q;+1, QiQi —1; (iii)

0;0;—I, Q.Q. +1. These nonzero elements make up a
sparse T matrix.

It should be noted that Sutcliffe and Tennyson always
give their kinetic-energy operators for triatomics in the
same form as above, i.e., partially integrated over the an-
gular coordinates, see Ref. [87] for a review. In the ex-
pression of the operators in terms of polyspherical coor-
dinates, there are singularities, e.g., sin a; or sin 'a;
(i = l, n —1), see Eqs. (24) and (25). The singularities are
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removed by using the appropriately contracted angular
basis

[~J,Q, ML, , Q, , . . . , L„~,Q„~,L„~)]
for representing the operators. The property is well

A. 2known for the operators L, ; it is also valid for L,-.L(i' =1, n —1). Good analyses of this question are pro-
posed by Bramley, Green, and Handy [14] for tetraatom-
ics, and by Sutcliffe [88] for triatomics. It should be em-
phasized that, in Eqs. (17)—(23), where 1' is expressed in
terms of angular momentum operators for the various ro-
tating vectors, there are no longer singular coeKcients.
This once again illustrates the advantage of expressing
the kinetic-energy operator with the help of the relative
vector rotation operators as such, overmanipulating coor-
dinates. Our proposal that the standard representation

~
J,Q, M, L „Q„.. . , L„~,Q„2,L„,)

should be used for the various angular momentum opera-
tors appearing in the expression of T, in a nonsingular
way, is basically a generalization of Sutcliffe's remark for
triatomics [88], according to which, using standard asso-
ciated Legendre functions allows the exact cancellation of
the incipiently singular terms in f' .

VII. DISCUSSION

In this article, we have introduced a quantum-
mechanical kinetic-energy operator for the treatment of
the internal deformations and the rotation of an N-

particle system considered as a set of n =N —1 coupled
rovibrating vectors. The system can be alternatively de-
scribed in terms of polyspherical coordinates. Many
coordinate systems are of the polyspherical type and our
kinetic-energy operator is appropriate to all of them. For
practical applications, the possibility of changing the
coordinates used for the description of the system
configuration without having to redo all the lengthy cal-
culations is very appreciable: if the coordinates are also
polyspherical, then all the angular parts of the problem
are analytically solved and the only changes concern the
mass matrix, M (see Appendix A 2). Moreover, owing to
vector parametrization, there is no limitation on the
number of particles, N, contrary to recent treatments
based on the manipulation of curvilinear coordinates,
which, at present, are limited to three or four particles
[27,80,89].

The polyspherical parametrization is suitable for the
description of bound systems (including the high-energy
regime, where the motion can become completely chaot-
ic), and weakly bound or dissociative systems, but not al-

ways for collisional systems. This limitation is a conse-
quence of the fact that the reference vectors R, , . . . , R„
are chosen a priori, so that a dissociation into two frag-
ments can be suitably treated if, and only if, one reference
vector points in the appropriate direction.

An important point has not been treated. If some of
the particles making up the system are identical, then

they are indistinguishable and the Hamiltonian must be
invariant under any feasible permutation of identical par-
ticles (i.e., it must belong to the totally symmetric irre-

ducible representation of the group of the permutations
of identical particles). Thus, it is no longer possible to
use independent basis functions

l J» M L)») L~ —z»n —z Ln —i)

as above: symmetry-adapted linear combinations of these
functions are required. Similarly, the coordinates must
be transformed into symmetry-adapted coordinates
[90—97]. This is planned to be the subject of a forthcom-
ing paper. Modern approaches to this question can be
found in a few recent articles, by Frey [97], Hutson [48],
and Bramley, Green, and Handy [14].

If there are no identical particles, the Hamiltonian
developed above can be straightforwardly used. To
achieve the construction of the T matrix, radial basis
functions have to be selected, according to whether the
system is bound or dissociative. The integrals over the
radial coordinates R; (i = 1, . . . , n ) must be numerically
evaluated. From that point on, the rest of the work is nu-

merical, and the numerical effort will clearly impose lim-
its to the size of the systems that can be actually treated.
If the system is free in all its deformation degrees of free-
dom, four particles, at the most, may be treated at
present. If significantly larger system are to be studied,
model constraints will have to be imposed, such as freez-
ing one bond length, or the internal geometry of a substi-
tuent group, or any other constraint that isolates a part
of the system which is responsible for well-defined lines in
the spectrum (e.g., a local-mode overtone series). This
subject is, to a large extent, still to be explored. In all
cases, it should be emphasized that it is profitable to have
at one's disposal a quantum finite basis representation
(FBR) in which, independently of a particular set of coor-
dinates, the kinetic-energy matrix is sparse. Combined
with a discrete variable representation (DVR) for the po-
tential (which is a local, i.e., nondifferential, operator),
the FBR that we suggest probably constitutes an ap-
propriate framework for the future dynamical studies of
more-than-three particle systems (collocation, or pseu-
dospectral methods [98—107]). This double representa-
tion for the wave function in a quantum-dynamical prob-
lem is very similar to the duality in Fourier theory, where
the spaces of positions and frequencies are strictly
equivalent, through the Fourier transform and its inverse

[108].
The vector formalism developed in this article has been

tested by comparing our kinetic-energy operator with

that directly derived for a four-body system, namely, an
acetylenelike molecule in the Aoppy molecular regime
where the terminal light atoms can overcome the isomeri-
zation energy barrier and migrate from one carbon atom
to the other, thus orbiting around the heavy Cz core [80].
This requires applying the rules of differential calculus, as
are needed when using curvilinear coordinates to describe
an N-body system [18,20,27, 109—112]. Although the two

operator derivations are of a completely different nature,
the final results are identically the same. The basic ele-

ments of the comparison are presented in Appendix C.
A last point worth mentioning is that the radial coordi-

nates R&, . . . , R„can be parametrized, in turn, in the
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generalized spherical [SO( n )] fashion:

Qp)R, =&pp sing„, sing3sing2sing, ,

Qp, zR 2
=&pp sing„, .

sing3sing2cosg&,

Qjll3R 3 +pp sing„, . sing3cosg2

Qp„,R„,= pp sing„&cosg„

Qp„R„=&pp cosg„

vector relations are here:

P2R)=r, +
m3+m4

Rz=r2

R3=r3 .

These relations lead to

P2

m3+m4
where 0&p& oo, 0&(, &2~, and 0&g, &m. (i =2, n —1)
[113]. In addition, p=(m)m2 m~)' '/M'" " ' is a
totally symmetric characteristic mass, M =m, +m2
+ . +m& is the total mass, and p,. is the reduced mass
associated with R;, so as to obtain a hyperspherical
description of the N-body system viewed in the BF frame,
after separation of the center-of-mass motion. Here p is
the usual hyperspherical radius:

and

A= 0
0

M=A

1

0

M
m, (M —m, )

0 A'

0 (det A= 1),
1

and the 3N —4 hyperspherical angles are divided into (i)
the three Euler angles accounting for the overall rotation:
(ii) 2N —5 (i.e., 2n —3) geometrical angles, namely, [a, ;

i = l, n —I ] and [y;; i = l, n —2], accounting for relative
internal orientations, and (iii) the n —1 (i.e., N —2) n

spherical angles Ig;; i = l, n —1]. These hyperspherical
coordinates suit a BF description of the X-body system.
%e shall call them local hyperspherical coordinates. As
compared with the previously defined principal-axis hy-
perspherical coordinates [38], which constitute a general-
ized version of the three-particle hyperspherical coordi-
nates of Delves and Smith [28—30], they have the draw-
back that the BF frame is no longer specifically the
principal-axis system. However, they can be worthwhile
because their geometrical meaning is much clearer and
the quantization of the Hamiltonian is straightforward,
as shown above, contrary to the principal-axis hyper-
spherical case [114]. This subject is currently being stud-
ied in our group.
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APPENDIX A: MATRICES A AND M

1. Four-body systems: three vectors

Case 1. Acetylenelike molecule in the floppy molecule
regime. Three vectors R„R2, and R3 which are ap-
propriate for this situation are pictured in Fig. 4, with
three possible Jacobi vectors r„r2, and r, . The working

=R3= 3

FIG. 4. The three vectors Rl R2 and R3 for the floppy mole-
cule case.
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=R2

FIG. 5. Three vectors R&, R&, and R3, along with three Jaco-
bi vectors r&, r2, and r3.

r3-R3

FIG. 6. The vectors R&, R&, R3, and r&, r2, r3 for the
ammonialike case.

relations are now tions are

R)=r),

R2=r2,

P& P2R3=r3+ r — r
m ' m1 2

They result in
and

m2 P3R)=r)+ r2+ r3,
m2+m3+m4 m4

P3R2=r2+ r3
m4

R3=r3,

and

1

0
0
1

P2

m2

0

0
0 (det A= 1 ),

0

A= 0

0

m2 P3

m2+m3+m4 m4

P3
(det A= 1 ),

M
m)(mq+m3+m4)

0

M=A 0

0 0

0

M
(m, +m3)(mz+m4)

A'

M=A m2+m3+m4
0 A'

m2(m3+m4)

where

m,

0

P2

1

m2

m&

m2

p2 m4

1 1 1

m4

m4 m4 p3

1 1 1

p) m4 m4

1 1 1

and

m)+m3 1 m2+m4
7

p) m)m3 p2 m2m4

where

m3+ nl4

m3m4 p2

m2+m3+m4 p3 m2+ 4+
2mz(m3+m4) m& mqm4

P3

M + +p) p2 m )+m2
(m, +m3)(m2+m4) m, m2 m, mz

M P2 P3

m&(m2+m3+m4) (m3+m4) m4

Case 3. Ammonialike molecule. The vectors R& R2,
R3 and r„r2, r3 are pictured in Fig. 6. The vector rela-

m&+m4

m)m4



45 VECTOR PARAMETRIZATION OF THE N-BODY PROBLEM IN. . . 6231

FIG. 7. Alternative vectors R&, R2, R3 and r&, r2, r3 for the
arnmonialike case.

The same results could as well be obtained in starting
from vectors R, , R2, R3 and r, , r2, r3 shown in Fig. 7.
The vector relations are now

m3 m2
Rl = rl + r2+r3,

(m, +m&) (mz+m4)

R2=r2,

APPENDIX 8: WHEN IS THE WAVE-FUNCTION
NORMALIZATION CONVENTION TO BE CHANGED'?

Let us suppose that the wave function %E appropriate
for the kinetic-energy operator given in the text above,
i.e., normalized with the help of the Euclidean volume
element

n —1 n 2
dr'" = P R; dR; g sina, .da; g dy;,

2. N-body systems: N —1 vectors

If vectors Rl, . . . , R„are exclusively pointing between
individual particles and/or centers of mass of groups of
particles, then matrix M has the following elements.

(i) The diagonal element M, , is the inverse of the re-
duced mass associated with the two groups of particles
whose centers of mass are joined by R;.

(ii) For the off-diagonal elements, ~M; ~
is the inverse of

the mass of the group of particles whose center of mass is
common to both R; and R . The sign of M, is + if the
two vectors originate from or point towards the same
center of mass; it is —if one originates from the center of
mass towards which the other points. Otherwise, M, =0.

and

ml m2R3=- rl+ r2+ r3,
(m, +m3) (mz+m4)

is replaced by the wave function 4~E normalized with
the non-Euclidean volume element

n n —1 n 2
dr'"=g dR; g si a;d; g dtp; .

A=

m3

(m&+m3)

0

m2
1

(m2+m&)

0 (det A= l),

Then [79,80]

1
+E R . R @~E

1 n

and

ml m2
1

(m, +m3) (mz+m4)
so that the three following relationships hold:

a 1 1 8
dR E Ri. . . R R +BR E

ml+m3
mlm3

0 0 R
R ~R2

' E R R ~R2 AE

M=A 0
m2+m4

m2m4
0 A' Q2

BR BR R, R„
1

R; BR;

0

1 1 1

pl m4 m4

1 1 1

m4 p2 m4

1 1 1

m4 m4 p3

0
M

(m, +m3)(mz+m4)
aX — + 4~E .

aRj

In virtue of these relations,
$2 n

1 Q2 n Q2

A, 2n —1I,. n —1 nn —1

+—,'g + g A, +g gA, ' iA—
i =1 ii j(i=1 i =1 j= 1

must be replaced by

1
i~ coseij

J

n —1 —

imari

Ij=l

g2 n Q2 n

gM, , fi-
i =1 ~R 1 j(i=1

n —1 I. n —1 n

+—,
' g + g A++

i =1 ii j&i=1 i =1

a 1 a a'
R, aR, R, eR, aR, aRj

1

R; BR;
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If M, %0 for iWj, i.e., if the vectors and the coordi-
nates used are not of the Jacobi type, it clearly appears
that it is not worth changing the normalization conven-

A. ption because T&E turns out to be more complicated than
Wp
TE, except for the purely quadratic part of the operator
which is unchanged; particularly, it appears the so-called
extra-potential term (which is nondifferential, i.e., purely
multiplicative) [79,80]:

cos0,JV~~ = —i' g M;
j(i=1 I J

On the contrary, if (and only if) Jacobi vectors
r&, . . . , r„are used, M; =6,"/p; (i = 1, . . . , n ), changing
the normalization convention significantly simplifies the
expressions of the various terms in the kinetic-energy
operator, without adding any extra-potential term:

~J 1 1
T~E rot

=—
2 I nrn

APPENDIX C:
THE J =0 KINETIC-ENERGY OPERATOR

IN TERMS OF CURVILINEAR COORDINATES

For comparing the kinetic-energy operator developed
in the present article with that directly derived in apply-
ing the rules of differential calculus (as required for curvi-
linear coordinates), the main difficulty concerns Tz, i.e.,

the part of the total Hamiltonian which remains when
J=O (apart from the potential itself, which is
nondifferential and presents no difficulty). The quantiza-
tion of the radial part of the Hamiltonian has been al-
ready dealt with above (see Secs. IV and V). We still have
to find quantization rules for the angular part of the
kinetic-energy operator at J=0.

First of all, let us note that, for J=0, TE is independent
of the BF frame. The mathematical constraint L„'=0,
which gives, in the present case,

1
TWE cor

pn rn

J+L; +J L;+
J'L +

n —
1 n 2

J=O J'=0(L„'=0) 0= g L L„' i
= —g L,',

1

2
pn rn

n —1

J.L;,
i =1

T = fi ~ 1 0

;=1 P; Br;

n —1

is therefore not to be considered the consequence of a
particular choice of the BF frame, but rather that of the
particular choice of internal coordinates. Here indeed,
the dihedral angles g; are measured around R„starting
from R, „or still,

n —1

X
Pnrn J &i=1

L;L+L;LLzLz+ J J
l J 2

(i =1, . . . , n —2) .

where

A2
g2 n

1 $2 n —
1

+ —,'g +2,. 1p; Br, , 1
I

n —1
1

L; L, ,
Pnrn j«=1 a=a

ay; aq;
(i =1, . . . , n —2),

By application of the chain rule,

1 1 1

I- + (i =l, . . . , n —1) .
ll Pn rn Pl' rl

Such expressions have been used very often in the past
for three-body systeins (n =2) [22—26], with no crossed

Wp
term L, L in the expression of T~E.

n 2

X q„

On the basis of this preliminary remark, the angular
part of the classical Hamiltonian can be quantized by us-

ing, in Eq. (14),

zL = —iA
Bg;

(i=1, . . . , n —2) . (Cl)

n 2

L„',=+i% g a
(C2)

L = —fz

Ln —1

a . a 1 a'
sino. ;sine; c)a; ' Ba;

a a
sina„

sino. „1Bo;„, " Ba„

(i =1, . . . , n —2),

n 2 2

(C3}

(C4)

A. A a' a'
L; L, = —A' cos(y; g, ) + [1+c—ota;cota, cos(y; y,)]-ha,-da, ~V '~V j

a' a'—sin(y, . —qr ) cota, —cota'Ba Bg; ' Bo., Bq,
(ij =1, . . . , n —2; i' ) . (C5}
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Lln the same way as it is forbidden to apply the relation P,"P"to the case where j=i, see Sec. IV, it is forbidden to apply
L;.L. given above when j =i; the result would be

a' & a'
'

a~ sin2a; c

which is wrong, cf. (C3)].

2
a'

L; L„,= —fi2 cosy,.
Ba;Ba„

71 2—(1+cota;cota„,cosy; )

71 2—siny; cota; +cota„' Ba„&By; Ba; . &ByJ
(i =1, . . . , n —2), (C6)

(e; Xe ) L = i A [c—osa; sina —sina; cosa jcos(y —y; ) ] +
t)aJ

sina;sin(yj —y; )

sina. BqJ.

(i =1, . . . , n —1; j =1, . . . , n —2; iAj), (C7)

sina;sing; ~ —2

(e, Xe„,) L„,=i fi (cosa, sina„, —sina, cosa„,cosy, ) +
t)an i sman

(i =1, . . . , n —2), (C8)

E; L;=iA (i =1, . . . , n —1),
a;

(C9)

E L =iA cos(y —y )
—cota sin(y —y )l J aJ J

(i =1, . . . , n —1; j=1, . . . , n —2; i' ), (C 10)

a
E,'L„,=i% cosy,.' Ba„

Jl 2—cota„ isiny; g
t)yj

(i =1, . . . , n —2), (C 1 1)

e, L =i%i sina;sin(y —y;) +[—cosa;+sina;cotalcos(yj —y;)]
J J

(i =1, . . . , n —1; j =1, . . . , n —2; i' ), (C12)

e; L„&=—iA sina;sing; ' Ba„

7l 2

+( —cosa;+sina;cota„ tcosy;) g
BPJ.

(i =1, . . . , n —2) . (C13)

For the four-body system and the coordinates illustrated in Fig. 1(b), the operator obtained by means of the relations
above is exactly the same as that in Ref. [80], Sec. 8.2. This definitely confirms the relations (Cl) —(C4), (C6)—(C8), and
(C12) and (C13). For confirming the others, a five-body system would have been necessary, but a direct calculation of
the operator for such a system is an overwhelming task, not yet undertaken by anybody, at least to our knowledge.
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