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Regular, irregular, and scarred wave functions in the two-center shell model
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The two-center shell-model potential admits a two-component eigenfunction due to the presence of
the spin-orbit coupling. We carry out a detailed numerical study of its variation with the shape of the
potential and also investigate the applicability of the criteria commonly used to distinguish regular and
irregular states in systems that possess a clear classical analog. Our results corroborate similar studies
on spectral fluctuations. The occurrence of scarred states and a Gaussian amplitude distribution strong-
ly indicate the presence of an underlying classical dynamics. Moreover, since the spin-up and spin-down
spatial components of each eigenfunction are significantly dissimilar, there seem to be two sets of closed
orbits that give rise to the same spectrum but influence the wave functions in different ways.

PACS number(s): 03.65.8q, 03.65.Ge, 05.45.+b

I. INTRODUCTION

The past decade has seen considerable progress in the
study and characterization of semiclassical states in quan-
tum systems with both integrable and nonintegrable clas-
sical analogs [1]. Most of the work has been confined to
the statistical properties of energy levels, and it is now
firmly established that there exists an intimate relation-
ship between the spectral fluctuations and the underlying
classical dynamics [2,3]. Almost all theoretical results in
this direction [4,5] are based on the periodic-orbit theory
(POT) [6-8], which provides a connection between the
semiclassical density of states and the classical periodic
orbits of the system. Together with the “principle of uni-
formity” developed by Hannay and Ozorio de Almeida
[9], it has been possible to arrive at analytical forms for
various measures on the spectrum for integrable as well
as chaotic systems [2,4,5]. In the latter case the results
are identical to the predictions of random matrix theory
for the Gaussian orthogonal ensemble [10] when the cor-
responding classical system possess time reversal invari-
ance.

Periodic orbits also show up dramatically in the eigen-
functions of systems that are classically nonintegrable.
The phenomenon was observed by Heller in the Bunimo-
vich stadium billiard where a number of eigenfunctions
both at low and high energies were found to be localized
on and around a single (or a few) periodic orbits of the
system [11]. They are now referred to as ‘“scarred” states
and have been observed in other systems as well [12]. Bo-
gomolny [13] and subsequently Berry [14] have been able
to use the POT to arrive at expressions for the averaged
intensity (|W(q)|?) and the Wigner function, respectively.
Their analysis also explains some of the finer observations
on scarred states. The work of Eckhardt, Hose, and Pol-
lack [15] on the quartic potential is also significant since
it clearly brings out the importance of adiabatic stability
(of periodic orbits in the Lyapunov sense) in the localiza-
tion process.

There are other manifestations of periodic orbits in
eigenfunctions as well. Scarred states such as those ob-
served by Heller are more of an exception. In general,
the eigenfunctions are quite complicated when the under-
lying classical dynamics is chaotic. Recently Biswas,
Azam, and Lawande [16] have used the periodic-orbit ap-
proach to show that generic eigenfunctions do indeed
have a limiting amplitude distribution which in fact
closely approximates a Gaussian. This corroborates the
predictions of Berry [17] arrived at by using an infinite
superposition of plane waves with equal wave-vector
magnitude but random phase and direction. Incidentally
this model also leads to a spatial correlation function that
is isotropic and has a Bessel-function dependence [17].
These properties together with the nodal pattern and the
phenomenon of contour splitting [18] are some of the im-
portant criteria for distinguishing an irregular eigenfunc-
tion from one that is regular.

Unlike spectral statistics, studies on wave functions
have largely been confined to systems that have a clear
classical analog. How do eigenfunctions behave when
the system is purely quantum mechanical (e.g., spin
dependent)? Are the properties mentioned above useful
in distinguishing regular and irregular states in such
cases? One of the basic motivations of the current work
is to answer this and questions related to the role of
periodic orbits, if any.

In the following we shall study the single-particle states
in the two-center shell model. It describes a system of
two colliding nuclei and is parameterized by the separa-
tion R. The presence of the spin-orbit potential leads to a
two-component eigenfunction. Among other things, we
shall study the evolution for the adiabatic states as a
function of R and look for a transition from regularity (at
large R) to irregularity (intermediate R) and back again
to regularity (R —0). This expectation is based on recent
studies on spectral statistics [19,20] which reveal a
Poisson—Wigner-like—Poisson transition in the nearest-
neighbor level spacing distribution. For systems with a
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classical limit, this immediately implies a regular-
irregular-regular transition in generic eigenfunctions.
Does such a thing happen in the present case as well?

The paper is organized along the following lines. In
Sec. II we discuss the two-center shell potential and
briefly describe the numerical scheme used to arrive at
the eigenfunctions. Studies on nodal patterns and con-
tour plots are presented in Sec. III for various values of R
and at low as well as high energies. We also look at the
amplitude distribution for a typical regular and irregular
wave function and use the phenomenon of contour split-
ting to study the “surface roughness.” Section IV is de-
voted to scarred states while the concluding section sum-
marizes our results.

II. THE TWO-CENTER POTENTIAL

The two-center potential has often been used to model
shape transitions in heavy ion collisions. The total Ham-
iltonian of a single particle in the combined field of two
axially symmetric harmonic oscillators centered at z, <0
and z, >0 (the position of the barrier is at the origin)
joined smoothly by a neck (Fig. 1) and with a spin-orbit
potential is given as [21]

H=T+U+Ugq (1)
where U = Uy + U, and

Uho = Ulw,, @4, 0,1,0,3;p,2)
%Ma)f,lpz—f-%Mw?,](z —z,)? forz <0
N %wa,zpz—f-%ngz(z —z,)* forz>0, @
J
%M[dﬂ"f](z —Z )2+gla’;2;1P2](Z —21)6(z —z})
Uneck =

for z; <0<z5. The parameters of Eq. (4) are obtained
from the smooth matching conditions of the potential
and are given as

e=U,/U,,

zj=z,(1—e€)/€,

d,=—e/[(1—e)?],

g1 =€XQ*—1)XQ +1)/[(1—€)*QR?], g,=—g,/Q .

The spin-orbit potential is evaluated in the same way as
in Ref. [22].

For a given R, Q, €, and 8, only one of the frequencies
remains to be fixed for a complete description of the mod-
el. Considering a system of A nucleons, we shall obtain
the frequency o, by requiring [22] the volume under the
equipotential surface Vy=Mw3R3/2=W,=(47/3)R}
where R, =1.2249 4'/3fm and #iw,=41 MeV 4 ~!/3.

In what follows, we shall consider an 4 =260 system

(5)

%M[dzwz(z —2Z )2+82‘0,752P2](2 —2;)%0(z3 —2)
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FIG. 1. The two-center oscillator potential along the z axis.
The two centers are at z; and z, and the barrier is at the origin.
The barrier heights with (dotted line) and without (full line) the
neck potential are U, and U,, respectively, as used in the text.

z

p and z being the cylindrical coordinates. The above po-
tential is essentially characterized by

R =22—‘Zl I’
Q zmpZ/wpl ’ (3)

8=wzl/wp1=w22/w

p2 2

giving z, =— QR /(1+Q) and z,=R /(1+ Q). The neck
potential joining the two oscillators of Eq. (2) is defined as
(21]

for z <0

for z >0

[

with §=1 and €=0.8. The asymptotic value of Q is tak-
en as 1.1695 which corresponds to an asymptotic mass
asymmetry of 1.6, thereby placing two nuclei of masses
160 and 100 at z, and z,, respectively, for large separa-
tions. We shall be concerned with the neutron single-
particle levels in the following calculations.

In the absence of neck and spin-orbit potentials, the
system is clearly separable and can be assigned good
quantum numbers. The eigenfunctions are thus regular
as one would expect. The introduction of the neck poten-
tial leads to nonseparability in the region z} <z <z3. Our
numerical investigations show that the nature of
quantum-mechanical energy eigenfunctions does not
change drastically even at this stage. The presence of the
spin-orbital potential, however, has significant effects.
The eigenfunctions 1, of the time-independent
Schrodinger equation

Hy,=E,, (6)
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now have two components and are of the form
¥, =0 (p,2)| 1)+ (p,2)|1) . 7

Thus each ¢, must be studied separately.

We have obtained the eigenfunctions by diagonalizing
the Hamiltonain in a basis given in Ref. [22]. Numerical
errors are under control and states satisfy the orthonor-
mality requirement to a good accuracy.

III. REGULAR AND IRREGULAR STATES

A. Nodal patterns and contour plots

Nodal curves contain a considerable amount of infor-
mation and have long been studied in theoretical acous-
tics. They have found wide applicability in quantum
mechanics as well [23]. The terms “regular” and ““irregu-
lar” have in fact come to be associated with the nodal
pattern itself. Heller [24] has, however, demonstrated
that an irregular-looking nodal plot is not sufficient for
quantum mechanics to “mimic” classical chaos since a
superposition of even six cosine wave with random phase
and direction is sufficient to generate complex patterns.
The detailed study of Biswas and Jain [25] on a pseudoin-
tegrable system shows that irregular nodal curves occur
even when the classical dynamics is nonchaotic (in the
Lyapunov sense) but nonintegrable. The corresponding
spectral statistics, however, does seem to have a close link
with the eigenfunction categorized in this sense and it has
been observed [25] that a sequence of states with a large
irregular fraction leads to fluctuations that are far from
Poissonian.

We present here our results from a typical eigenfunc-
tion at intermediate energies (Fig. 2) for various values at
the separation R. The change in nodal pattern is similar
to the transition observed in spectral fluctuations [19].
At large separations (R =21 fm) the pattern is more or
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FIG. 2. Typical nodal plots at different separations within
the classically allowed region defined by the smooth outer line.
The energy eigenvalue for the 80th state (N =80) at R =21, 12,
7, 2, and O fm are 79.54, 82.80, 86.39, 86.90, and 87.24 MeV, re-
spectively.
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less regular but becomes quite complex as the nuclei
come closer (12—-7 fm). As the separation becomes small-
er still, the nodal curves once more become regular.

Figure 3 shows the positive contours of each com-
ponent for identical separations. It gives a clearer picture
and helps remove some ambiguities. The spin-up part at
R =21 fm, for example, has a negligible amplitude on the
right (<0.01) where nodal patterns show relatively
greater complexity. On the left, the contour patterns are
regular as expected. Thus nodal patterns alone are
insufficient and should be viewed in conjunction with the
contour plots. As far as the regular-irregular-regular
transition is concerned, the plots in Fig. 3 corroborate
our earlier observations.

Figure 4 shows plots (nodal as well as contour) of a
typical wave function at low energy for a sufficiently
larger separation (we have computed at R =21 fm). The
wave function is localized to the left and the patterns are
regular. At higher energies, however, the wave function
becomes delocalized and exhibits irregularity.

An analysis neglecting the spin-orbit potential is clear-
ly inadequate. On the other hand, the spatial wave func-
tions associated with the spin-up or -down cases, which
are otherwise coupled through the spin-orbit interaction,
do have definite features which appear to evolve indepen-
dently in the regular-irregular-regular transition. This
would indicate that the spin-orbit interaction is also weak
enough to respect certain gross features of the potential
U(p,z) for the particular eigenstate considered above.
[For example, the state in Fig. 4 is much below the bar-
rier of the potential U(p,z) and hence the localization
mentioned above could still be due to this confining
mechanism. A similar localization effect for the 80th
state at the same separation (see Fig. 3) where the
eigenenergy is just above the barrier height suggests that
the spin-orbit coupling might in fact push up the effective
barrier height marginally.] Recalling that the spin-orbit
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FIG. 3. Contour plots of the eigenfunction considered in Fig.
2. The full line is for (¢=)0.1, dashed line for 0.05, and
dashed-dotted line for 0.01.
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FIG. 4. Large separation behavior (regular) or nodal curves
and contour plots for N =38 at R =21 fm. The eigenenergy
53.98 MeV is below the barrier.
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FIG. 5. The amplitude distribution P () for (a) an irregular
state at R =19.6 fm, N =106, spinup, E =102.46 MeV; (b) a
regular state at R =0, N =106, spin down, E =103.47 MeV;
and (c) a localized state at R =4 fm, N =104, spin down,
E =101.88 MeV. The best-fit Gaussian is also shown in each
case.
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potential is a state-dependent one, it is not possible at the
moment to conclude that this observation is true for oth-
er eigenstates as well. This aspect is currently under in-
vestigation.

B. The amplitude distribution P ()

The amplitude distribution is increasingly being recog-
nized as an important criterion for distinguishing regular
and irregular eigenfunctions. It was first suggested by
Berry [17] that the distribution P () should be Gaussian
when the underlying classical dynamics is chaotic. The
ideas were based on the eikonal theory and the eigenfunc-
tion was represented as an infinite sum of plane waves
with equal wave-vector magnitude but random phase and
direction. By the central-limit theorem then, ¢ is a
Gaussian random variable. The representation, however,
has inadequacies. Biswas, Azam, and Lawande [16] have
recently used the periodic-orbit approach to argue that
there exists a limiting distribution which closely approxi-
mates a Gaussian when the system is classically chaotic.
Such a distribution has also been observed by Biswas and
Jain [25] in (nonchaotic) pseuodintegrable systems. As in
the case of the intricate nodal patterns, a Gaussian ampli-
tude distribution is thus an indicator of irregularity in the
eigenfunction but does not necessarily imply a chaotic
classical dynamics.

For the numerical results that we present here, a total
of 4500 points have been sampled in the classically al-
lowed domain [determined by the potential U(p,z)] to
evaluate P(y). Figure 5(a) shows the amplitude distribu-
tion of a typical irregular wave function at R =19.6. We
have considered the spin-up component of the 106th state
which lies sufficiently above the barrier. The correspond-
ing nodal plot is shown in Fig. 6. The wave function is
clearly irregular and the corresponding amplitude distri-
bution approximates a Gaussian rather well.

A typical regular component at R =0, however, shows
quite the opposite behavior [Fig. 5(b)]. The distribution
P (¢) shows a sharp deviation from a Gaussian especially
due to the peak at zero. This is similar to observations on
regular states in other system as well [25].

FIG. 6. Contour plot of an irregular state at R =19.6 fm,
N =106, spin up, E =102.46 MeV. The corresponding ampli-
tude distribution is shown in Fig. 5(a).
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The spin-down component of the 104th state at R =4
fm has an intermediate nature (see Fig. 11). The wave
function appears to be localized in narrow regions. The
corresponding amplitude distribution [Fig. 5(c)] shows
sharp deviations from a Gaussian as before. Further de-
tails of such states are given in the following section.

C. Contour splitting

While nodal curves (or sections) provide a visual pic-
ture of the degree of irregularity in the wave function at a
given height (¢y=z), the degree of “surface roughness”
can be visualized from the degree of “contour splitting”
as shown by Biswas, Azam, and Lawande [18]. A rough
surface (to the extent allowed by the second-order partial
differential equation) manifests itself as a splitting of con-
tours when sections at successive heights are taken. This
information in a sense is contained in the amplitude dis-
tribution as well. The Gaussian distribution implies that
the number of points in configuration space at a given
small positive or negative value (which is a measure of
the length of the contours at that height) is nearly the
same as the number at y=0. This can only occur if the
individual contours (at 1=0) split into two or more as ||
increases from zero. Further, due to the random spatial
distribution of the isolated periodic orbits (in systems
where a clear classical analog does exist), this
phenomenon is also likely to occur away from zero. The
plot of P () would then have sharp spikes superimposed
on the Gaussian (for more details see Biswas, Azam, and
Lawande [18]).

A clear example of contour splitting is the spin-down
component of the 80th state at R =12 fm (Fig. 3). The
contour near p=0 towards the left center is a clear exam-
ple. While the phenomenon is totally absent in the regu-
lar states, there are irregular states (in the nodal sense) as
well where splitting does not occur. The criterion thus
identifies the degree of irregularity.

IV. SCARS OF PERIODIC ORBITS?

Scars have so far been observed in systems which pos-
sess a clear classical analog. In such cases, the periodic
orbits along with the available phase-space volume deter-
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FIG. 7. Scarred state at R =19.6 fm, N =92, spin up,
E =85.21 MeV. The localization is along the z axis. The spin-
down component is chaotic.
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FIG. 8. Scarred state at R =7 fm, N =43, spin down,
E =61.10 MeV. The other component is chaotic.

mine the individual eigenfunctions (at least in an aver-
aged sense) when the system is chaotic [13,14]. The con-
tribution of each orbit, however, depends sensitively on
the energy and in general an eigenstate is quite complex.
Exceptional states are, however, dominated by a single
(or a few) periodic orbit and they are referred to as
“scarred” eigenfunctions. The analysis of Eckhardt,
Hose, and Pollack [15] in terms of adiabatic stability and
a dynamical confining potential provides a better under-
standing of the complex process. It is now clear that in-
stability of the isolated periodic orbits in the Lyapunov
sense (long-time behavior) is not sufficient for the quan-
tum description to alter dramatically. In fact, it would
seem that short-time classical effects are more important
in quantum mechanics than the overall phase-space
structure.

While such an analysis clearly does not hold from sys-
tems without any obvious classical analog such as the
present case, it is of interest to see whether eigenfunctions
with regions of unexpectedly high probability density do
exist. It is in this sense that we shall talk of scarred
states.

Figure 7 shows a nodal as well as a contour plot of the
spin-up component of the 92nd eigenfunction at R =19.6
fm. The contours lie predominantly on the z axis (p=0).
Figure 8 shows the spin-down component of an inter-

(R

P(fm)

FIG. 9. Nodal and contour plots of the state at R =4 fm,
N =109, and E =105.98 MeV. The spin-up component is
scarred. The other component is irregular.
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FIG. 10. An example of scarring along both directions. The
state is at R =4 fm, N =104, and E =101.88 MeV.

mediate (43rd) eigenfunction at R =7 fm. This is again
scarred along the z axis. The other component, however,
is irregular in both the cases that we have considered.
The phenomenon persists at smaller separations as well.
The 109th state at R =4 fm is plotted in Fig. 9. Both
components seem to be distinctly localized on the z axis
though there is a slight spillover in the p direction as
well. They differ in finer details, however, as in all other
cases.

We have also looked for eigenfunctions scarred along
the p direction. They are relatively fewer in number.
The contour and nodal patterns of both components of
the 104th eigenfunction at R =4 fm are shown in Fig. 10.
While the spin-up component is localized on the z axis,
the spin-down component shows scarring along the p
direction. Finally we present (Fig. 11) another example
of scarring at intermediate separations (R =12 fm). The
spin-down component of the 37th state lies on the z axis
while the spin-up component of the 77th state is a pecu-
liar instance where the amplitude is distributed along
both the z and p directions.

Thus scarred states do exist even in systems without
any classical limit. The mechanism involved, however, is
far from obvious.

V. DISCUSSION

We have carried out a detailed numerical study of the
wave functions in the two-center shell model, character-
ized by the separation R. The presence for the spin-orbit
term leads to eigenfunctions which possess two com-
ponents.

FIG. 11. Nodal and contour plots of the spin-up (N =77)
and spin-down (N =37) components at R =12 fm. The
eigenenergies are 81.03 and 54.57 MeV, respectively. Both
states are scarred.

The various criteria used to distinguish regular and ir-
regular states indicate that there is a close overall
correspondence between the spectral fluctuations and cer-
tain properties of the eigenfunctions. In particular, we
have observed the regular-irregular-regular transition (as
a function of R) in the nodal and contour plots, a
phenomenon observed earlier by Milek, Norenberg, and
Rozmej [19] and Pal and Chaudhuri [20] in the spectral
fluctuations. In addition, the irregular spatial com-
ponents were also found to possess a Gaussian amplitude
distribution and a few displayed the phenomenon of con-
tour splitting as well, indicating the presence of surface
roughness. Thus, even in systems which do not have a
clear classical analog, the criteria commonly used to dis-
tinguish regular and irregular wave functions do seem to
be applicable consistently. Along with the existence of
scarred states, we have been able to observe all aspects of
wave functions seen in systems with a classical analog.

The presence of scarred wave functions along with the
Gaussian amplitude distribution in irregular components
give an indication that the semiclassical states are indeed
determined by the closed orbits of some effective underly-
ing classical system. Moreover, since the spin-up and
spin-down spatial components of each eigenfunction are
significantly dissimilar, there seem to be two sets of closed
orbits that give rise to the same spectrum but influence the
wave functions in different ways. We are presently carry-
ing out further investigations along this direction.
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