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We analyze the quantum version of the Landau-Lifshitz equation for damped spin motion using a
properly tailored Gisin approach to the dissipative quantum mechanics. Coherent- and squeezed-spin-
state evolution for a single spin S and a ferromagnetically coupled spin chain are discussed in detail. The
classical limit of the quantum dissipative dynamics is shown to be equivalent to the conventional descrip-
tion, which uses only the diagonal matrix elements for spin operators. The homogeneous and wave-
vector-dependent decay of a squeezing parameter in the neighborhood of the ground state is discussed

and shown to exhibit long-wavelength instability.
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I. INTRODUCTION

The problem of dissipation in quantum-mechanical
models attracts a lot of attention for reasons ranging
from the fundamental to the practical [1-5]. In a quite
ingenious work, Gisin has argued that one can suitably
generalize the Schrodinger equation to obtain an
(effective) nonlinear wave equation that should govern
time evolution of a dissipative quantum system [6]. Gisin
has applied that description to the dynamics of a har-
monic oscillator and to the simple case of precessing spin

1. The application of this equation to the analysis of

2
two-level systems, as well as discussion of some relevant
fundamental points, was given by Huang et al. in Ref.
[4].

Gisin’s approach possesses several features absent from
other generalizations of damped quantum mechanics [7]
and fits rather well into a general framework of the so-
called metriplectic dynamics, an approach which tries to
unite symplectic, nondissipative and metric, dissipative
dynamics into one mathematical framework [8]. The aim
of this work is to apply the Gisin equation to more gen-
eral models of spin dynamics (arbitrary spin length and
effects of an anisotropy) and to the analysis of many in-
teracting quantum spins—a quantum-spin chain. For
this purpose we shall systematically apply the coherent-
spin-state representation of the wave function [9,10] to
discuss spin dynamics for undamped and damped spins,
following Landau and Lifshitz. Furthermore, combining
the Gisin equation with a squeezed-spin-state approach
[11], we derive the relaxation law for a spin squeezing.

The plan for this paper is as follows. In Sec. II we re-
call the Gisin equation and briefly discuss its metriplectic
properties. Using an expression derivable from the Gisin
equation for the time-evolution equation for the expecta-
tion value of an observable, and employing the coherent-
spin-states technique, we analyze the quantum equation
of motion for a spin precessing in an external magnetic
field in the presence of the magnetic anisotropy. We
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show that the Gisin equation in this case leads to the
Landau-Lifshitz-type equation known from classical spin
dynamics. Earlier we have shown that the Landau-
Lifshitz type of spin dissipative dynamics represents an
example of the metriplectic dynamical system [12].
Again using coherent states, we show that the same is
true for the one-dimensional quantum Heisenberg chain.
In Sec. III we analyze the influence of the damping on the
evolution of squeezed spin states used earlier in analysis
of the anisotropic chain dynamics [11]. Section IV is de-
voted to final comments and conclusions.

II. GISIN DAMPING
FOR COHERENT SPIN STATES

Consider the quantum-mechanical system described by
the Hamiltonian operator H and let |¢) denote the state
of that system in the Schrodinger representation. Gisin
[6] has argued that one can describe the dissipative time
evolution for such a system by replacing the Schrédinger
equation for |¢/) by the nonlinear equation

Ldly) _ o L ylAly)
in Ay)+in oo Ally), 2.1

where A is a dimensionless damping constant.

Equation (2.1) has several remarkable properties. For
example, it preserves the eigenspectrum of the Hamil-
tonian H (the eigenstates are not damped) and the state
normalization. When the time evolution of the initial
wave packet is followed, the system sets into the lowest-
energy eigenstate present in the initial wave packet. The
easiest way to see that is to rewrite the right-hand side of
Eq. (2.1) in the form D(¢), where the nonlinear operator
D has the form

DY)=(1—irQ A , 2.2)
and

0,=1—P,=T—v){¥|/(yly)
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is the projection operator on the subspace perpendicular
to the state |¢>. That this is indeed the case follows from
the fact that Eq. (2.1) preserves the norm of the state vec-
tor. The damped quantum evolution described by the
Gisin equation goes on the hypersurface of the constant
norm. This fact is quite similar to that in the classical
metriplectic models used in the dynamics of either rigid
[13] or classical spins [14]. This suggests that the Gisin
equation can be cast in the metriplectic form. Indeed,
consider the case of the wave equation describing quan-
tum evolution of a particle in the configuration space.
The Schrodinger equation can be derived from the “clas-
sical” Hamiltonian

ﬁZ
*) — d 2 2
H{p.y*)= [d'x |2 -IVe@P+rlyel? | @3)

Using the classical Poisson brackets for the field ¢(x),

{¥(x),¥*(x’ )}=—6 x—x'), (2.4)
we obtain the Schrédinger equation from 3,¥={v,H}.
Now, in the metriplectic dynamics one describes the
damped motion of the system, for which undamped dy-
namics is cast in the symplectic form, by amending the
Poisson bracket with a proper symmetric part [12]. In
the present case this symmetric bracket reads

8(x—x')— LX)

(), P*(x)}}=—+
{H{(x), 9% (x)}} e

2.5)

It is now easy to check that the metriplectic equation of
motion for the field i follows from the Hamiltonian equa-
tion (2.3).

A very similar situation is that encountered in the dy-
namics of a classical damped spin as described by the
Landau-Lifshitz equation of motion [15-17]. The ex-
istence of the Casimir—the length of the spin, the norm
of the state vector, etc.—can be incorporated into the
‘bracket structure following rather general group-
theoretical arguments leading to the damped equation of
motion such as that discussed in this paper [8].

Let us return now to Eq. (2.1) and consider the - expec-
tation value (| 4 |¢) of an arbitrary observable 4. Fol-
lowing Eq. (2.1), it can be shown that

aA
ot

i A A
S aw=(u |8 )+ Lo, 21w

— 2yl A1)

—2(pl A1) (YIH|Y)), (2.6)

where [, ] and [, ], denote commutator and anticommu-
tator, respectively, and we have assumed that {¢|¢) =1.
The two first terms in Eq. (2.6) are the usual terms in
the Schrodinger dynamics. The last two terms, propor-
tional to A, describe the damping. We note in passing
that if one would like to use the Gisin equation within the
realm of quantum many-body mechanics, and use the
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Hartree-Fock-like ansatz, then
(Yl AR 1Y) = (Y| A1) YA =~ YA A )

and the dissipative term does vanish.

We shall now specify our physical system to be a spin S
precessing in the magnetic field B in the presence of mag-
netic anisotropy C. The system is then described by the
following quantum Hamiltonian:

A=—-BS*—C(§7?. 2.7)
We assume now that the wave function |i) is represent-
ed by the coherent spin state [9]

) =|u)=16,6)=(1+|ul>) Sexp(uS~|0) . (2.8

Here u=tan(6/2)exp(id), S*=S"+zSy, and |0) is the
ground state of the system, i.e., S%0)=s]0). Choosmg
now as the observable A4 the spin-raising operator St
and after some algebra, we obtain from Egs. (2.7) and
(2.8) a single differential equation for the complex ampli-
tude S sinf exp(i¢). Decomposing it into real and imagi-
nary parts we obtain

do A .

at 7 [Bsin8+C(S
d¢ __B_2C ¢
dt A 2

1)sin(26)] ,
)cos6 .

On the other hand, the Landau-Lifshitz equation [15-17]
that describes the time evolution of the classical damped
spin can be written as

as _ _r
g =SXBur— JgTSX(SXByy) .

(2.10)
In Eq. (2.10), B.,4= —3H /38 denotes an effective magnet-
ic field acting on the spin and A is the Gilbert damping
coefficient. In our previous papers [12,14,17] we have
shown how the Landau-Lifshitz equation can be fitted
into the general metriplectic formalism. Indeed, the first
term on the right-hand side of Eq. (2.10) is just the (sym-
plectic) Poisson bracket of the spin vector with the Ham-
iltonian, while the second one is the metric bracket evalu-
ated with the use of the fundamental metric bracket

5§98 — §isf

({s%5P}}=—Als| 5 @.11)

Defining as usual the polar decomposition of the spin as
S=2S(sinf cos¢,sinb sin¢g,cos0) ,

it is easy to check that the two equations of motion re-
sulting from Eq. (2.10) for the polar angles are equivalent
to the coherent-state version of the Gisin equation pro-
vided that all the factors CS are replaced by C (S — ).

Now let us consider a problem of a quantum chain of
N spins described by the following Hamiltonian:

A

A=—-31[J8,8,,,+BS:+C(8:)], (2.12)

where J (>0) is a ferromagnetic exchange constant and
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summation runs over all the lattice sites. Following Ref.
[10], we introduce states |¥) which are the direct prod-
ucts of coherent spin states for each spin in the chain
N
W= o lu,), (2.13)
"=

where the coherent states for each individual spin |u, )
are defined in Eq. (2.8).

It has been shown in Ref. [10] that the evolution of ex-
pectation values of the single-site operators calculated in
this basis, with the help of a standard Schrodinger equa-
tion, is equivalent to a classical (undamped) equation of
motion with some renormalization of anisotropy con-
stants. Here we would extend that result by applying Eq.
(2.6) to S operators and then analyze resulting discrete
chain equations in the continuum limit. That is, we ex-
pand the resulting c-number equation into the formal
power series with respect to small parameter /dz, where /
is the lattice spacing and R is the distance along the
chain. Following that procedure, we obtain a system of
two partial differential equations for fields 6(R,t) and
d(R,1):

ﬁ(a}:—’tl=—; N s1n68—¢—+2 cosd gz g%
% JSI2 5?1219 — Lsin(26) 5% 2
—Bsinf—C(S— %sm(ZG)], (2.14)
02 = L5 61192 1sin(20) | 9% 2
_%sine——:—(s—g)sin(ze)
+Z;JSI2 smeglf—ﬁ-ZcosG g]i %}g‘
(2.15)

Similarly as for Egs. (2.9), these equations are equivalent
to their classical counterparts following from the
Landau-Lifshitz equations, provided that we replace S in
all terms proportional to the anisotropy constant C by
(S —17). Equations (2.14) and (2.15) were used in various
contexts in the nonlinear spin dynamics. It is relatively
easy to write down the generalization of those equations
for the case when the magnetic degrees of freedom are
coupled to the elastic displacements of the spins from
their equilibrium (rigid lattice) positions. If the elastic
degrees of freedom are then quantized, and combined-
system dynamics is analyzed by means of spin and pho-
non coherent states, one arrives at the set of equations
used in Ref. [10(c)] to discuss the elastomagnetic proper-
ties of the quantum Heisenberg chain.

We conclude therefore that the Gisin generalization of
the Schrodinger equation for a damped quantum system
as applied to the quantum spin dynamics is equivalent to
the damped spin dynamics proposed by Landau and
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Lifshitz. In Sec. III we shall investigate the Gisin equa-
tion as applied to the squeezed-spin-state evolution.

III. SQUEEZED SPIN STATES
AND THEIR DAMPING

In this section we shall investigate the influence of the
Gisin damping on the behavior of squeezed spin states
(SSS) as defined in Ref. [11]:

16,¢,a ) =exp(—i¢pS*exp(—i08”)0(a)l0) ,  (3.1)

where U(a) is the squeezing operator

Oa)= 2§y

4s (3.2)

1
\/./\/(a)

In the above, a €C is the (complex) squeezing parameter
and the normalization constant N(a) equals

S
NMay= 3 2nt__(2S)

lal
aso (n1)? (28 —2n)!

45 (3.3)

The semiclassical approximation (S — o) of Eq. (3.3)

gives, for the case of moderate squeezing [11], i.e., |a| <1,
s
(2n) | la| 1
Z e |2 Violal?

For a=0, the SSS coincides with the coherent state given
by Eq. (2.8) up to some phase factor [9,10].

That O(a) is indeed the squeezing operator can be
shown by evaluating the expectation values for the x and
y components of the spin operator:
(a|S§*Wa)=1[S+(2s —1)E

—E,]¥ —SRe(a)E, ,

1
la|?
(3.5)

where the state |a)=|6=0,¢=0,a ) can be understood
as a “squeezed ground state” and

E, =l 2
8lal"

We see that squeezing causes variances {a|($*")%|a ) of
the spin components perpendicular to the quantization
axis to be different from the standard coherent-state value
S /2. The difference of both these variances is an obvious
measure of an asymmetry of the wave packet.

We shall now discuss the time evolution of the squeez-
ing parameter a in the presence of the damping. Let us
start from the simplest case, i.e., from Hamiltonian equa-
tion (2.7) with the anisotropy coefficient C=0. In the ab-
sence of damping, one can show [11] that dE, /dt=0 and
one sees only the precession of the squeezing parameter a,
phase a. To see the effects of damping, we use Eq. (2.6)
with 4 =57 We get immediately

(3.6)

d(8%) _ 2B sy _ gy
PR [((85)*)—(§%)?*], (3.7
where
<>=<9’¢’a"“l6,¢,a> .
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The matrix elements occurring in Eq. (3.7) have been ex-
plicitly obtained in Ref. [11]. Using those expressions, we
have

d
E;[cos@(S —E|)]

__2AB

(E,+E,—E?)cos*6

+% S+(2S —1)E, —E,

+-2_SRe(a)E, |sin? (3.8)

lal?

To gain some insight into the time evolution of the
squeezed state without undue numerical calculation, we
simplify the algebra by assuming that 6~0 and B >0,
i.e., we consider relaxation of the spin squeezing in the
neighborhood of the ground state. Moreover, we use the
identity Ey,)=E ) +3E%) valid in the semiclassical
limit. Having done that, we can solve Eq. (3.8) for E(¢)
(t, is a constant depending on the initial conditions):

1

B = P laAB(t —tg) /=1 3.9)
It follows from Eqgs. (3.4) and (3.6) that
Eys=lal>/(1—]al?) ;
thus, Eq. (3.9) gives
la(t)|=exp[ —2AB(t —ty) /%], (3.10)

which implies that in the limit t — oo the wave function
relaxes to the nonsqueezed state with a=0. This fact
seems to be connected with the universal property of
coherent and squeezed states that the value E;=0 is a
stationary value in any quantum evolution. In fact, one
can show [11] that

(S—E )aE‘
1 ot
_ 1 |3(8%)? e-1y0 (a+
> 5 t2Re (8 >8t<§ ) (3.11)

Evaluating all the matrix elements on the right-hand side
of Eq. (3.11) in the coherent states basis, one can see that
it vanishes.

The solution (3.10) contains no information on the
phase a of the complex parameter a. To get the evolution
of its phase a(t), we consider expectation values of
higher-order operators. Again using Eq. (2.6) for
A=(8 *), we find that in the semiclassical limit, Eq.
(3.4), and in the neighborhood of the ground state (6=0),
there is no influence of damping on the evolution of «;

thus,
a(t)=ayexp(—2iB1/#), (3.12)

where 7=t (1—iA) is the “rescaled” evolution parameter
identical to that occurring in the work of Lakshmanan
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and Nakamura on damped classical spin systems [16].
Using Egs. (3.9) and (2.12), we can write

A8 ™)) =(al(§%)?|a)—(al8”) |a)
cos[2B (t —t,) /#]
sinh[2AB (¢t —t,)/#] ’

(3.13)

where t, and ¢, are some constants. One sees from the
above that damping causes a decrease of the asymmetry
of quantum fluctuations.

We shall now discuss the relaxation of the squeezing
for the anisotropic spin chain described by the Hamil-
tonian (2.12). In order to have the ground state defined
such that S°=S, we assume C>0. Using the squeezed
states for the chain in the form |¥)=¢%_,16,,4,,a,)
and writing an equation analogous to (3.8) we get (in the
neighborhood of the ground state 6=0 and in the semi-
classical limit)

oE, A
_aT=—4ZE1(1+EI) 2J(S—E,|)+B
—2C(1—S +3E,)
d’E,
—JI? (3.14)
dR?

This is a highly nontrivial nonlinear partial-differential
equation that might be cast into a form of the nonlinear
diffusion-reaction equation with ‘“‘concentration”-de-
pendent diffusion coefficient D =4JI’AE(1+E,)/# and
the Ginzburg-Landau type of ““free energy.” We were
unable to solve this equation in its general form. Below
we shall present its linear-stability analysis.

Consider first the space homogeneous solutions of Eq.
(3.14). There are three real solutions of the equation
oE, /0t=0,

2JS=B +2C(S—1)
2(J +3C)

EYm=0, E}™= , Efm=—1.

(3.15)

Out of those solutions, the third one, E '1‘°‘“ =—1, is un-
physical, as can be seen from Eq. (3.6).

Following standard procedure, we linearize Eq. (3.14)
around the stationary solution E}°™, assuming

E,(R,t)=E"™™+8E,(R,1?)

=EPm 4+ 8E%xp(iwt—igR) ,

and obtain the dispersion relation w=w(q, EI°™). We
found that both physically admissible stationary points
given by (3.15) have different linear-stability properties as
described by that dispersion relation. The stationary
point E#°™=0 is linearly stable, as expected, with

io=—(4A/#)[B +2JS +2C(S —1)] .

More interesting is the second stationary solution, for
which we obtain
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4rJ1?

ia)zTEtllom(l’i'El]]om) 24 +3C) —q*

JI?

] . (3.16)

This implies the long-wavelength instability of the
squeezing amplitude. The squeezing amplitude is stable
with respect to fluctuations with the wave vector g larger
than the critical one, g, =V'2(1+3C /J)/I, and unstable
for shorter wave-vector undulations—a typical hydro-
dynamic type of instability. Note that in the isotropic
chain case, the only characteristic length for the chain is
the lattice spacing; thus in that case the critical wave vec-
tor becomes V'2/1.

Equation (3.14) also contains spatially periodic station-
ary solutions given by

2JS +B +2C(S—1)

E= _
2(J +3C) +Eqcos[k(x —x,)],  (3.17)
with the wave vectors given by
1 [20+30) ]
i 3.18
l J ( )

Note that these are the same wave vectors for which the
corresponding homogeneous solution becomes unstable.
That implies the emergence of the spatial patterns of the
squeezing amplitude and its instability akin to the insta-
bility of the finite-amplitude spin waves discussed in our
previous work [17].

IV. CONCLUSIONS

In Sec. II we have combined the Gisin version of a
damped Schrodinger equation with the coherent-spin
state approach. We have analyzed the time evolution of
diagonal matrix elements of spin operators for a single
spin S in the presence of magnetic field and anisotropy
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and for the chain of ferromagnetically coupled spins. We
have shown that the resulting equations are nearly
equivalent to the classical Landau-Lifshitz equation of a
damped magnetic moment. The only difference is that if
one starts from the quantum model, then the influence of
the magnetic anisotropy is proportional to the factor
S —1 instead of the factor S that one obtains starting
from the classical Hamiltonian. This correspondence
with the Landau-Lifshitz equation coincides with the re-
sult of Gisin for a spin S =1. We would like to point out,
however, that although any wave function of the model
S =1 is a coherent spin state, this is not true for higher
spin values.

In Sec. III we used the Gisin equation together with
the squeezed-spin state approach (for a single spin and for
a chain of spins). As a result, we obtained the equation
describing the relaxation of spin squeezing. In the neigh-
borhood of the ground state, this equation possesses a
simple solution, i.e., there is an exponential decay of the
squeezing parameter while the difference between vari-
ances of spin components perpendicular to the quantiza-
tion axis decays inversely proportional to sinh(z).
Coherent states are always fixed points of the squeezing
dynamics; however, we also found some nontrivial in-
coherent solutions to the fixed point squeezing time evo-
lution. It would be interesting to observe experimentally
such behavior of the squeezing parameter using, for ex-
ample, magnetic-resonance techniques. Finally, the
squeezing amplitude for the anisotropic magnetic chain
exhibits interesting long-wavelength instability, which
shows similarity to the finite-amplitude spin-wave insta-
bilities.
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