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We consider a system of particles on a lattice of L sites, set on a circle, evolving according to the
asymmetric simple-exclusion process, i.e. , particles jump independently to empty neighboring sites
on the right (left) with rate p (rate 1 —p), —& p & 1. We study the nonequilibrium stationary states
of the system when the translation invariance is broken by the insertion of a blockage between (say)
sites L and 1; this reduces the rates at which particles jump across the bond by a factor r, 0 ( r ( 1.
For fixed overall density p,„s and r & (1 —(2p„s —1()/(1+ (2p, „s —1~), this causes the system to
segregate into two regions with densities p& and p2 ——1 —p&, where the densities depend only on
r and p, with the two regions separated by a well-defined sharp interface. This corresponds to the
shock front described macroscopically in a uniform system by the Burgers equation. We find that
fluctuations of the shock position about its average value grow like L or L, depending upon
whether particle-hole symmetry exists. This corresponds to the growth in time of t and t of
the displacement of a shock front from the position predicted by the solution of the Burgers equation
in a system without a blockage and provides an alternative method for studying such Auctuations.

PACS numbers: 05.40.+j, 02.50.+s, 05.70.Ln, 47.40.Nm

I. INTRODUCTION

The one-dimensional asymmetric simple-exclusion pro-
cess (ASEP) is a continuous-time stochastic process in
which particles jump independently and randomly at unit
rate with probability p to a vacant neighboring site on
the right and with probability 1 —p to one on the left,

& p & I [I). It is one of the simplest of the driven
diffusive lattice-gas models in that the only interaction
between particles is the hard-core exclusion that prevents
any site from being occupied by more than one particle.
This makes it one of the simplest models for studying
the behavior of systems whose dynamics do not satisfy
detailed balance and for the derivation of Euler-like hy-
drodynamical equations from microscopic dynamics, e.g. ,

the Burgers equation [2—6). This equation reflects the
property of physical fluids in that shock fronts, where the
macroscopic density is discontinuous, can form between
regions of different density, even if the initial distribu-
tion is smooth. Since the macroscopic description breaks
down at the shock position we must study the structure
of the shock directly at the microscopic level. This has
been the focus of much recent research [2—6].

When a shock forms, or if one is present in the ini-
tial state, it will move with an average velocity deter-
mined by the densities on either side of the shock via
the Burgers equation. One of t,he interesting phenom-
ena found in studying the simple exclusion process is
the dependence of the fluctuations about that average
on initial conditions —while there are fluctuations due to
the stochastic nature of the evolution, these are usually
swamped by fluctuations caused by microscopic varia-
tions in the initial state [3, 4]. For example, fluctuations
of a shock's position grow like t ~ if one compares inde-
pendent stochastic evolutions with identical initial con-
ditions, but like t ~/2 (relative to the deterministic hydro-

dynamic evolution given by the Burgers equation) if one
takes into account the random fluctuations in the initial
state [5, 6].

In contrast to the time-dependent behavior, the sta-
tionary states for the system with translation invariance
are not very interesting; the stationary states on the cir-
cle give equal weight to all permissible configurations
with a given number of particles, and their infinite vol-
ume limits are uniform product measures with average
density p, 0 ( p & 1. AVe can generate more interesting
behavior, however, by breaking the translation invariance
and partially blocking one bond so that particles which
occupy sites on either end of the bond will have different
transition probabilities than particles at other sites. This
is analogous to a restriction in a pipe containing a fluid
flow. This yields, in addition to its own interest as an
example of the generic long range coherence present in
stationary nonequilibrium systems with particle conserv-
ing dynamics [7] (related to self-organized criticality), an
alternative more robust method for studying the time-
dependent case.

By studying only the stationary state we eliminate
most of the dependence on the initial conditions (only
total particle number remains relevant), but, the basic na-
ture of the translation invariant model, which produces
macroscopic shocks with microscopic structure, remains.
The blockage generally introduces a shock into the sta-
tionary state, and by studying its fluctuations we can re-
cover in a numerically more accessible way the exponents
describing the growth in time of the fluctuations of an ini-
tially sharp shock in the infinite system. Specifically, for
a system of size I the generic shock fluctuation scales as
L ~, but if the average density is 0.5, placing the shock
exactly opposite the blockage, we obtain fluctuations in
the shock position that scale like I. ~ . This can be un-

derstood in terms of a cancellation that takes place when
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there is particle-hole symmetry combined with the time-
dependent scaling of the infinite system; we also show
that by altering the blocking mechanism we can elimi-
nate the need for a cancellation and construct a model
that always has L ~ behavior.

sider r = 0, i.e. , full blockage, since then the current in
the stationary state must be zero. The stationary state
is then given by

II. MODEL

Our system consists of particles on a lattice with unit
spacing set on a circle of circumference L, moving (ran-
domly) in one direction, with a limit of one particle per
site, i.e., we consider the totally asymmetric exclusion
process p = 1. This limitation seems to have little impact
on the nature of our results, as determined by simulations
for both types of systems.

We break the translation invariance of this periodic
system by inserting a blockage into the system between
sites L and 1, which reduces the probability of a particle
traveling between those two sites —a "slow bond" that
acts as a traffic jam for the particles. In the language
of driven diffusive systems, this is similar to altering the
driving field at this one bond [8].

More formally, our process is de6ned by the generator
E. giving the rate of change of any function of the config-
uration g = (g(1),g(2), . . . , g(L)j, where g(k) = 0 or 1
is the occupation number at site k:

L-1

where

1, k= jandg(i)=1
g; i(k)=& 0, k=iandg(j)= 0

rl(k) otherwise;
(2)

the rate r, 0 ( r ( 1, determines the degree of blocking.
For r = 1 the model is translation invariant; for r = 0 the
model is fully blocked; the stationary state has density 1
behind the blockage and density zero in front of it and
there is no current flowing through the system. For 0 (
t ( 1 the model has nontrivial behavior, resulting from
the requirement that the current Jp through any bond
k ~ &+1, i.e. , the expected number of particles jumping
from k to k+ 1 in unit time, must be independent of k.

As already mentioned, one motivation for this study
comes from the fact that this is perhaps the simplest
model which shows the dramatic global effects caused by
a local perturbation in the dynamics in a system with
conservative dynamics that does not satisfy a detailed
balance condition [7]. For the homogeneous case i = 1,
the stationary measure pz „ for a given system size L
and number of particles N = p»L is one in which all

(~) permissible configurations have equal weight. While
this is true for all values of p p [0, 1], it is only for the
synirnetric case (p = 2) that the dynamics satisfy de-
tailed balance with respect to p~ „,. A local blockage
then has only a local effect.

We recover detailed balance even for p g 2 if we con-

where Z is a normalization factor such that the sum of
P(g) over all allowed configurations is 1. When p = 1
the stationary state has g(k) = 0 for k = 1, . . . , L —N
and g(k) = 1 for k=L —%+1,. . . , L.

Equivalent growth model

The ASEP can also be considered as a simple model for
surface growth [9]. The surface height is related to the
particle occupancy as follows: the presence of a particle
in the ASEP is equivalent to a decrease in the height of
the surface (by 1), the absence of a particle to an increase
(by 1); thus the relative surface height is essentially the
integrated particle number:

If the total number of particles is L/2 the surface is peri-
odic; otherwise we use helical boundary conditions with
h(L) —h(0) = L(1 —2p,„s).

Since g(k) must be zero or 1, [1 —2g(k)] is +I and
the height difference between neighboring sites must have
absolute value 1. A particle followed by a hole (a de-
crease followed by an increase) forms a local minimum
in the surface, and a hole followed by a particle (in-
crease/decrease) forms a local maximum. Of course the
dynamics is the same: local minima become local max-
ima with rate p (deposition) as particles move to vacant
sites on the right, and the reverse process (evaporation)
occurs with rate 1 —p as particles move to the left. Our
introduction of a blockage is equivalent to altering the
deposition/evaporation rates at a single site [10], i.e. , we

consider deposition that is uniform everywhere except at
one site where the rate is reduced; this can have a global
effect in the growth of the surface.

III. RESULTS

We simulated our model for a large number of different
system sizes, blocking rates, and average densities. To
carry out a simulation, we choose at each time step one
site, say site i, at random. If i g L and site i is occupied
and site i + 1 is not, then the particle at site i jumps to
site i+ 1; otherwise nothing happens. If we do choose site
L then the jump to site 1 takes place with probability r,
provided that site L is filled and site 1 is empty.

Qualitatively there is little difFerence in the behavior
of the system as we vary the parameters, provided that
r g 0, 1 (which would correspond to the two trivial cases
mentioned earlier) and [for reasons discussed following
Eq. (8)) that the average density is not too far from 2.
A typical (time-averaged) density profile is presented in
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FIG. 1. Density profile, 1600 sites; blockage transmis-
sion=0. 35; average density=0. 5.
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Fig. 1. As one would expect, particles pile up behind the
blockage and are relatively scarce in front of it. Away
from the blockage the system appears similar to the in-

finite model where two uniform phases meet to form a
shock [11],while there is a deviation from uniformity near
the blockage. Surprisingly, a closer examination of the
density near the block indicates that the excess density
appears to decay with the distance from the blockage z
like 1/~z+ const~, as opposed to exponentially. A closeup
of the density near one side of the blockage (from a long
run with good statistics —10 samples) is presented in

Fig. 2. We see the excellent agreement between the data
and the function exhibiting the I/~z~ behavior.

Note that the profile is symmetric about density p =
0.5; the symmetry between the high- and low-density
phases is an important part of the dynamics and the sta-
tionary state: instead of moving particles we can just
as well consider the situation where when the site i is

picked, and it contains a hole (i.e., is empty), that hole

jumps to the left if the site i —1 does not already contain
a hole, or jumps with probability r to site I, if i = 1.

Since the average current through the bond k ~ k+ 1

is given by (g(k)[l —rt(k + 1)]), we see that the current
in a state v& of uniform density p without correlations
is p(1 —p), so if the measure far from the blockage and
the shock is just a product measure, current conservation
requires

Plow(1 Plow) = Phigh(1 Phigh)

If the low-density current were not equal to the high-
density current, particle conservation would require that
the (infinite system) interface move with velocity v,h, k =
1 —plo —ph;gh, 'the requirement that this velocity be zero
if the densities are not equal may also be used to derive

(6)
Since we have a deviation from uniform product mea-

sure near the blockage, the exact values of pl and phigh
cannot be computed directly but must be determined
by solving for the stationary state, or lacking that, em-
pirically. We can obtain approximate values for these
densities by neglecting correlations between all sites, not
just sites far from the blockage. Then (since the average
current must be constant)

Pavg —~lPlow + &hPhigh &1 + &h —1 (9)

with ai, ah ) 0. If we use the approximation (8), we

must have ~p „g —I/2~ ( (1 —r)/2(1+ r) If this is no. t
the case we no longer have the basic structure of two
near-uniform regions meeting at a shock front, with local
perturbations near the blockage; instead we have only one
approximately uniform phase. Apparently, if the current
in the uniform phase is suKciently small, there is no need
for phase segregation to reduce the bulk current to that
at the blockage [12]. Similar behavior is observed when
we examine an infinite system with one site blocked (see
Sec. V).

rPhigh(1 Plow) ~ Jblock —Jbuik = Phigh(1 Phigh)& (7)

so that

1 p
Phlgh ~,

& Plow ~r+I p+
For the system of Fig. 1, this computation yields the
result pl 0.26; compare it with the actual value

pi = 0.29. Clearly the system manages to increase the
current (and thus pi ) by making the density nonuni-
form and introducing correlations near the block. The
specifics of how this occurs, i.e. , the structure of the sta-
tionary state near the blocked site, will be the subject of
a separate inquiry.

For density diAerent from 2, the average shock loca-
tion is displaced from the center, but the basic structure
remains the same —provided that the density is such that
the shock would not need to be shifted all the way to (or
past) the blockage. In otner words, pi and ph;gh remain
the same as before provided that we have a solution to

092 o measured density

0.0915
fz + 4.0)

Tracking the shock

0.31

0.30
0

I

20 40 60
distance from block x

I

80

FIG. 2. Density profile near the block, 1200 sites; blockage
transmission=0. 40; average density=0. 5

While the average shock location is easy to determine,
finding its microscopic position or even defining it pre-
cisely at a given time is nontrivial. Instead of determining
the shock position directly, we track it through the use
of a second class particle [13]. The second class particle
is an extra particle added to the system, which is treated
as a hole in exchanges with particles and as a particle in
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exchanges with holes. In other words, if we select site i
and it is occupied by an ordinary particle, it moves to site
i+ 1 either if that site is empty or if it is occupied by the
second class particle; in the latter case the second class
particle simultaneously jumps (to the left) to site i, i.e.,

there is an exchange between the first and second class
particles. If site i is occupied by a second class particle,
it moves to site i + 1 only if site i + 1 is unoccupied; if
site i+ 1 is occupied it stays put. Therefore, if the sec-
ond class particle is in a high-density region (of ordinary
particles), it will be forced to the left, while if it is in a
low-density region it will be able to move to the right.

A shock consists of an abrupt change from a low-

density region to a high-density region. To the left of a
shock (a low-density region) a second class particle moves
predominantly to the right, while on the right side (a
high-density region) it moves predominantly to the left.
The second class particle therefore executes a biased ran-
dom walk with drift towards the shock position. Simple
analysis shows and computer simulations confirm that
the inherent fluctuations of this random walk are small
compared with the movement of the shock —namely, if we

fix the densities on either side of the shock (p~~, ph;zh)
and consider different values of the system size I, the
motion of the second class particle about the shock po-
sition will have fixed variance while the variance of the
shock position itself will grow with system size. Thus an-
alyzing the motion of the second class particle will allow
us to indirectly examine the shock motion.

An alternative method of finding the shock is suggested
by the surface growth model. Recalling Eq. (4), we see
that surface height increases in low (particle) -density re-
gions and decreases in high-density regions, so that the
shock location should correspond intuitively to the loca-
tion of the maximum height. Unfortunately this position
need not be (microscopically) unique, so we prefer the use
of the second class particle. It suggests, however, that in
addition to the shock position we study other features
from the growth model, such as the difference between
the maximum and minimum surface heights, which is
equivalent to studying the number of particles on either
side of the interface in the ASEP.

As a third possibility we could ignore the microscopic
shock position entirely and simply study the width of
the time-averaged shock density profile, such as that in
Fig. 1. However, this method obscures the distinction be-
tween the inst;antaneous microscopic width of the shock
and the width due to fluctuations in the shock's position
(particularly relevant in the extension to two-dimensional
models), and the width is difficult to determine accu-
rately because of lattice effects. In any case, we expect
that as the system size goes to infinity that rescaling the
shock profile by the standard deviation of the shock fluc-
tuation (determined by any of the three methods) should
yield a well-defined limiting shape.

We sample the position of the second class particle
after allowing the system to reach a steady state. For
each system we obtain a distribution (histogram) of shock
(second class particle) positions and compute the vari-
ance of the obtained distribution; a typical run consisted
of approximately 25 000 samples where 15 sweeps (15 x I

O
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FIG. 3. Interface fluctuations with average density 0.55,
r = 0.35. The solid line has slope 2.

Monte Carlo steps) were made between samples. We then
compare the variances obtained from systems with differ-
ent values of the parameters. We also perform the same
set of computations for the number of particles found
between site 1 and the second class particle position.

In Fig. 3 we plot the standard deviation of the interface
position versus system size for average density 0.55 and
blocking rate r = 0.35. The error bars (three symbols are
plotted for each measurement: the actual value and that
value shifted up or down by the error bound) represent
statistical error based on the approximate number of in-
dependent samples selected from the steady state in each
system. The line drawn through the data points has a
slope of z, so that fluctuations grow like the square root
of the system size, indicating standard finite-size behav-
ior.

In Fig. 4 we plot the same quantities as in Fig. 3, but
the average particle density is 0.5. We examined two
sets of systems, with blocking rates r = 0.35, 0.5. Here
the lines drawn through the data points have slope 3 so
that fluctuations are suppressed compared with systems
whose densities are different from 0.5, yielding growth
only like the cube root of the system size. (Note that
changing r does not affect this conclusion; the relevant
variable is whether or not the density is 0.5.)

The reduction in the fluctuations of the interface when
the average density is z is clearly caused by some type
of cancellation since other fluctuations in the system still

~ ~ ~ ~ ~ ~ ~ I ~ ~ 'I

r =0.35 o

~6
0
O

10
4

System Size

FIG. 4. Interface fluctuations with average density 0.5,
r = 0.35, 0.5. The solid lines have slope —.
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System Size

FIG. 5. Fluctuations in the number of particles to the left
of the interface: average density 0.5, r = 0.35. The solid line,
which is a best linear fit to the data, has slope 0.46.

scale like I ~ —in Fig. 5 we plot the standard deviation
of the number of particles found to the left of the inter-
face, i.e., between site 1 and the second class particle;
this data is consistent with scaling exponent 2 (and in-

consistent with s). An explanation of this behavior is

given in Sec. IV.

IV. ANALYSIS

To make sense of our results, it is convenient to decom-
pose the stochastic nature of our system into two pieces:
the random flow of particles through the blockage, and
the random dynamics everywhere else. We hypothesize
that the "blockage randomness" is responsible for the
L'tz behavior and that the "dynamical randomness" is

responsible for the L~/s behavior.
A particle traversing the blockage can be thought of

as two simultaneous events: a particle being released at
site 1 while a hole is released at site L. These two events
are of course completely correlated, but the motions of
the particle and hole after release are nearly independent.

The position of the interface is determined by the dif
ference between the number of particles which arrive from
the left and the number of holes which come from the
right. (It may be convenient for visualization purposes
to consider the situation where the density to the right
of the shock is very close to one and the density on the
left is near zero. ) If we neglect the dynamical random-
ness, i.e. , if we assume that particles in the low-density
region move at their average velocity 1 —p~, and holes
in the high-density region move at their average veloc-
ity —ph;gh = —(1 —pi ), and consider a shock in the
center of the system, then no matter what the nature
of the creation of excitations at the blockage, particles
and holes will always impinge upon the shock in pairs:
when a pair of excitations is created, the hole and parti-
cle will travel with equal speeds and opposite directions,
meeting (and annihilating) when they have each trav-
eled a distance L/2 and reach the shock position. Since
the "blockage randomness" plays no role here, a system
with density 0.5, and therefore particle-hole symmetry
(Fig. 4), has fluctuations determined only by the "dy-
namical randomness" —the deviation of the particle ve-

locities from their average.

On the other hand, if the shock is not in the center
of the system, the nature of "blockage randomness" be-
comes relevant as the times for particles and holes to
reach the interface are no longer the same. For exam-
ple, if the average density is greater than 2 the (average)
shock position will be less than L/2, and particles which
start at the blockage and travel to the right will reach the
shock before holes (starting at the same time and place)
traveling to the left—the arrival times of the particles
no longer match those of the holes because the distances
they need traverse are different, and the resulting motion
of the shock position will depend upon exactly how the
excitations are created. So a system with density differ-
ent from 0.5 (Fig. 3) and thus with an average shock po-
sition shifted from the center will have fluctuations from
the "blockage randomness" proportional to the amount
of the shift.

The L~~z scaling of the "blockage randomness" re-
sults from the rapid decay of correlations in both time
and space in the stationary state of the ASEP, as well

as the use of an independent random choice for each
attempt to cross the blockage. Thus the creation of
one excitation is very nearly independent from the cre-
ation of another. Therefore the fluctuation in the num-
ber of excitations will scale as the square root of the
average number. There is a finite density of excita-
tions, so their number is O(L), yielding fluctuations that
scale like O(L~~~). In fact, if we neglect the dynamical
randomness and treat particle flow through the block-
age as a Poisson process, we can determine through
straightforward analysis the variance of the shock posi-
tion. Each particle or hole added to the shock moves it by

(ph;gh —pi ) . Thus the shock is shifted by an amount

lp „g—1/2IL/(ph;gh —pi ), which is half the difference in

path length between particles and holes. Therefore the

time differential is 2IP»g —
2 I /L[P; hg(hP j hgh Piow)]. The

probability of the formation of an excitation is ph;hp~
so that the standard deviation of the shock position
should be

2lp, g
—1/2IL

(Phigh Plow) I,"',PhighPiow I

Phigh (Phigh Plow)

t'2p&ow
I p»g —1/2IL 'i

(Phigh Plow)

This calculation should be accurate for r near zero but
will be too large otherwise, as the actual variance of the
particle flow is less than that of a Poisson process since
we do have (small) memory effects. For the system of
Fig. 3, the measured behavior is 0.50L ~ while Eq. (10)
yields 0.63L

What is the nature of the randomness in the dynam-
ics? Recent work by van Beijeren [6] indicates that den-

sity fluctuations grow in time like t ~, while since the
distance is of order L and the speed is O(1) the time re-

quired for an excitation to reach the interface from the
blockage is of order L. Thus an initially nonrandom ar-
rangement (or a random arrangement with the number
particles equaling the number holes) of excitations will



45 FINITE-SIZE EFFECTS AND SHOCK FLUCTUATIONS IN. . . 623

8 10

5

interface position std. dev. o
rticles before shock position std. dev. o

System Size

end of the blocked bond at Kl. . Then if KL, ~ +oo as
L ~ oo we are in the situation of an infinite uniform
system, and the stationary states are superpositions of
product states. The product states are of two kinds: for
0 ( J & 4 they are translation invariant with densities

p+ = (1 6 gl —4J) /2, while for J = 0 the density is

zero to the left of some site io and 1 to the right of it.
As L, KI, ~ oo, the finite volume current JL, will con-

verge to a limit J and the stationary state p, will be a
superposition of two product measures v&+ and v&

pg = Avp+ + (1 —cl')vp, 0 ( Q.' ( 1;

FIG. 6. Fluctuations with uniform (uouraudom) flow

through the block. Average density=0. 55. Solid lines have

slope 3.

have fluctuations of order L ~3 by the time it reaches the
interface. We confirm this by examining a system where
we alter the behavior near the blockage so that particles
pass through the blockage in a near-uniform manner. Of
course we cannot have a completely uniform current since
the occupation numbers of each site are limited to 0 and
1, but we try to make the flow as uniform and nonran-
dom as possible: if n(t) is the number of particles already
having passed through the blockage at time t, we specify
the current exactly by opening the blockage if n(t) ( Jt
and closing it otherwise. If a particle is immediately to
the left of the blockage while it is open and the site to the
right is vacant, the particle jumps through the blockage.
Thus we attempt to schedule particle jumps at intervals
of 1/J; if a jump is not possible because the appropri-
ate occupancy conditions are not satisfied we "make up"
that jump as soon as possible.

By altering the nature of the blockage, we alter the be-
havior of the shock fluctuations. For this uniform-block
model, the lack of "blockage randomness" means that
even without particle-hole symrrietry, i.e. , even when the
shock is displaced from the center we have fluctuations
that scale like L'~ for both the interface position and the
number of particles to the left of the interface- -"ee Fig. 6.
Thus we have (partial) confirmation of our hypothesis.

V. INFINITE SYSTEM WITH BLOCK

We have been considering particles evolving accord-
ing to the (p = 1) ASEP dynamics on a circle of L sites
with a blockage parametrized by r. For each such system
with a fixed number of particles N (or average density

p s = N/L) the stationary state is unique. The ques-
tion naturally arises, "What happens to these states in
the infinite volume limit L ~ oo, N ~ oo, N/L ~ p
fixed?" To make this question precise we have to specify
the position of our domain of observation relative to the
blocked site as L ~ oo. This is unlike the case in the
finite system where except for labeling the state is inde-
pendent of the position of the blocked bond, since the
domain of observation corresponds to all L sites.

Let us label the sites of our system (relative to the
observation domain) from L/2 to L/2, and put—the left

n depends on the average position of the shock as L ~ oo,
i.e. , if the distance to the shock goes to infinity sufficiently
fast compared to the fluctuations in the shock position
(Li~z or Li~s) then n will be zero or 1, but it will be non-
trivial if the distance between the shock and the origin
grows more slowly [11].

The situation is different if I&L remains finite as L ~
oo. In this case we can just as well take I&L, ——0 and the
class of stationary states with J & 0 will then depend on
r (for J = 0 we have again the fully blocked states and r
is irrelevant).

We believe that it can be shown that for any J ) 0 the
asymptotic distribution to the left and right of the origin
is a product measure with densities pf fg and p„hq where
either

plefg = prighg = 1 + 1 —4J 2

or

Prjghg = 1 1 4J 2 & P~efg — 1 + 1 —4J 2.

The problem is then to find the phase diagram in the J—r
plane. We have used the results from our finite system
studies as well as numerical simulations intended to im-
itate the infinite situation (we use boundary conditions
of fixed density) to obtain the following results.

Away from the blockage the infinite stationary state re-
sembles a product measure, so that the need for the cur-
rent to be the same on both sides requires [as in Eqs. (5)
and (6)] that the densities on either side of the block be
equal or be symmetric about zi, in full correspondence

0.25

———Segregated
(type 3

0
0

FIG. 7. Phase diagram for infinite system with block; cur-
rent vs blockage rate.
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Pleft, O

Oo

pleft —pright —pcrit
(type 3)

Pleft = Pright = Pleft, O

(type 'I)

pright, O

Pleft = Pright
= Pright, O

(type 2)

(») For pright, p & 1 pcrit, pcight, p & 1 pleft&

system approaches a state from class (2) above with

pleft —pright —pri ght, O.

(iii) For pleft, p & peri&~ pright, p ( 1 —pcrit; the system
approaches a state from class (3) with 1 —plcft —pright =
perl t ~

This behavior is presented graphically in Fig. 8.
In the first two cases the system chooses whichever

initial state has the lowest current. In the last case the
system forces itself critical whenever the initial current
on both sides of the block is greater than that which can
be sustained through the block,

FIG. 8. Phase diagram for infinite system with block; the
axes represent the initial densities on each side of the block.

with (12) and (13).
I et p«,.t ——plo~ ——1 —ph;gh refer to the lower density

of the segregated periodic system with the same blockage
transmission t as the infinite system. Then there are
three nontrivial classes of stationary states for the infinite
system (in addition to the zero-current measures):

(I) Pleft —pright + pcriti
(2) pleft = pright & 1 pcrit &

(3) 1 pleft = pright = Pcrit ~

We see that we are justified in referring to p„;t as a crit-
ical density; the system cannot be stationary at densities
between p„;t and 1 —p„;t because the required current is
too high. We can illustrate this in Fig. 7 where the crit-
ical line is approximated by the no-correlation formulas

(7) and (8).
The first two families of (near) uniform states cor-

respond to the (near) uniform states in the periodic
system, when pavg & pcrit or pavg & 1 pcrit ~ The
nonuniform state corresponds to segregated systems with

pcrit & pavg & 1 pcrit ~

An apparent fourth type of state with 1 —p„.ght

pl, ft & p„;t is not stationary since the interface is not
bound to the block and thus will eventually drift to in-

finity, even though its average velocity is zero.
Nearly as interesting as the stationary states them-

selves are their basins of attraction. Choosing as ini-

tial conditions p = pleft Q to the left of the blockage and

p = p„ght o on the right we found the following.
(i) For p&eft, p & pcrit~ p/eft, p ( 1 —pright~ the system ap-

proaches a state from class (1) above with p~cft, —p„gh, =
Pleft, O ~

Vr. CONCr, USIOrV

We have examined a version of the asymmetric simple
exclusion process on a finite periodic lattice. Our model
has many of the features of the time dependent system
but none of the sensitivity to initial conditions, and one
can use the presence or absence of particle-hole symme-
try to indicate the model's behavior. It thus provides a
more convenient platform for the study of the asymmet-
ric simple exclusion process and similar models.

We have used the presence of a "slow bond" as a tech-
nique to introduce a shock into the finite system, but the
study of such an impurity is of intrinsic interest as well.
One can examine the effects of inserting one blockage, or
a periodic or random array of blockages, into the infinite
system. We have identified some of the gross features
of such systems, but much of the determination of the
local and global properties remains an interesting open
problem.

Our investigations can also be extended to dimen-
sion greater than one. Preliminary results [14j indicate
the importance of particle-hole symmetry in the two-
dimensional system and illustrate the utility of studying
interface behavior by forcing the formation of a shock in
a stationary state.
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