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Eigenfunctions, eigenvalues, and time evolution of finite, bounded, undriven,
quantum systems are not chaotic
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We prove here that the eigenvalues, eigenfunctions, and time evolutions for a broad class of spatially

bounded, finite particle number, undriven, quantum systems can be computed by algorithms containing

logarithmically less information than the quantities themselves. Algorithmic complexity theory asserts
that such quantal systems are nonchaotic. These results are shown to be valid independent of the size of
system parameters such as mass or Planck's constant, provided they are not set equal to zero or infinity.

However, rather than confronting quantum mechanics with classical mechanics via the correspondence

principle, we suggest a direct comparison of quantum mechanics with macroscopic laboratory reality.
Specifically, we here propose the double pendulum —a simple, two-degree-of-freedom, macroscopic sys-

tem exhibiting a transition to chaos as its amplitude increases —as a model suitable for testing whether a
nonchaotic quantum mechanics can accurately predict laboratory observation. Neither theory nor ex-

periment appears to offer insurmountable difficulties to the performance of this comparison.

PACS number(s): 03.65.Bz, 05.45.+b, 31.15.+q

I. INTRODUCTION

In this paper we rigorously prove that the eigenfunc-
tions, eigenvalues, and time evolutions for a broad class
of spatially bounded quantum systems containing a finite
number of particles and governed by time-independent
Hamiltonians are nonchaotic [l]. Here, spatially bound-
ed refers to all quantum systems that can be confined
within a box, and nonchaotic means that these systems
exhibit no deterministic randomness [2]. Specifically, we
establish that the information contained in these eigen-
functions, eigenvalues, and time evolutions is logarith-
mically compressed by the algorithms which compute
them. Algorithmic complexity theory [3] then assures us
that there is no chaos in such quantities. Since the proofs
which appear in the following sections invoke unfamiliar
theorems and involve tediously intricate arguments, it is
perhaps worthwhile here at the outset to provide the
reader with intuitively credible arguments that lend
believability to our central conclusions even before they
are proved. This intuitive presentation is especially
relevant since many will view our conclusions as going
against established opinion.

Recall that the procedure for calculating quantum ei-
genvalues and eigenfunctions is not only deterministic
but computationally very straightforward; in fact, it is a
computable [4] procedure, i.e., it involves only finite, re-
cursive algorithms. Specifically, one begins with well-
behaved operators A(g, P) obtained from smooth classi-
cal functions A(q, p). One then selects simple analytic
functions as a basis set [Ck] for Hilbert space and deter-
mines the matrix elements of 3 via the integral
A „=fd74„34 . But integration is a smoothing

operation; hence, these matrix elements contain no ele-
ment of chaos. Finally, one calculates the eigenfunctions
and eigenvalues of the resulting matrix [ A „]using any
of a number of computable diagonalization routines for
finite matrices in concert with various computable limit
procedures. One thus finds no hint of chaos in this entire
process. On the other hand, if A were a random matrix
with elements generated by some random process, then
its eigenvalues and eigenfunctions would most certainly
be chaotic. Thus, out of the totality of all possible Hil-
bert space eigenfunction-eigenvalue equations, most of
which have random solutions, quantum mechanics
focuses on that subset which is computable and hence not
random. In general then, one expects no chaos in the
quantum eigenfunctions and eigenvalues.

In this regard, it is crucial not to confuse erratic with
chaotic. The eigenvalues of the Hamiltonian describing
the quadratic Zeeman effect [5], for example, have been
computed by a relatively simple computer program
which logarithmically compresses the information con-
tent of these eigenvalues. This eigenvalue set certainly
looks erratic [5], but it is most assuredly not chaotic. A
similar confusion exists in regard to the prime numbers.
One frequently reads that the primes are random. How-
ever, the bit length of the algorithm to compute N
primes, for large N, is almost totally exhausted by the
log2N bits needed to specify X. The primes are therefore
not random because the information content contained in
the first N primes is logarithmically compressible. Let us
now examine the time evolution of the wave function 0'.

Because the energy eigenvalues for the finite, bounded,
quantum system of interest in this paper are discrete, the
associated wave functions + can always be written as
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%(x, t) = g A q Uq(x)e
k

where x denotes all spatial variables, t denotes time, the
E& and Uz(x) are energy eigenvalues and eigenfunctions,
respectively, the A& are expansion coefficients, and A' is
Planck's constant divided by 2~. 4 is thus seen to be an
almost periodic function [6], which means that 4, having
achieved a value, makes near returns to this value
throughout all time. Clearly, such time evolution pre-
cludes an approach to thermodynamic equilibrium or a
decay of correlations. Moreover, this almost periodic be-
havior persists even in the density matrix description.
However, in general, these near periods might be relevant
only to long-time system behavior. If so, this would leave
open the possibility for bounded systems to yield, or at
least closely mimic, a chaotic time evolution over labora-
tory time scales. To address this possibility, we must ex-
arnine Eq. (1) a bit more closely. Each time exponential
in the sum of Eq. (1) is merely a rotating unit vector in
the complex plane. At time zero, these vectors are
phased such that the sum adds to %(x,0). As time in-
creases, these unit vectors dephase at a constant rate.
Consequently, the time evolution of %' involves nothing
more than the phase mixing which characterizes laminar
How such as occurs in Couette flow or the spin-echo ex-
periment [7]. Most assuredly, this type fiow is not chaot-
ic on either a short-time or a long-time scale. Additional
details on this point are given in Ref. [3].

Many investigators accept these intuitive arguments
regarding the nonchaotic time evolution of finite, bound-
ed, quantum systems as essentially conclusive, but they
quickly point out that Eq. (1) does not take measurement
into account. Since repeated measurements might well
mimic a random outside driving force which later can
certainly introduce chaos even into harmonic-oscillator
motion, this point needs to be addressed. Most investiga-
tors of quantum chaos, as in classical chaos, are interest-
ed in determining the intrinsic behavior of the system un-
der study and not that due to outside influences.
Nonetheless, if we are to maintain that Eq. (1) describes
observable intrinsic behavior and not an idealized fan-
tasy, we must be able to verify this fact by laboratory
measurements that do not appreciably modify the behav-
ior. Fortunately, Weigert [8] has applied the theory of
quantum-nondemolition measurements to the question of
intrinsic chaos (or its lack) in quantum systems and has
concluded that, by proper choice of commuting observ-
ables, one can in fact make sequential measurements on a
quantum system without disturbing its time evolution.
Weigert's result thus opens the door to the legitimate
study of the intrinsic behavior specified by Eq. (1).
Another possibility for circumventing the destructive
effects of measurement is to apply Eq. (1) to finite, bound-
ed, undriven, macroscopic systems. Everyday experience
teaches us that the time evolution of a macroscopic sys-
tem is quite stable against the disturbance of macroscopic
measuring devices [9]. This opportunity to circumvent
the deleterious effects of both the classical and quantum
measurement process becomes even more attractive if one
chooses the macroscopic system to be one exhibiting

chaotic time evolution, for now one can directly test
whether or not a nonchaotic quantum mechanics can
correctly predict chaotic laboratory reality. We shall dis-
cuss this possibility in greater detail in a later section.

In this paper, we shall prove that the time flows for the
quantum systems of interest to us exhibit no deterministic
randomness over finite (as well as infinite) time intervals.
However, since even experienced investigators express
doubts regarding the ability of algorithmic complexity
theory to distinguish randomness from nonrandomness in
finite objects (digit strings), it behooves us to present at
least an intuitive resolution of these doubts before bury-
ing the reader under the rigorous details of later sections.
At this point, we shall seek to resolve only two of the
most frequently voiced objections by confronting them
with two very simple, illustrative examples. A more de-
tailed discussion of these matters is to be found in Ref.
[3]

We first consider the objection that emphasizes the
lack of a sharp cutoff separating random from nonran-
dom finite binary digit strings. Let us resolve this issue
by considering, for example, the set of all 100-bit binary
sequences (2' =10 in all). The sum S of computer pro-
grams (algorithms) having (100—k —1) bits or less is
given by the geometric series S=2'+2 +2 + .
+2" ", since there are two programs with one bit,
four programs with two bits, etc. Consequently,
S=2" "'—2=2" '. The fractional number of 100-
bit sequences which have the possibility of being comput-
ed by programs containing (100—k —1) bits or less is
therefore 2 ". This leaves a fraction (1—2 ") of 100-bit
sequences which cannot be computed by any algorithm
having less than (100—k) bits. In terms of percentages,
50% of this 100-bit set cannot be computed by any algo-
rithm having less than 99 bits, 75% cannot be computed
be any algorithm with less than 98 bits, and 96% cannot
be computed by any algorithm with less than 95 bits. A
reasonable man thus concludes that an overwhelming
majority of these 100-bit sequences cannot be computed
by any algorithm having significantly less than 100 bits
and that the matter of precise cutoff can hardly be re-
garded as a serious issue. At the other extreme reside the
ordered 100-bit sequences of the type (1,1, 1, 1, 1, . . . ) or
(1,0, 1,0, 1,0, . . . ) whose information contents are loga-
rithmically compressible, i.e., which can be computed by
programs with bit lengths proportional to log&100. The
distinction between these two extremes, called random
dnd nonrandom, is not only clear but striking. Moreover,
given the paucity of sequences lying in the border
separating these two extremes, there is no difficulty in
avoiding borderline cases in applications. However, it
must be emphasized that, in this paper, we find ourselves
facing only nonchaotic, nonrandom, logarithmically
compressible objects [3].

Since logarithmic compressibility is such a pivotal con-
cept in this paper, let us illustrate its occurrence in a fa-
miliar example. The digit string for the v'2 reads in part

&2= 1.414 213 562 373 095 048 801 688 72

Folklore asserts that this digit string is random, and
indeed, as we scan these digits, certainly no order is ap-
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parent. Nonetheless, this decimal representation can be
computed by the simple, iterative algorithm
A„+,=[(A„+2)/2A„], where A„ is the nth approxima-
tion. If we seek to compute a large number N of digits
for the &2, encodement of the above short algorithm will
occupy only a small part of the computer program. The
majority of the program will be taken up by the encode-
ment of log2N. The information in the digits for the &2
is thus logarithmically compressible; this string is there-
fore not random. Even the algorithm alone exposes the
meaning of informational compressibility. Setting
A p

= 1.4 in the above algorithm yields A, = 1.414,
A2=1.41421356, etc. Here, two digits yield four, four
digits yield eight, . . . , 1000 digits yield 2000, etc.
Despite appearances, in the decimal representation for
the &2, distant digits are rigidly determined by near di-
gits. Let us now turn to the discussion of the second ob-
jection.

This second objection directs attention to the fact that

both random and nonrandom orbits in a fully chaotic
dynamical system are dense, thereby permitting
sufficiently close random and nonrandom orbits to be
essentially indistinguishable over arbitrarily large finite-
time intervals. This argument concludes that orbital ran-
domness (or its lack) can be determined only in the
infinite-time limit. In order to resolve this delicate issue,
let us consider the one-dimensional Bernoulli shift
X„+&=2X„(mod 1), where, for reasons which will soon
become apparent, each X„ is to be expressed in binary no-
tation. Let us now focus on an orbit initiated at a ration-
al point Xo =n/N. Because Xo is rational, it binary rep-
resentation consists of an infinite repetition of some finite
sequence of bits. Thus, we need to compute the binary
representation of Xp only out to the onset of the first re-
peat or at most to the second. In short, a calculation of
finite accuracy serves to specify the full and precise
binary representation for Xp. The binary representation
for a typical rational Xp might read

X =0 1100010000 1100010000 1100010000 1100010000

The forward iterates of Xp are now determined by mov-
ing the binary point sequentially to the right, each time
dropping the integer part. This procedure makes it clear
that this iteration sequence (orbit) is periodic with
Xip„=X„,for all n. As a consequence, this orbit is as ob-
viously nonchaotic as an orbit of the simple pendulum.
Indeed, a true picture of this orbit can be obtained simply
by calculating its iterates to only three-bit accuracy:
Xp =0. 1 10 XI =0.100 . . ~ X9 =0 01 1 Xlp =Xp. In-
creased accuracy would move these iterates slightly but
would leave their general location unchanged. In sum-
mary, we have determined the nonchaotic character of
this orbit, in part and in whole, using finite accuracy to
compute finite orbital segments. In deciding that this
specific orbit is nonchaotic, we have encountered no need
to consider long-time limits nor the character of nearby
orbits. An alternative resolution of this objection points
out that, if all we know about Xp is the 40 bits explicitly
given above, this finitely accurate Xp is the same for all
orbits initiated in the interval (XO,Xo+2 '). Nonethe-
less, the initial orbit segments for all these orbits are non-
random, no matter that some orbits will later reveal their
randomness; for even random digit strings can begin with
nonrandom segments. Equally, had the 40 digits of Xp
been generated by a random coin, then all the initial or-
bital segments lying in the above interval would be re-
garded as random no matter that some orbits will later
reveal periodicity; for even periodic digit strings can be-
gin with random segments. In summary, it is quite mean-
ingful to characterize finite orbital segments as random
or nonrandom, no rnatter their subsequent behavior, for
as established earlier, the notion of randomness (or its
lack} in finite digit strings is a perfectly valid concept.

In Sec. II, we develop the basis set for Hilbert space
which is relevant to later developments. Specifically, we

compute the eigenvalues and eigenfunctions for a free
quantum particle moving inside a specified, though large-
ly arbitrary, boundary. In the process, we establish that
the algorithm which computes these eigenvalues and
eigenfunctions logarithmically compresses the informa-
tion they contain. Section III then calculates the eigen-
values and eigenfunctions for a broad class of finite,
bounded, undriven, quantum systems, and we again
prove that the algorithms used logarithmically compress
the output data. Section IV then verifies that, as antici-
pated, the information in the time evolution of these sys-
tems is also logarithmically compressible. Section V pro-
poses a laboratory experiment which can test the ability
of a nonchaotic quantum mechanics to predict the chaos
known to occur in many finite, bounded, undriven, mac-
roscopic systems. Section VI summarizes our results and
draws conclusions. Finally, it must be emphasized that,
in proving logarithmic compressibility of output informa-
tion, it is not required that the algorithm we invoke be
optimal or even practical; it must simply be capable of
actually computing the desired objects, in principle.

II. EIGENVALUES AND EIGENFUNCTIONS
FOR A BOUNDED FREE PARTICLE

Reed and Simon [10] prove that a free quantum parti-
cle constrained to move in any open, bounded domain
has a discrete set of eigenvalues and eigenfunctions.
They also prove that this set of eigenfunctions is com-
plete. When the domain has a simple shape, one can fre-
quently obtain analytic expressions for the eigenvalues
and eigenfunctions; however, when the shape is compli-
cated, one must resort to numerical algorithms. For us,
perhaps the most convenient algorithm for solving the
time-independent Schrodinger equation —(A' /2m}V U
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=EU is the method of finite differences. Convergence of
the method has been established by Bramble and Hub-
bard [ll] and by Kuttler [12] for both two and three di-
mensions and for boundaries whose local parametric rep-
resentations are (t . In the following paragraphs, we
present our method of solution for two dimensions; its
generalization to three dimensions is straightforward.

We first rewrite the time-independent Schrodinger
equation as the familiar Helmholtz equation
V' U(x,y)+A, U(x,y)=0. We now replace V U(x, y) by
the finite difference operator b,,U(x, y) defined on a grid
of squares having width e. Specifically, we require

b.,U(x, y) =e [ U(x +By)+ U(x —Ey)+ U(x, y +e)
+ U(x,y —e) —4U(x, y)], (2)

where the continuum variables x and y now take on only
the discrete values x =m e and y = n e. Equation (2) is
valid for all grid points whose nearest neighbors lie
within the boundary. For a grid point whose nearest x
neighbor lies, say, to the right of the boundary, Eq. (2)
must be modified. If the boundary point lying on the line
connecting these two neighbors lies a distance cue from
the grid point in question, then Eq. (2) becomes

1 1
b,,U(x, y) =——U(x +ay )+ U(x —Ey )+ U(x, y +6)

CX

+ U(x, y —e) — 3+—U(x, y) . (3)
1

AU+A. 'U=O, (4)

where U is a column vector with components U and
where A, '=e A, . To determine the matrix elements of J7,
let the nearest neighbors of the point j be points k, I, m,
and n. Then, according to Eq. (2), the jth row of Eq. (4)
can be written (Uk+ UI+ U + U„—4U. )+A, 'U =0.
The matrix elements of % for the jth row are thus
% "=—4, A,"=1 for i =k, l, m, or n and zero otherwise.
When one of the nearest neighbors of the point j lies out-
side the boundary, say point n at which U„=O, then ac-
cording to Eq. (3) we have A, ,

= —(3+a '), %,"=1 for
i =k, l, m, and zero otherwise. The generalization to two
or three nearest neighbors lying outside the boundary is

Generalization of Eq. (3) to other near-boundary points is
straightforward. The net result is that we now have one
unique Helmholtz difference equation b, U(x, y)
+A, U(x, y) =0 for each grid point.

In fact, Eq. (2) and its companion Eq. (3) make it clear
that these linear, coupled Helmholtz difference equations
can be brought to matrix form. In preparation for the
later use of a standard diagonalization algorithm, we
elect to write the Helmholtz difference equations in terms
of a square, two-subscript matrix A; . To this end, we

sequentially number all the grid points lying within the
boundary with a single integer. Consider grid point j and
let U be the value of U(x, y) at the jth grid point. Then
we may write h, U+A. U=O at point j as

g„,%; Uj +A, 'U =0 or, more succinctly, as

straightforward. For us, the essential point is that the
matrix A is not only real but also symmetric. This latter
property follows from the fact that %,"=1 if points i and

j are nearest neighbors and zero otherwise.
Because A is real and symmetric, it can be diagonal-

ized using the sequential rotations of the Jacobi method
[13]. Here, one performs sequential similarity transfor-
mation in the form of rotations reducing the off-diagonal
elements of A to zero. A convergence proof for the Jaco-
bi method has been given by Golub and van Loan [13],
while Schonhage [14] has shown that the Jacobi iteration
scheme yields quadratic convergence of the off-diagonal
elements to zero. Once the diagonalization of A is comp-
leted to the desired accuracy, its eigenvalues can be read
off its diagonal representation. The corresponding eigen-
functions are the columns of the composite rotation ma-
trix which makes % diagonal. Each one-variable eigen-
functions U( j) must then be mapped into the two-
variable eigenfunction U(me, no), but this involves only
a trivial rnatter of relabeling points. Much more
significant is the issue of obtaining accuracy estimates for
the final eigenvalues and eigenfunctions. A bound on the
error in the eigenvalues produced by the Jacobi method
can be obtained using the Wielandt-Hoffmann theorem
[15,1]. Upper and lower bounds on the deviation of the
eigenvalues produced by the finite difference method
from the true eigenvalues have been established by Wein-
berger [16] and by Ilg [1]. Pointwise error bounds on the
eigenfunctions can be derived from the relationships
given by Bramble and Hubbard [11] as has been shown
by Ilg [1]. We elect not to write out these error estimates
here, since for our purposes, it is sufficient to note that
the computation of these error bounds involves nothing
more than perhaps repeated use of the finite difference
method plus the Jacobi method as outlined above [1].
Again, generalizing the above arguments to three dimen-
sions is straightforward. Indeed, in the following para-
graphs we assume that this generalization has been made.

We have now presented algorithmic procedures which
can be used to compute the eigenvalues and eigenfunc-
tions to any desired accuracy. Therefore, we are at last in
a position to estimate the amount (in bits) of input infor-
mation required to generate a specified amount of output
information. To this end, let us begin by requesting as
output the first M eigenvalues, each to an accuracy of
2 ' +". Moreover, let us require the corresponding set
of M eigenfunctions evaluated at all lattice points [K
( —e ) in number], each value having an accuracy of
2 ' +". The output information in the eigenvalues con-
tains no less than MX binary digits while that in the
eigenfunctions contains no less than KM% binary digits.
Let us now determine the amount of input information
needed to compute the above (K +1)MN binary digits of
output information. To this end, we now outline, at the
block-diagram level, a computer program which could in
principle actually print out the desired result.

Our first task is to compute the boundary of the
domain D in which our free particle moves. Here we
shall assume that the boundary can be divided into sec-
tions, in each of which the boundary is specified by a
parametric representation X=X(u, v), Y= Y(u, v), and
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Z =Z(u, v), where X, Y, and Z denote computable [4]
functions. Without going into the technical details, for
us "computable" means that the functions X, Y, and Z in
each section of the boundary can be computed by repeat-
ed iteration of a finite set of computer instructions. The
essential pieces of information we must supply the pro-
gram which computes the boundary are the number L of
its points to be determined and their accuracy 2
With only the additional input of the initial grid cube
width e, the program can compute all grid points in a
large cube C which completely encloses the domain D
and can also compute the boundary points at which grid
lines intersect the boundary, thereby determining all the
a in the three-dimensional generalization of Eq. (3).
Summarizing to this point, our computer program must
be given the input data L, N, and initial e which will take
up log2L, log2N, and log2e bits of the program. In addi-
tion, the program must also be given the fixed length al-
gorithms defining the parametric representation of the
boundary. Those knowledgeable in complexity theory
will immediately recognize that here the printable output
information —L boundary plus E grid points having no
less than N digits each —exponentially exceeds the input
when K and L are large, but let us not dwell on this inter-
mediate situation.

With the boundary and grid mesh now in place, the
program can start at one corner of the cube C and work
its way sequentially through the entire grid. If a given
point is not inside D, skip to the next point. If the grid
point lie within D, then generate one row of %. Upon
completion of this process, % is fully determined. The
program now utilizes the quadratically convergent Jacobi
rotation method to decrease the size of the off-diagonal
elements of A sequentially. At each stage, the program
uses the Wielandt-Hoffmann theorem [15] to check the
accuracy of the eigenvalues of A. If the error is not less
than 2 ' +", another Jacobi rotation is initiated; other-
wise the program continues to the next stage. To estab-
lish the closeness of these A eigenvalues to the true eigen-
values of the problem, the program now repeats the
above procedure twice, first for a set of cubes whose
boundary lies totally within or on D and second for a set
of cubes whose boundary lies totally outside or on D.
These two additional run throughs provide upper and
lower bounds on the true eigenvalues [1,16]. If the eigen-
values of A are not within the preassigned error value of
2 ' +" of the true eigenvalues, the program then de-
creases e, recomputes the grid (and boundary, if neces-
sary), and repeats the above procedure. When the error
criterion is met, the eigenvalues are printed out. The
eigenfunctions are now the columns of the composite
Jacobi rotation matrix. The program now checks for
pointwise accuracy [1,11] of these eigenfunctions. If the
accuracy criterion 2 ' +" is met, the eigenfunctions are
printed out; otherwise e is decreased and the entire above
procedure is repeated. Finally, to guarantee that the
computer is using a sufficient number of digits to meet
the accuracy criteria, a tally of the round-off error is
maintained and an increase in precision from single to
double to triple, etc., is made as needed.

Aside from the fixed bit length of the program itself,

the program requires log2M bits to specify the number of
eigenvalues and eigenfunctions, log2N bits to specify the
accuracy of all calculated quantities, log&a bits to specify
the initial value of cube width, and log2L bits to specify
the initial number of boundary points. When M and X
become large, the total bit length of this program equals
(logzM+log2N) to a good approximation. For this
amount of input information, we obtain M eigenvalues
each having no less than N bits, and M eigenfunctions
evaluated at E ( =e ) points having no less than N bits
each. The output thus contains no less than (K+1)MN
bits. It is now clear that our algorithm logarithmically
compresses the information in the eigenvalues and eigen-
functions of the free-particle problem for all M and N, no
matter how large. The full infinite set of eigenvalues and
eigenfunctions is therefore not chaotic (random) because
the information in all its finite subsets is logarithmically
compressible [17,18].

This set of free-particle eigenfunctions forms a corn-
plete, orthonormal basis for Hilbert space. Although the
eigenfunctions have been evaluated only on a countably
dense set, continuity of the eigenfunctions permits analyt-
ic continuation, if required. Finally, the above program
has computed only the one-particle eigenvalues and
eigenfunctions. However, the many-particle eigenvalues
are simply sums of the one-particle eigenvalues while
many-particle eigenfunctions are simply products of one-
particle eigenfunctions.

III. EIGENVALUES AND EIGENFUNCTIONS
FOR THE FULL PROBLEM

We now turn our attention to systems governed by
Hamiltonians having the form

3N
H = g (Pk /2mk )+V(Q„Q2, Q3 Q3+), (5)

k=1

where mz is the mass of the kth particle and N is the
number of particles. As before, motion is confined to lie
within a bounded, open domain whose boundary is
specified by a computable, parametric representation.
The potential V is required to be a sum of pair potentials
in which each pair potential is a member of the Rollnik
class [19], a general category of potentials which in-
cludes, among many others V(r) = r for—0 & a & 2,
any V(r) which is a sum of an L and an L" function,
any V(r) continuous in R3/[0] which goes to zero at
infinity and for which

~
V(r)~ &C~r~ (1—

inner~) when
~ r~ & 1 for some C and some a & 1/2. For this broad class
of finite, bounded, undriven quantum systems, Reed and
Simon [10] prove that their eigenvalue spectrum is
discrete and that their eigenfunction set is complete. Of
course, there are additional systems, such as the harrnon-
ic oscillator, for which proofs of discreteness and com-
pleteness appear in the literature. However, contrary to
popular opinion, not all spatially bounded, finite, un-
driven quantum systems have discrete spectra. Chirikov,
Israilev, and Shepelyansky [20) discuss one of these ex-
ceptions. In any event, the broad class defined above is
adequate for our purposes.
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We obtain the eigenvalues and eigenfunctions of Ham-
iltonian (5) using the Raleigh-Ritz procedure whose con-
vergence is guaranteed when the basis set of trial func-
tions is complete [21]. Specifically, finding the minima of
the functionals involved in the Raleigh-Ritz technique is
equivalent [22] to the eigenvalue-eigenfunction problem
for Hamiltonian (5). We thus must now obtain the ma-
trix elements of H=H&„, +V, where Hf„,=gz(P&I
2m&). Since we here already know the matrix elements
of Hf„„we have only to obtain an algorithm for the ma-
trix elements of V, where, without significant loss of gen-
erality, we assume that V is a computable function whose
information content is logarithmically compressible. The
matrix elements of V can then be determined by

Vg~ = U( s VU)](; s (6)

where N is particle number, D is the bounded open
domain, and the Uz ( Q, ) are the real eigenfunctions of the
free-particle problem. We may evaluate the integral in
Eq. (6) by approximating it as the Riemann sum

Vg(=e $ $ U(VUg,

where the summation is to be carried out over all grid
points inside the hyperdomain D . Since the informa-
tion in both the eigenfunctions U& and the potential V
are logarithmically compressible and since the summa-
tions in Eq. (7) require only a fixed-length repetitive algo-
rithm, the matrix elements V&& are computable, i.e., "in-
formation in" is the logarithm of "information out. "
Hence, the eigenvalues and eigenfunctions of H can now
be obtained using the Jacobi rotation technique [13] dis-
cussed earlier. It is straightforward to find theorems in
the literature which prove that the above procedures do
converge, but in order to establish the number of accu-
rate output bits of information relative to the input at
each stage, we must obtain accurate error estimates. It is
to this matter we now turn.

Since we are using the free-particle eigenfunctions as
our basis for Hilbert space, we can, as shown in Sec. II,
determine the matrix elements of Hf„, as accurately as
we desire. The computation of the matrix elements V&&

for the potentia1 V, on the other hand, are subject to
three sources of error which we now discuss. The first er-
ror is due to discretization of the integral in Eq. (6).
Davis and Rabinowitz [23] provide a reliable estimate of
this error which depends on the size of the domain D, the
number of particles N, and the number of grid points n

within D. The second source of error arises from the fact
that the summation in Eq. (7) is taken over all grid
points. Once each grid point in D is multiplied by the
hypervolume e, the total hypervolume in Eq. (7)
exceeds the hypervolume of D . A reliable estimate of
this second error is again given by Davis and Rabinowitz
[23]. The third source of error arises from the fact that,
in practical computations, the Riemann sum of Eq. (7)
will be evaluated using only approximate values for the
free-particle eigenfunctions U&. An estimate for this er-
ror is provided by Ilg [1]. Turning now to the full Hamil-
tonian H, an exact solution of the eigenvalue-
eigenfunction requires the diagonalization of the infinite

Hamiltonian matrix, whereas numerical algorithms can-
not handle more than a finite, increasingly large number
of matrix elements. We thus elect to diagonalize increas-
ingly large square blocks of H in order to obtain increas-
ingly good approximations to the eigenvalues and eigen-
functions of H. Specifically, the eigenvalues of the finite
matrices are upper bounds for the true eigenvalues of H
[1]. Lower bounds are given by Weinberger [21]. An ad-
ditional error is induced in the computation of eigenval-
ues because of finite accuracy in the basis set; bounds for
this error have been obtained by Ilg [1]. Turning now to
eigenfunctions, as before we need a pointwise bound on
the values for each eigenfunction. This bound can be ob-
tained in terms of a bound on the norm for the difference
between precise eigenfunction and Raleigh-Ritz eigen-
function [24]. From this bound, Weinberger [24] obtains
a pointwise bound between true and approximate eigen-
functions. Weinberger's derivation assumes that the po-
tential V is positive and continuous within D and on its
boundary. We have not sought to improve on
Weinberger's conditions because they are not severe and,
more important, because they still permit us to expose a
broad class of finite, bounded, quantum systems which
are not chaotic.

We are now in a position to describe in block-diagram
form an algorithm which can compute the eigenvalues
and eigenfunctions for the H of Eq. (5). We may then
compare the amount of input information to output in-
formation. This program starts by running the algo-
rithms which compute the eigenvalues and eigenfunctions
for the free-particle problem. The output data for the
free-particle problem is then used to compute the matrix
elements of the full H along with the error estimates for
these matrix elements. If they are not satisfactory, de-
crease the size of e and repeat all earlier steps until the
error is acceptable. Diagonalize H via Jacobi rotations
and determine the error bounds; if not satisfactory, de-
crease e, increase the number M of free-particle eigenval-
ues and eigenfunctions, and return to the start of the pro-
gram. If the error is acceptable, print the eigenvalues
and eigenfunctions. As input, this program requires all
the input used by the free-particle problem —N, initial
M, L, and e—plus the number A of desired full H eigen-
values and eigenfunctions (each evaluated at %'=e
grid points) and the accuracy 2 ' +" of each. Thus
when JR and JV become large, an input of about logzJK
and log2JV bits yields an output of about (R+ 1)AJV bits,
paralleling a similar result for the free-particle case. Fi-
nally then, we note that the infinite set of eigenvalues and
eigenfunctions for the full H is not chaotic because the
information in all its finite subsets is logarithmically
compressible [17,18].

Since the arguments in both this and the previous sec-
tion are a bit tedious, let us try to expose the forest hid-
den behind all these trees. Even including such input in-
formation as m& or A', the dominant input parameters we

must give the program are simply the number of eigen-
values or eigenfunctions we wish as output along with
their accuracy. Since we know all the relevant error
bounds, we may simply write the program to iteratively
reduce the error until it produces the desired result. Pro-
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gram run times may therefore be incredibly long, but run
time is of no concern to us since convergence assures us
that run time is finite, however, long. Moreover, comput-
er storage space for either the program or the intermedi-
ate results is not a problem, because algorithmic com-
plexity theory assumes that storage space, though finite,
can be as large as we please.

IV. TIME EVOLUTION OF LP FOR THE FULL
PROBLEM

Since the finite, bounded, undriven, quantum systems
we consider have discrete spectra, their wave functions
can always be written as

—iE~ t/A4(x, t)= g A& Uz (x)e
k

(8)

where x denotes all spatial variables, t denotes time, the
Ez and Uz(x) are energy eigenvalues and eigenfunctions
of H, respectively, the Az= J dx Uz(x)%'(x, O) are ex-

pansion coefficients, and A' is Planck s constant divided by
2rr. As we turn to proving that the information in %(x, t)
is logarithmically compressible, we may not only avail
ourselves of the results of Sec. III, but we may also con-
siderably shorten the required proof. When the informa-
tion in a quantity is logarithmically compressible, let us
simply say that the quantity is compressible. Turning
now to Eq. (8), all quantities in the exponent of each ex-
ponential are compressible. This is clearly true for the
Ek,' it is also true for the time provided we restrict t to
the rationals or to compressible irrationals like the v 2;
finally, it is true for A provided we follow its known
binary digits with any compressible digit string, such as
all zeros As a co.nsequence, the product (iE&tlh) is
compressible. But each exponential in the sum may be
iteratively computed from its power-series representation,—tE~ t/A
thus each e ' is compressible and the product—tE~ t/fi
U&(x)e ' is thus also compressible. Representing
Ak by its Riemann sum, we observe that Ak is compres-
sible provided we make the very mild assumption that
%(x,O) is compressible. The sum of compressible factors
in Eq. (8) may itself be computed by a recursive algo-
rithm. Finally then, %(x, t) is compressible because the
sum in Eq. (8) is compressible.

At this point, we may note that increasing or decreas-
ing the size of compressible parameters such as mk or R
by multiplying them say by 2—~, where l3 is a positive in-
teger, does not affect their compressibility. If in this way
we let A~O, a serious question then arises regarding
whether the compressible quantal description of finite,
bounded, undriven, systems will always properly limit to
the correct noncompressible chaotic behavior of classical
dynamics. Indeed, it would appear that the quantal
description of classically chaotic systems must, of necessi-
ty, exhibit the same unexpected behavior as the Arnol'd
cat [3]. However, we elect not to pursue this question
further here. Rather, we now propose an experimental
test to determine whether quantum mechanics can pre-
dict the laboratory observable chaotic behavior of finite,
bounded, undriven, macroscopic systems.

V. PROPOSED LABORATORY TEST
OF QUANTUM MECHANICS

The quantal analysis of the preceding sections is sub-
ject to comparison with macroscopic laboratory reality.
In making this comparison, no correspondence limits are
to be taken nor is Newtonian dynamics to be invoked.
Planck's constant is to be given its standard value and the
generally large macroscopic system parameters are to be
used in Schrodinger's equation. Quantum mechanics is
designed to predict observables, so let it predict direct
laboratory observations of a macroscopic finite, bounded,
undriven system. It is crucial here to remember that
macroscopic objects as well as their time evolution are
quite stable under measurement by macroscopic instru-
ments. Quantum effects, such as collapse of the wave
function, spreading of wave packets, errors induced by
the uncertainty principle, are here quite negligible, in
general [9].

Nonetheless, macroscopic objects are many-body sys-
tems which, for the most part, are as intractable in the
quantum domain as in the classical; even the gravitation-
al three-body problem has, for example, successfully
resisted all attempts at analytic solution. On the other
hand, consider the simple pendulum. Any physical reali-
zation of this system is certainly a many-body problem,
yet both classical and quantum mechanics treat it as a
one-degree-of-freedom system. Here, the oscillatory
motion is sufficiently isolated from pendulum internal de-
grees of freedom and the environment that these oscilla-
tions can be treated as quite independent. Of course, the
effect of the internal degrees of freedom and the environ-
ment is to introduce damping into the pendulum s oscilla-
tions, but with sufficient experimental care, the pendulum
can swing, as if undamped, over many periods. Here, one
could construct a macroscopically sharp, but far from
minimum, wave packet for the pendulum, having the
form 'P(8, t)=Q„A„U„(0)e ' ",and expect it to pre-
dict laboratory observation to within experimental error.
Our confidence in this regard is bolstered by the fact that
the pendulum is "integrable" in both classical and quan-
tum mechanics. But the classical pendulum is never
chaotic, not even for large amplitude motion. Thus, let
us take one step up and consider the double pendulum in
which each pendulum bob is free to swing through 360'.

For small-amplitude motion of this two-degree-of-
freedorn, double-pendulum system, we would expect a
wave-packet description to agree with laboratory obser-
vation just as well as it does for the single-pendulum case.
But for large-amplitude motion, the double pendulum ex-
hibits a transition to chaos which is just as visible in the
laboratory as is the transition to turbulence in a rising
column of cigarette smoke [25]. But how can we observe
the distinction, if any, between the nonchaotic quantal
description of the motion and the chaotic motion per-
ceived in the laboratory' One, though not the only, way is
to perform a "crude, "macroscopic time reversal of both
the quantal and the laboratory motion. A number [3] of
numerical experiments have shown that, in the domain of
chaotic motion, the quantal description reverses back to
its initial state to high accuracy whereas the classical
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description does not. Here, "time reversal" means only
that the signs of system velocities or momenta are re-
versed while time continues forward. The possibility of
such a laboratory time reversal arises precisely because
we are dealing with a macroscopic, two-degree-of-
freedom system. At this point, as a check, one might
wish to verify that the chaotic motion of the double pen-
dulum agrees with the classical prediction [26], if not the
quantal. The essence of this proposed comparison is to
reveal that quantum mechanics is "simple" whereas the
macroscopic world is "complex. " Clearly, this test of
quantum mechanics will not be easy to conduct; few
significant experiments are. Nonetheless, it is difficult to
avoid guessing the outcome even before the experiment is
performed.

The double pendulum is only one of several laboratory
systems which might be used to test quantum mechanics.
Experiments involving the Paul trap, superconducting
quantum interference devices, Josephson junctions, or
microwave excitation of Rydberg hydrogen immediately
leap to mind. But to our minds, the virtues of the double
pendulum lie in its simplicity, its ready availability, and
its opportunity to demonstrate yet again the significance
of chaos in simple, two-degree-of-freedom systems which
have existed since the time of Newton.

proof of both these results contains many subtleties.
Indeed, some finite, bounded quantum systems are chaot-
ic [20]. Nonetheless, as we have shown, a broad class of
such systems are nonchaotic, a result which may have
quite deep consequences. To illustrate the possible conse-
quences, we have elected not to investigate the correspon-
dence limit, but to appeal directly to laboratory observa-
tion via a proposed experimental test. We have suggested
the double pendulum as a viable macroscopic candidate,
but other systems are available. But whatever the macro-
scopic system, the central issue is whether or not the
motion of a chaotic, finite, bounded, undriven, macro-
scopic classical system can be predicted by a nonchaotic
quantum-mechanical description. Strictly speaking, the
issue is not whether quantum mechanics will fail in this
regard, for fail it must. Indeed, it would be a logical con-
tradiction for a compressible quantum description to
correctly predict a noncompressible laboratory result.
Rather, the issue is whether or not laboratory accuracy
can detect the failure. Nonetheless, even (U /c ) effects
have been observed in the past and perhaps can also be
observed in the present situation. In fact, it is possible
that a time reversal using only "crude" macroscopic ac-
curacy may elevate the quantum-laboratory discrepancies
above the (U /c ) level.
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