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Mean-field approximation to the effective elastic moduli of a solid suspension of spheres

B.U. Felderhof
Institut fiir Theoretische Physik A, Rheinisch We-stfalische Technische Hochschule Aachen, Templergraben 55, 5100Aachen, Germany

P. L. Iske
Koninklijke/Shell Laboratori um, Postbus 3003, 1003 AA Amsterdam, The Netherlands

(Received 19 July 1991)

We study the effective shear and bulk moduli of a solid suspension of spheres with a spherically sym-

metric elastic profile. A mean-field approximation is derived which corresponds to the Lorentz local
field in the theory of dielectrics. Thus the approximate expressions for the effective shear and bulk
moduli are the analogs of the Clausius-Mossotti equation for the efFective dielectric constant. For the
case of uniform spheres the expressions are closely related to the Hashin-Shtrikman bounds. We show

that the mean-field expression may be corrected systematically for correlations in the sphere positions on
the basis of cluster expansions derived by statistical methods.

PACS number(s): 03.40.Dz, 46.30.Cn, 62.20.Dc, 81.40.Jj

I. INTRODUCTION

The calculation of the effective elastic properties of a
solid composite is an important problem of material sci-
ence. In this article, we study a solid suspension consist-
ing of spheres with a spherically symmetric elastic profile
embedded in a uniform and isotropic matrix. We derive
mean-field expressions for the effective shear and bulk
moduli of the suspension by a method analogous to that
used by Lorentz [1] for the derivation of the Clausius-
Mossotti formula in the theory of dielectrics [2,3]. For
the special case of uniform spheres the mean-field expres-
sions reduce to the Hashin-Shtrikman bounds [4], except
when the shear modulus of the spheres is larger than and
the bulk modulus is smaller than that of the matrix, or
vice versa.

In the statistical theory of dielectrics it is known [5,6]
how the Clausius-Mossotti formula may be obtained as
an approximation from exact cluster expansions, which
have been derived by statistical methods. The cluster ex-
pansions provide exact expressions for the effective linear
transport properties of suspensions. They allow a sys-
tematic calculation of corrections to the mean-field ex-
pressions due to correlations in the sphere positions. We
show in the following how, in the elastic problem, the
mean-field expressions may be obtained from the direct
cluster expansion [7), as well as from the renormalized
cluster expansion [8]. The latter is the most suitable for
the calculation of the correction terms.

p(r) =p2( [r—R [ ), «(r) =«2( ~r
—RJ [)

for~r —RJ ~
~a, j= 1, . . . , N . (2.1)

The linear equation of elastic equilibrium for the dis-
placement field u(r) can be written as

V.cr = —FQ &
(2.2)

where tr(r) is the stress tensor and Fo(r) is an applied
force density. The stress tensor is given by the local con-
stitutive equation

o =2p(Vu) +«(V u)1, (2.3)

where p(r) is the local shear modulus, «(r) is the local
bulk modulus, and (Vu) is the symmetric traceless part
of the strain tensor defined by

((Vu) } &=—,'(t} u&+t}&u )
—

—,'(V u)5 tt . (2.4)

The last term in Eq. (2.3) corresponds to the local pres-
sure

p= KV'U .

We define the difference functions

(2.5)

P(r) =p(r) p„(r«)=«(r—) —«, , (2.6)

which vanish outside the inclusions, and introduce the
stress s induced by the inclusions as

s=2p(Vu) +«(V.u}1 . (2.7)

II. ELASTIC SUSPENSION The equilibrium equation (2.2) may then be rewritten as

We consider N identical spherical particles of radius a,
centered at R, , . . . , R~, and embedded in an isotropic
elastic medium with uniform shear modulus p, and bulk
modulus K&. The inclusions are assumed to have a spheri-
cally symmetric shear modulus p2(s) and bulk modulus
«2(s), so that the elastic moduli in the inclusions are given
by

p&V u+ —,'p&+«& V(V.u}=—Fo—F,
with the induced force density F(r) given by

N
F(r)= g F (r),

j=1

where

(2.8)

(2.9)
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F~(r) =e(a —~r —R~ ~
)V s (2.10)

p&V &u&+ —,'p, +~, V(V &u&)= —F,—&F&. (2.18)

is the contribution from the jth inclusion. Here 8(r} is
the Heaviside step function. It follows from Eq. (2.2) that
F is the divergence of a tensor field. %'e may interpret
Eq. (2.8) as the equilibrium equation for a uniform medi-
um with moduli p&, ~& on which the force density Fo+F
acts locally.

The formal solution to Eq. (2.8) is given by

u(r}=uo(r)+ fGo(r, r') F(r')dr', (2.11)

where uo(r) is the solution in the absence of inclusions
and Go(r, r') is the Green's function. For an infinite and
unbounded medium the Green's function is translational-
ly invariant, so that

Go(r, r')=Go(r —r') . (2.12)

By a Fourier transformation, one finds the explicit ex-
pression [9]

1 /+I 1+rr 6 1

8m@, )+4 r (+4 r

where g is the ratio

i~Pi .

(2.13)

(2.14)

The first term in Eq. (2.13) is proportional to the Oseen
tensor known from low-Reynolds-number hydrodynam-
ics [10].

By substitution of the formal solution (2.11) into Eqs.
(2.7) and (2.10), one obtains a self-consistent equation for
the induced force density F. The force density exerted by
inclusion j on the medium is given by

F (r)= fM(j;r, r') u'(r')dr', (2.15)

where the integral kernel M( j;r, r') describes the
response of sphere j to an incident field, and uj(r) is the
displacement field acting on sphere j. The latter is given
by

u'(r) =uo(r)+ g uz(r),
k(&j)

(2.16)

where u&(r) in turn is given by

uq(r)= fGo(r, r') Fz(r')dr' . (2.17)

The above equations may be solved by iteration and
hence the induced force density F(r) can be found from
the displacement field uo(r) for any configuration of par-
ticles.

For any configuration (R, , . . . , Rz) and applied force
density Fo(r), the above equations provide a formal solu-
tion for the displacement field and for the induced force
density. Assuming that the probability distribution of
configurations is known, one can perform an averaging
over the positions of the spheres. This leads to a macro-
scopic equation for the average displacement field and to
a constitutive equation for the average force density.

From Eq. (2.8) we find the average equation

We have assumed that the applied force density Fo(r) is
independent of the configuration of scatterers. The aver-
age induced force density &F(r)& may be expressed in
terms of the average displacement field & u(r) & by means
of a linear integral kernel which has a relatively short
range. For a field & u(r) & of slow spatial variation the in-
tegral operator may be expressed with a local elastic ten-
sor. For systems which on average are locally uniform
and isotropic the average equation in the bulk of the
medium takes the form

p, V &u&+ ,'p, , +—a, V(V &u&)= —F (2.19)

where P =4mna /3 i.s the volume fraction, and the intrin-
sic moduli [p] and [s] follow from the solution of a
single-particle problem [14]. The expressions (2.20) are
useful only for very dilute suspensions. At higher volume
fractions, correction terms involving elastic interactions
between inclusions must be considered.

III. MEAN-FIELD THEORY

In this section we derive expressions for the effective
moduli p,z and ~,z in the mean-field approximation by
following the approach first developed by Clausius [15],
Mossotti [16], and Lorentz [1,17] in the theory of dielec-
trics. In the case of dielectrics, the average local electric
field acting on a selected particle is expressed in terms of
both the average Maxwell field and the average polariza-
tion. In the mean-field approximation, the correlations
between the spheres, apart from the nonoverlap condi-
tion, are neglected. As a result the expression for the
effective dielectric constant depends only on the volume
fraction occupied by the spheres and contains no further
details of the geometry of the microstructure. By follow-
ing the same approach in the elastic case, we shall find
similar expressions for the effective elastic moduli.

We begin by recalling the Lorentz derivation [1,17] of
the effective dielectric constant e,z- of an isotropic suspen-
sion of spherically symmetric polarizable particles em-
bedded in a medium with a uniform dielectric constant

with effective moduli p«and &of.
In the statistical-mechanical derivation of Eq. (2.19)

one considers a probability distribution 8'(I, . . . , N) for
which the particle centers are localized inside a volume 0
and for which the average density becomes uniform in
the thermodynamic limit N —+~, 0,~00 at constant
n =X/Q. All higher-order distribution functions must
become translationally invariant and isotropic. The pro-
cedure leads to well-defined statistical expressions for the
effective modu1i p,z and ~,~, which are independent of the
shape of the volume Q. We shall return to the statistical
theory in Sec. V.

To lowest order in the density, the effective moduli are
given by [11—13]

p s=pi+[p]/pi+0(P ), s,s=s., +[s]Pa, +O(P ),
(2.20)
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E, =(E&+ (P& .
36(

(3.1)

The contribution from the particles inside the sphere
averages to zero to a good approximation, provided the
distribution is isotropic. Thus the average polarization is
well approximated by

ei. Lorentz considered a macroscopic sample in an ap-

plied electric field. The shape of the sample need not be
specified. One imagines a sphere that is centered at a
selected particle and is sufticiently large to contain many
neighboring particles. Lorentz assumed that the effect of
particles outside the sphere on the central particle can be
described by the average polarization (P(r) &. He
showed that, in a region where both the average Maxwell
field (E(r) & and the average polarization (P(r)& are
slowly varying, the contribution from these particles to
the average local field acting on the selected particle is

given by

a. The moment for n =1 vanishes, since the inclusion
can exert no force, and the moment for n=2 is sym-
metric, since the inclusion can exert no torque. The cor-
responding force multipole density of order n is defined

by
X

F(n) y p(n)fi(r R )J Jj=1
(3.9)

The average induced forced density may be effectively re-
placed by the multipole expansion

(3.10)

In situations with slow spatial variation it is sufficient to
consider only the dipolar term (F' '(r)&. This is the
analogue of the electric polarization in the dielectric case.
We separate the symmetric second rank tensor into two
parts:

(P & =naEL, (3.2} (F( '&=((F(&)) &+(1Tr(F( '& (3.11)

where n is the local density and a is the electric polariza-
bility of a particle. The effective dielectric constant is
defined from the equations

The average stress in the suspension may be approximat-
ed by

(o'& =2@,,(&(u&) —((F"') &

(D & =e((E&+4m. (P&, (D& =E,(r(E& . (3.3)
+1(~(V (u &

—
—,
' Tr( F"'

& ) . (3.12)

eff ~1 477 na.
E'~ff+ 2@i 3@i

The formula may be cast in the alternative form

(3.4)

Combining these with Eqs. (3.1) and (3.2) one finds the
Clausius-Mossot ti (CM) formula Thus the first term in Eq. (3.11) contributes to the aver-

age shear stress, and the second term contributes to the
average pressure.

Next we consider the response of an isolated inclusion
centered at R to an almost uniform acting displacement
field. The relevant moments are

[ )0
efr 1

1 ) [ ]y
1

(3.5)

(3.13)
where [E] is the intrinsic dielectric constant of a single

particle, defined by

3a[e)=
EiQ

(3.6)

Spheres with uniform dielectric constant e2 have a polari-
zability

3E2 6'i
a=@i a

6'p+ 26'i
(3.7)

In that case the CM formula reduces to the Maxwell-
Garnett formula [18]. The CM formula yields an excel-
lent approximation to the effective dielectric constant of a
suspension of spheres. Computer simulations [19,20]
have shown that correction terms are relatively small at
least up to a volume fraction P =0.5.

We follow the same approach in the case of elastic sus-
pensions. First of all we must find the equivalent of the
polarization. The multipole moments of the force density
of a selected sphere j are defined by [21]

Trp' '= 4m.a [s)i((V—.u~„.

At low density the acting field may be replaced by the
average field. This leads to the low-density expressions
(2.20}. At higher density one must consider corrections
to the local field. Again we draw a large Lorentz sphere
around the selected inclusion and calculate the contribu-
tion from the particles outside the sphere in the continu-
um approximation. The inAuence of the average second-
rank force density (F' '& is mediated by the Green's
function given in Eq. (2.13). The second term in this ex-
pression is just a Coulomb propagator. We consider first
the part of the displacement field caused by this part of
the propagator. Denoting the field by uc(r) we obtain

(3.14)

Substituting Eq. (3.10) and neglecting the higher-order
multipole densities we find

(u~(r)&= f, 1()" (F( '(r')&dr' .

p,'"'=, JF,(r)(r —R,. )" 'dr, (3.8) (3.15)

where a" indicates the direct tensor product of n vectors This means that each of the Cartesian components of
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(Vuc)1 =V&uc) — &F"I) .
1 1

p& +4 (3.16)

&uc(r)) may be regarded as the electrostatic potential
generated by a charge density given by the corresponding
component of —V.&F' '(r)). Recalling that in electro-
statics —V.P acts like a charge density we can write
down the Lorentz field corresponding to Eq. (3.15), name-

ly,

Pi= —K,V.&u)+ — ~ Tr&F"') .1

3 (+4 (3.27}

This last equation is in agreement with Eq. (6.9) of Ref.
[21].

Finally we calculate the average force dipole density by
replacing the acting field in Eq. (3.13) by the local field in

analogy to Eq. (3.2). For the symmetric traceless part
this yields

It will be convenient to separate this into the relevant
tensor parts. The symmetric traceless part is

((Vu ) ) =&(Vu ) ) — &(F"') ), (3.17)p 1 1

p, +4

&
(F"')'&= —20[V]V iEi

and for the trace part

Tr& F' ') =3/[K]PI

(3.28)

(3.29)

and the trace part is

Tr(Vu ) =&V u ) — Tr&F' ') .
1 1

c L c g+4
(3.18)

Next we consider the displacement field caused by the
first part of the Green's function in Eq. (2.13). We denote
this Oseen part as uo, (r) and obtain

0&
[I )NI 1

, (+6
g+4 IP']0

(V&u)) (3.30)

Substituting Eq. (3.27) into Eq. (3.29) we find

Substituting Eq. (3.25) into Eq. (3.28) and solving for the
force density tensor we find

&uo,(r)) = fT(r —r') &F(r'))dr',+1

where the propagator is given by the Oseen tensor

(3.19)
Tr& F'"&=— 3[K]PK,

V&u

(+4[ ]

(3.31}

T( )= 1 1+rr
81Tpi 1

(3.20)

These are the desired constitutive equations in mean-field
approximation. Substituting in Eq. (3.12) we find the
effective shear modulus

By comparison with Eq. (2.11) we have

& &=,+&,)+& „&. (3.21)

The Lorentz field corresponding to the Oseen propagator
has been studied by one of us [21]. Neglecting again the
higher-order multipole densities we obtain from Eq. (6.4)
of Ref. [21] the Lorentz field

[elkOff' '1

1 —
-',

&+4 [@id

and the effective bulk modulus

Kqs Ki + Ki

1 — [K]P

(3.32)

(3.33)

5p& +4

The symmetric traceless part of this equation is

(3.22}

There is a clear resemblance to the CM formula (3.5) for
the effective dielectric constant. In the incompressible
limit, where K, and g tend to infinity, the expression (3.32)
for the effective shear modulus becomes

P n Pi+ & Pi
[~1k

1 —
—,'[S ]4((V,), )'=&(V, )'& — &(F"') ) .

5p, +4 (3.23)

The trace part vanishes identically. We define the local
pure strain in the mean-field approximation as

El =(Vu0) +((Vuc)1) +((Vuo, )l ) (3.24}

Altogether we find from Eqs. (3.18), (3.21), and (3.23)

E, =(V&u) )'— &(F"')')
5p, /+4 (3.25)

PI = —K, V u0 —K,Tr( Vu C )I

From Eqs. (3.18) and (3.21) we find

(3.26)

Similarly we define the local pressure in mean-field ap-
proximation:

(3.34)

which is closely similar to Saito's expression for the
effective shear viscosity of a fluid suspension of hard
spheres [22]. Saito's derivation was based on a local field

argument similar to that of Lorentz for dielectric suspen-
sions [21].

IV. UNIFORM SPHERES

For uniform spheres the effective elastic moduli in
mean-field approximation, as given by Eqs. (3.32) and
(3.33), were obtained earlier by Weng [23] on the basis of
the Mori-Tanaka method [24]. The method is explained
particularly clearly by Benveniste [25] and Christensen
[26]. There is no obvious relation to the concept of the
effe"tive local field. An expression for the effective elastic
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tensor of a system of uniform ellipsoids proposed by Mar-
kov [27] reduces to Eqs. (3.32) and (3.33) for the case of
spheres. For this case Markov refers to an earlier result
by Levin. The mean-field expressions (3.32) and (3.33) are
closely related to the so-called Hashin-Shtrikman (HS)
bounds [4]. In this section, we investigate the relation.

For a uniform sphere with shear modulus p2 and bulk
modulus K2 the intrinsic shear modulus is given by [13,14]

1 1 —
P

3Keff+ 4p 3K1 +4p 3K2+ 4p
(4.9)

where p =p, =p2. This remarkable result was first
proved in greater generality by Hill [29].

Hashin-Shtrikman bounds for the bulk modulus coincide,
so that for that case the bounds give the exact value. It
may be cast in the form

+4 P2 Pl
(2(+ 12 )@2+( 3(+8 )P,

(4.1)

and the intrinsic bulk modulus is given by [13,14]

[K]=(/+4)
K2+4Ki

(4.2)

Following Walpole [28], the Hashin-Shtrikman upper
and lower bounds can be presented in the following form.
We introduce

3 jI 10
p 2 pg 9Kg+ 8pg

3 1 10+
2 p 9K +SK

(4.3)

4
K = P,Ue

3

where

Le I4
3

il2g =max(p, „iM2), iu'= min( p, „p2),
K iil x(K1 K2) K min(KI K2)

(4.4)

Then the uPPer ( U) and lower (L) bounds on P,s; K,ii are

(S2—
i i)(1—4)

i Hs"=S i+4(S2—
i i) 1+

P1+P
(4.5)

(K2 —K, )(1—P)
K ' '=K, +P(K —K, ) 1+

K1+K
(4 6)

We consider first the bulk modulus. After some alge-
bra one finds

V. CLUSTER EXPANSION

In this section we return to the general case of in-
clusions with a spherically symmetric elastic profile, as
specified in Eq. (2.1). We show that expressions (3.32)
and (3.33), obtained in the mean-field approximation,
may be systematically corrected for correlations in the
positions of the spheres. We can utilize exact cluster ex-
pansions which have been derived for the calculation of
the linear transport properties of suspensions. In these
expansions the mean-field expressions are obtained as a
first approximation.

A cluster expansion for the calculation of the effective
dielectric constant has been developed by Felderhof,
Ford, and Cohen [7]. They have shown that the CM for-
mula (3.4) may be obtained from this expansion by a sum-
mation of the so-called virtual-overlap integrals [5]. The
cluster expansion was applied to elastic suspensions by
Jones and Schinitz [9]. They studied the first two terms
in the density expansion of the effective elastic moduli
[13]. In particular they evaluated the first virtual-overlap
integral. We show here how expressions (3.32) and (3.33)
may be obtained by a summation of a geometric series of
virtual-overlap integrals.

The elastic moduli may be combined into an effective
elastic tensor C' by

C'~=2P, iiP+ 3K,sQ, (5.1)

where P and Q are invariant fourth-rank tensors which
are orthogonal projectors in the space of symmetric
second-rank tensors:

apy5 2(fiayfip5+fi 5fipya) gfiap y5 ~ Qapys Tria y5 '

(5.2)

ff KHS o p1 p2
L

K ff
—KHs for p1 & p2

U
(4.7)

The one-body contribution to C' is given by

C,'„,b,dy
—2[P]PP,P+3[K](tK,Q . (5.3)

L
peff pHS for pl C p2, K1 (K2

U
peff pHS pl +p2 K1+ 2

(4 8)

Thus the mean-field approximation coincides with one of
the Hashin-Shtrikman bounds. The same situation ob-
tains for the effective dielectric constant. The situation is
more complicated for the effective shear modulus. Here
we find

The calculation of the two-body virtual-overlap contribu-
tion C' is based on the theorem

f G(r —R)dR
2'

1 /+6 1P- Q for r (2a, (5.4)
5i i 0+4 i i(4+4)

where the integration is over a sphere of radius 2a and
where the tensor Green's function G(r) is given by

Ho~ever, in mixed cases ~here p, &p2, K, & K2 or p, )p2,
the mean-field approximation lies between the

two Hashin-Shtrikman bounds.
For the special case p1=p2, the upper and lower

G p 5(r)= ,'(a a G ps+a a—G
p

+a@,G...+a@,G...) . (5.5)
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The constant tensor on the right of Eq. (5.4) occurs re-
peatedly in the virtual-overlap integrals. This leads to a
geometric series which is easily summed by use of the
projector properties of the tensors P and Q. The whole
geometric series of virtual overlap integrals may be con-
structed from the first two terms given in Eqs. (5.3) and
(5.6). Summing the series we find the virtual-overlap ap-
proximation

Ce(r= 2PMFP + 3KMFQ (5.7)

where p,z" and K,(r" are given by Eqs. (3.32) and (3.33).
It has been shown by Cichocki and Felderof [8] that al-

ternatively one may formulate a so-called renormalized
cluster expansion. In this formulation large classes of
averaged multiple scattering processes are resummed
effectively. The final result of the expansion may be ex-
pressed in terms of a wave-vector-dependent susceptibili-
ty tensor g(q). From isotropy it follows that the tensor
has the form

X(q)=X (q)qq+X (q)(1 —qq). (5.8)

The effective shear modulus is given by the limiting value

p, tt=p, —limyT(q)iq
q~O

and the effective bulk modulus is given by

K s K) lim[yL(q) —
—,'gT(q)]lq

q~O

(5.9)

(5.10)

The susceptibility tensor is given by the exact expression
[32]

y(q)=n(q~M[I —nR(q)M] '~q)

with the notation

(q I a l
q') = f e 'q'A (r, r')e'q"'d rdr' .

(5.1 1)

(5.12)

The operator M in Eq. (5.11) is the response kernel of a

The argument given by Jones and Schmitz [13] for the
validity of Eq. (5.4) is not quite sufficient, since it applies
only for r at the origin. However, the integral on the left
is constant throughout the sphere [30,31]. The two-body
virtual-overlap contribution is found to be [13]

Il ]blip+ [ ](beff —4 4+6 2 2 0 2 2

5 +4 +4
(5.6)

single inclusion, defined in Eq. (2.15). The inclusion may
be taken to be centered at the origin. The recurrence
operator R(q) has been expressed as a cluster expansion

R(q)= g R, (q),
5 —2

(5.13)

where a term R, (q) involves an s-body elastic problem
and integration over s-body correlation functions. The
recurrence operator may be written as a sum of a virtual-
overlap contribution and a nonoverlap contribution [33]

R(q)=R„(q)+R„,(q) . (5.14)

VI. DISCUSSION

We have found mean-field expressions for the effective
elastic moduli of a suspension of spheres, with a spheri-
cally symmetric elastic profile, that are embedded in a
uniform and isotropic matrix. We have indicated how
the correction terms may be evaluated by relating the cal-
culation to existing cluster expansions for the effective
linear properties of suspensions. It will be of interest to
study the correction terms in analogy to the theory of
dielectric s.

The theory presented here may be extended in several
directions. For example, one might consider oriented el-
lipsoids or a random distribution of parallel cylinders.
The theory applies directly to coated spheres. It will be
of interest to study the effective elastic properties of such
systems.
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We have shown that the mean-field expressions (3.32) and
(3.33) result if the recurrence operator R(q) is approxi-
mated by its overlap part R,„(q). The analysis follows
the lines given earlier for the case of effective viscosity
[34]. The details will be published elsewhere.

The geometric series structure is built into the expres-
sion (5.11). Hence, this expression is the most suitable
starting point for a calculation of correction terms to the
mean-field approximation. Such a calculation involves
the solution of the two-sphere problem, the three-sphere
problem, etc. , and its average over the appropriate corre-
lation functions.
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