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Pattern form and homoclinic structure in Zakharov equations
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The relations between the homoclinic structure and spatial coherent pattern in Zakharov equations

(ZE's) are discussed. Our results present Kolmogorov-Arnold-Moser curves and homoclinic crossing for
ZE's, which exhibit the property of a near-integrable system, and Hamiltonian chaos in the ZE's is re-

vealed.
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(co k)(co k) =2E—k— (2)

where Eo is an amplitude of the homogeneous Langmuir
field, k is a wave number of the disturbance, and the time
dependence is proportional to exp( i cot) If k—lies in. the
range

0&k «2E, =k, —

the system will evolve from a spatially homogeneous state

It is well known that Zakharov equations (ZE's) are the
most popular model to describe strong Langmuir tur-
bulence in a plasma, a subject which has been studied ex-
tensively. But until now, the study for the complex be-
havior of the ZE's is mainly limited in the dissipation
case because the study of Hamiltonian chaos is difficult,
and the discussion of the integrable problem of the ZE's
is subtle. In our previous work [1], it is shown that the
modulation intabilities belong to a class of periodic solu-
tions of the ZE's. The interest in such periodic solutions
is connected with the study of chaos for the ZE's that de-
scribe homoclinic structure (HS) in pattern dynamics.
This is an active research area recently [2].

HS in the nonlinear Schrodinger equation and the
sine-Gordon equation has been studied in recent years
[2,3]. The ZE's are more complex than they are. In or-
der to understand the origin of strong Langmuir tur-
bulence, it is very important to study the HS of the ZE's.
In this Brief Report, we are investigating the HS related
to a typical pattern of the ZE's. Our results present
Kolmogorov-Arnold-Moser (KAM) curves and homo-
clinic crossings that indicate the existence of Hamiltonian
chaos; this is a well-known phenomenon in a near-
integrable finite-degree-freedom system [4].

We consider the ZE's in the one-dimensional case [5]:

iB,E+8 E =nE,

a'n —8 n =a'~E)

where E(x, t) is a slowly varying envelope of the high-
frequency electric field and n(x, t) is a low-frequency
quasineutral density perturbation. In the linearized form,
Eqs. (1) lead to the following dispersion relation:

B,E = —koE,

8 n= —kn. (5)

The analyses of the stability of the FP's for Eqs. (1) show
that 0 is a center, and Q is the saddle and center in their
own subspace. Combining the above facts and the
periodic solutions of Eqs. (1), we believe that the HS ex-
ists in the ZE's. In order to study it we do a local
analysis for the FP Q in detail. We divide the complex
variable E of Eqs. (1) into real and imaginary components

E =v+im .

Now we rewrite Eqs. (1) as

B,v = —0~u +nu,
8u=B v nv

B,n =m,
),mt=8 +n(t}u+U ) .

Combining Eqs. (5), we have the linearized form in a
neighborhood U of Q:

to a localized structure, which is known as modulation
instability [6].

Equations (1) have at least two kinds of fixed points
(FP's)

(E,n)=O

the (0,0) FP, and

(E,n)=Q

the (EO, O) FP, where Eo is a real constant. The stability
of these FP's can be examined by the linearized Eqs. (1)
and solving the eigenvalue equation. Here we consider a
simple case that only one wave number ko in the system
satisfies Eq. (3), say, according to the condition

ko=—0.95k, .

In this case, around the FP's, E and n are eigenfunctions
of a spatial operator B„which has the form
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w=Df (Q)w, (7)

where Df (Q) is the Jacobian matrix at Q which has the
form

p
p=i3,p, m =B,n,

0
—k 0

ko 0 0

0 —E0 0 and

o o o
—2E,k,' 0 —k,' 0

0 1 0 0

k0 0 2E0k0 0

and
00

—k0 0

0
—k 0 0

n

the eigenvalue equation ~~Df (Q) —
AI~~ =0 gives eigenval-

ues

=
[ Ik&[(1 k2)&+8E2]&~2 (k2+I)] &~2=/

X0
(8)

A3=iI Iko[(1 —ko) +8EO]' +(ko+I)]':icoo—,

k4 — l C00,

where A, o and coo are real if Eq. (4) is satisfied. In our case,
the solution of Eq. (7) can be written as follows:

Apt Apt i cl)pt I Captf=Ce ' f&+C2e f2+C3e f3+C4e f4,

The local structure of Eq. (10) is qualitatively similar to
Eqs. (6). We divide the subspace spanned by the eigen-
vectors into two classes, the saddle subspace

Es =span(y„y2)

and the center subspace,

Ec = span(yz, y4 ),
where y&, y2 from Eq. (10) are the eigenvectors whose ei-

genvalues have negative and positive real parts and y3,y4
from Eq. (10) are those whose eigenvalues have zero real
parts. We will put global information of the system into
those subspaces in the following manner:

yj
—

s&,p+s~20, p+sj 3n +sj48, n

for j =1,2, 3,4 where s, are the elements of matrix S
which satisfies

Ti 0

where C;, i =1,2, 3,4 are arbitrary constants, and f0 are
eigenvectors which have the form

STS

4.0 .
-

0 T2

0,5

k0

—(ko+A, ;)
E0

—
2I,;(ko+A, ; )

for i —1,2, 3,4 .

2.0

8 o.o-
Ul
&—20-

—4.0—4.0 —2.0 0.0 2.0 4.0 S.O
eigenvector y,

0
8 OO-

t10 1.0 2.0

eigenvector y,

3.0

O'=Ty (10)

where

Obviously the FP Q is the saddle and the center in the
(f~,f2 ) and (f3,f3 ) respective subspace.

A very important thing is that the periodic solutions
for the ZE's, which are known as the Fermi-Pasta-Ulam
(FPU) recurrence phenomena [7], are the phase shifts [1].
Then the HS exists only in phase space (p, dIp, n, r)In),
where p=(ReE) +(ImE), rather than (ReE, ImE,
n, dIn). Next, we construct a phase space which is
beneficial to investigate HS. Substituting E by v'pe'~ we
have another linear form at FP Q for the ZE's

(c)
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FIG. 1. Cl = 1.0 C2:1.0. (a) Phase trajectory in the saddle
subspace. Notice this orbit forms the KAM curves. (b) Phase
trajectory in the center subspace. Motion in this subspace is ex-
cited by the motion in the saddle subspace. (c) Time evolution
of the norm (y, +y~ ) in the saddle subspace.
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FIG. 2. The same as in Fig. 1, but the adjustable constants
are Ci =1.0, Ci = —1.0.

where T', and T2 are the 2X2 matrix, respectively. Nu-
merical solution of Eqs. (1} was obtained with periodic
boundary conditions. The spatial length L is chosen in
such a way that koL =2m, and the number of grids is 64.
The initial values are given as

P=Po+(C, f, +C2f2)Eo cos(kox)/500. 0,
where

ReE
ImE

Eo

0
Eo =2.0;

m, 0

f, and fz are given by Eq. (9} and C, , C2 are adjustable
constants. The dynamic variables are recorded according
to Eq. (11) at x =0. Our initial conditions ensure that
phase trajectories will locally lie in saddle subspace (SS)
Ez. The long-time evolution of Eqs. (1) is obtained with

C, and C2 given in the following manner.
Case (i). C& = 1.0, C2 = 1.0, the long-time evolution of

the system is displayed in SS Ez and center subspace (CS)
Ec, which are shown in Figs. 1(a) and l(b), respectively.

Case (ii). C, =1.0, C2= —1.0, the same long-time evo-

lution is shown in Fig. 2. Summing up Figs. 1 and 2, we

see that there are two kinds of recurrence motions, one-

loop and double-loop orbits in SS Ez. This property is

the same as particle motion in a double-well potential
with diferent level sets. Clearly, this behavior exhibits
the HS in the ZE's. Around the FP Q, the SS Es and CS

E& are invariant subspaces. Beyond local analysis, it is

not true. Figures 1(b) and 2(b) show that there is a low

level excitation in CS E& because the motion in SS E&
and in CS Ec inhuence each other. This coupling typi-

cally leads to the creation of "chaotic" orbits for the

I i I i II 50,0 1tm 1%0 I zg
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FIG. 3. C& = 1.0 C2 = —0.1. (a) Phase trajectory in the sad-
dle subspace. Notice irregular homoclinic crossings. (b) Phase
trajectory in center subspace. (c) Time evolution of the norm

(y&+y2) in the saddle subspace. Notice the irregular period
corresponds to homoclinic crossings.

homoclinic orbits [8]. This is why the ZE's are the near-
integrable system. The phase trajectories in Figs. 1(a)
and 2(a) are not broken up by the addition of the cou-
pling. These orbits form the KAM curves in the SS E&
the same as a finite dimensional system [4].

Now we discuss the case that the orbit is closing to the
homoclinic orbit.

Case (iii}. C& = 1.0, C2 = —0. 1, the long-time evolution
is displayed in Fig. 3. Comparing Fig. 3(c) to 2(c) and
1(c), it is shown that the time period of orbit in case (iii} is
longer than that in cases (i) and (ii). It is easy to under-
stand because the orbits in case (iii) are closing homoclin-
ic orbits whose periods are infinite in relation to cases (i)
and (ii). Under the infiuence of motion in CS Ec Fig. 3(a)
shows that the motion in case (iii) is complex in SS Ez
The evolution of the system can now fall "on both sides"
of the saddle point —one route corresponding to a rota-
tion and the other to a libration. The system must again
and again follow one route or the other. It leads to un-
determined consequences. This feature which is known
as homoclinic crossings is presented in Fig. 3(c). That in-
dicates the existence of a Hamiltonian chaos for the ZE's.

The FPU recurrence is a very interesting phenomenon
that exists in an integrable system, such as nonlinear
Schrodinger equation, the Kerteweg —de Vries equation,
etc. [9]. Recently, Akhmedive et al. studied the FPU
problem in a near-integrable system [10]. They conclude
that a near-integrable system can lead to pseudore-
currence rather than exact recurrence. This view is not
quite right because there exist KAM curves. In our
problem cases (i) and (ii) lead to an exact recurrence and
case (iii) leads to pseudorecurrence. A more detailed in-
vestigation will be presented later.

In conclusion, although there are no inertial manifolds
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to reduce the dimension in the Hamiltonian system,
coherent spatial structure can lead to the degeneracy of
degrees of freedom of the system. Some properties of
finite dimensional systems, such as KAM curves and
homoclinic crossings, are discovered in the ZE's as they
relate to typical pattern formation. FPU recurrence in a

near-integrable system is also discussed. That Hamiltoni-
an chaos exists in the ZE's is very interesting for a better
understanding of Langmuir turbulence.
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