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Flory approximants and self-avoiding walks on critical percolation clusters
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Using the results of a recent Monte Carlo simulation and analytical studies on self-avoiding walks
(SAW’s) on critical percolation clusters (CPC’s), the various Flory-type formulas for SAW’s on fractals
and disordered media are examined. The probability density formulas for a random walker on the frac-
tals that are needed to derive the various Flory approximants are also discussed. We also try to resolve
some controversial problems in the recent studies on SAW’s on CPC’s from a most plausible Flory ap-

proximant.
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I. INTRODUCTION

Even though many numerical and analytical studies
[1-15] on self-avoiding walks (SAW’s) on the randomly
diluted lattice at percolation threshold (p =p.) or on the
lattice near p, have recently been made the controversies
surrounding this problem are still far from resolution. To
be specific let us discuss numerical controversies first.
The main interest in these studies is the critical exponent
v', which is defined through the relation

(R?)y=N%, (1)

where {(R?), is the quenched average of mean-square
end-to-end distances of N-step SAW’s on percolation
clusters at the percolation threshold (p =p,) or when the
correlation length of percolation §‘12, >>(R?2)y. The nu-
merical simulation study on v' done by Kremer [1]
claimed that in three dimensions the critical index v' of
SAW’s on the percolation clusters at p, is close to 2 and
is greater than that on nonrandom lattices. But the re-
cent Monte Carlo simulation [2] on two and three-
dimensional lattices suggested that v' of SAW’s is very
close to the critical index v of SAW’s on the lattice with
no disorder. (From now on v stands for the critical index
for SAW’s on the lattice with no disorder, whereas v’
stands for the critical index for SAW’s on the percolation
clusters.) In contrast Lam [3] argued from his exact
enumeration study of SAW’s on the two-dimensional
square lattice that v'~0.81, which is quite larger than
v=23. But Lee and Nakanishi [2,4] recently have rebutted
both Kremer’s work and Lam’s work on the ground that
there were some mistakes in both numerical works and
have also argued that v'=~v in two and three dimensions.
We think the argument by Lee and Nakanishi [2,4] is
quite correct and we believe that the numerical value of
V' is very close to v. Subsequent discussions are therefore
based on v'=wv is the legitimate numerical clue to under-
standing the critical behavior of SAW’s on percolation
clusters.

One traditional way to calculate numerical values for
V' is to use the Flory-type approximant for SAW’s. Prior
to applying the Flory formulas to SAW’s on disordered
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structure, let us discuss some physics in the Flory formu-
la. On the d-dimensional lattices with no disorder, the
Flory formula [16] for v for d <4 is

3

FEER ?

which is an excellent estimate for v. To derive the formu-
la for SAW’s on fractals or the disordered structure, one
should write the free energy F of N-step SAW’s as the
sum of energetic terms and entropic terms [17] as
2
F=a Nd
R/
where R is the distance that a SAW reaches after N steps,
d 5 is the fractal dimension of the fractal, and P(R,N) is
the probability of a random walker to reach a distance R
after N steps on the fractal. The function P(R,N) has
been the subject of several recent publications [17-19].
In general P(R,N) for large R is an exponential function
as

+[—InP(R,N)], (3)

P(R,N)~exp[—b(R™/N)?] , @)

where d,, is the fractal dimension of random walks
(RW’s) on the fractal. In recent literature [17-20],
several different forms for a are suggested. Minimization
of F in Eq. (3) with respect to R gives the modified Flory
formula for SAW’s on the fractals. Therefore, for each
different a there corresponds a Flory formula. To com-
pare recent numerical data of SAW’s on the percolation-
cluster fractal to the Flory formulas with various types of
a is thus one way to determine which form for P(R,N) is
the most suitable for random walks on the percolation-
cluster fractal. Even though this kind of method was at-
tempted by Aharony and Harris [17], it was only done in
comparison to the data of Kremer [1], without noticing
the recent Monte Carlo data [2] and the data from the ex-
act enumeration techniques [3,4]. It is therefore the first
motivation of this paper to compare the various Flory
formulas to the recent numerical data for determining
which form of « is the most plausible, as suggested by
Aharony and Harris in Ref. [17] with the statement that
“It would be interesting to compare our new approxi-
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new approximant with much more accurate Monte Carlo
or exact enumeration calculations.”

Another motivation for considering the numerical ap-
proximants to SAW’s on disordered structure is how one
can interpret physically and analytically the coincidence
of v'=w as in our previous discussion of numerical stud-
ies about v'. The direct interpretation, which we think is
rather naive, is that SAW’s on the percolation clusters at
p=p, belong to the same universality class as that of
SAW’s on nonrandom lattices. Another possibility is
that the universality class of SAW’s at p =p, is different
from that of SAW’s on nonrandom lattices and thus
v'#v, even though v'=v. In terms of renormalization-
group (RG) language, the fixed point on the parameter
plane of p and the fugacity K of SAW’s that governs the
critical property of SAW’s at p =p, is different from that
of SAW’s at p =1, as in the several RG studies [8-11],
but an eigenvalue of the linearized RG transforms around
the former fixed point and is quite close to the corre-
sponding eigenvalue around the latter fixed point. If this
picture is correct, there should be a crossover scaling
[14,15] in SAW’s that arises as the number of the steps of
SAW’s increases near the percolation threshold. SAW’s
on the percolation clusters at p=p, or where
§I2, >>(R? )N is in the fractal regime [14,15], in which the
behavior of SAW’s should be the same as that on the
deterministic fractal [20,21]. One of our motivations in
this paper is to show numerically that the second picture
is more possible than the first one. Since the percolation
clusters (PC’s) in the fractal regime are the fractals
[14,15] in the statistical sense, the exact analytic calcula-
tions of the properties of SAW’s on PC’s in the fractal re-
gime is nearly impossible in two and three dimensions.
Thus we want to calculate the critical index v’ in the
dimensionality between 2 and 6 by the modified Flory ap-
proximants. As we shall see, the suitable choice of a
modified Flory formula with the numerical data for
several kinds of the fractal dimensions of the percolation
clusters reasonably reproduces the numerical data [2] and
this fact, we believe, is the numerical evidence for the
second interpretation. In this sense this work is a de-
tailed but concise addendum to our previous studies
[14,15].

We believe that to find a most plausible Flory formula
for SAW’s on the percolation fractal by comparing the
formula to the recent numerical data is not only to give
us the most plausible form for P(R,N) for RW’s on the
percolation clusters but to give us a clue to resolving a re-
cent controversy for SAW’s on the critical percolation
clusters.

II. FLORY APPROXIMANTS
The first but rather crude Flory formula for v' for
SAW’s on the fractal was suggested by Kremer [1] as

V= 3
dr+2

(5)

which is from the simple replacement of d in Eq. (2) by
d,;. More sophisticated Flory formulas have been ob-
tained from the minimization of Eq. (3) to R with Eq. (4),
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which yields

V,:__2+a
d;+ad,

(6)

In Eq. (6) the choice of a is related to the probability of
P(N,R) of the random walks on the fractal. So far there
are several suggestions for «. Rammal, Toulouse, and

Vannimenus [20], as well as O’Shaughnessy and Procac-
cia [18], guessed that

a=1. (7)

Havlin and co-workers [19] suggested that

a=1/d,—1) . (8)
Aharony and Harris [17] proposed that
_ dmin ©)
“ dw _dmin ’

where d; is the fractal dimension of the minimum path
on a fractal. If one uses three forms for « in Egs. (7), (8),
and (9), we get three corresponding Flory-type formulas
for v'.

Another kind of Flory-type formula is suggested by
Alexandrowicz [22] as

L 4+d,
v = s
4d,

(10)

which is from the argument of a dimer formation of two
SAW’s. Before applying these formulas to SAW’s on the
critical percolation clusters (CPC’s), there is a point to
clarify. If one believes that the SAW’s can only move on
the backbone of CPCs (otherwise they would be trapped
at the dangling ends of CPC’s [14,15,17,20], d,, and df
for CPC’s should be replaced by the corresponding dp,
and dl‘;f for the backbone of CPC’s. In contrast, if one
believes that there can statistically exist very long dan-
gling ends so that they can carry reasonably long SAW’s,
one should use the formulas with the dimensions of
CPC’s, not those of backbones. In this paper for a given
formula we have used both the formula with fractal di-
mensions of CPC itself and the formula with fractal di-
mensions of backbone of CPC to calculate v' between two
and six dimensions, because we know that the upper criti-
cal dimension of percolation is 6. For example, to calcu-
late exponent v’ by Eq. (6), with Eq. (9) as the form for a,
we have used both formulas with the fractal dimensions
of CPC itself as

dmin

,_ 2+« o=
dw—dmin

~d,;+ad,

v

, (11)

and one with the fractal dimensions of the backbone of
CPC as

. 2tag
dBf+aBdBw

’

v

. dmin (12)
*B= dBw _dmin )

A more general version of Eq. (12) was recently derived
by Roy and Blumen [23] based on the geometrical struc-
ture of the percolation-cluster fractal and the property of
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SAW’s. The mean-field version of Roy and Blumen’s for-
mula [23] is exactly the same as Eq. (12), which is also de-
rived by Bouchaud and Georges [24] by a different
method.

Since there are not enough data directly for dp,, we
have also used the relation

dp,=dpst+&, (13)
or
dp,=dp;+2+pu—d, (14)

where {p is the critical index for the resistance of the
random- resistor network (RRN) on CPC’s and pu is the
conductivity exponent of the RRN. As you can see from
Table I, the existing data for d, d,,, d;,, dpy, and dp,
in the dimensions between 2=<d <6 are relatively scat-
tered.

The results for v' calculated by the various Flory-type
formulas are displayed in Table II. when one considers
SAW’s on the diluted Cayley tree v' =1, because on the
Cayley tree there is no loop [14,17]. The upper critical
dimension of percolation is 6 and the results on the Cay-
ley tree should be the same as that of mean-field theory,
v'=1 for d 26. Among the possible five Flory-type for-
mulas considered in this paper, those that cannot predict
v'=1 for d =6 have been excluded in Table II. The for-
mulas displayed in Table II and their results for v' are
only those that predict v'=1 for d =6.

III. DISCUSSION AND CONCLUSION

In Table II, we have not displayed the results that use
Eq. (8) for a and by its corresponding backbone formula

2+ay’
dBf+ag)dBw

’

v laY'=1/(dg,— 1], (15)

not only because they cannot reproduce the result that
v'=1 for d=6, but because they predict quite larger
values for v' for d =2 and 3 than the simulation results
[2]. As one can see in Table II, it is quite surprising that
in d =2 a few Flory-type formulas that use several kinds
of fractal dimensions of CPC’s in complex ways predict
that v’ is in the range between 0.75-0.77, which is very
close to 0.75, the value of v for SAW’s on two-
dimensional nonrandom lattices. In contrast, for
3=d =5, v’s are larger than corresponding values of v on
the nonrandom lattices. In the simulation by Lee and
Nakanishi [2], the data for v' in d =3 with the step num-
ber N around 80 are about 0.62, which is larger than 0.59,
i.e., the value of v for SAW’s on a nonrandom medium,
and the data for v' are still decreasing. There is still a
possibility that v'>v. Moreover, for d =4 and 5, the
reasonable Flory-type formulas do predict v > 1. There-
fore, if numerically v’ is very close to v in d =2 and 3, we
believe that this is not because the universality class of
SAW'’s on the percolation clusters at p =p, is the same as
that of SAW’s on the nonrandom lattices, but because it
is coincidental, as explained in the Introduction. There
should therefore be the same crossover behavior as sug-
gested in Ref. [15]. So we suggest the numerical tests on
SAW’s on CPC’s in d =4 and 5, because whether v' in
d =4 and 5 is equal to L or not is the true test of whether
SAW’s on CPC’s belong to the same universality class as
that of SAW’s on nonrandom lattices.

As one can see from Table II, the best Flory-type for-
mula for SAW’s on CPC’s is the formula (12) with Eq. (9)
as the form for a that uses the backbone fractal dimen-
sions, and we can say that the best formula for a in Eq.
(4) for P(R,N) of RW’s on the disordered fractal is

_ dmin
* dw_dmin ’ (16)

TABLE I: Fractal dimensions and critical exponents of percolation clusters.

d=2 d=3 d=4 d=5 d>6
d, 91/49 2.51+0.02° 3.05+0.05° 3.69+0.02° 4
3.21+0.07° 3.54¢
dys 1.62+0.02¢ 1.74+0.04¢ 1.940.2° 1.9340.02° 2
1.83¢ 1.94¢
¢ 0.99¢ 1.314 1.59¢ 2
M 0.98+0.11° 2.3+0.2° 3.56 4.85° 2
0.95+0.05" 3.52° 4.77° 6
d in 1.15+0.03° 1.38+0.2° 1.6140.05 1.69+0.02° 2
1.13¢ 1.333° 1.47+0.11°
. 2.62+0.038 3.14¢ 3.53¢ 3.8+0.2" 4
2.57+0.03" 2.84+0.24" 3.4+0.2" 3.7+0.2"

2Cayley tree results (see Ref. [17]).
"Reference [25].
‘Reference [26].
dReference [17].
‘Reference [27].
fReference [28].

gFrom Eq. (13) and numerical data for § in this table.
"From Eq. (14) and numerical data for y in this table.
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TABLE II: The SAW exponent v' on percolation clusters by various Flory-type formulas. Reference numbers (within table) refer to
the reference in which the formula has been derived. Reference numbers in footnotes refer to the work in which the data have been

obtained by the random simulation or by the exact enumeration.

d=2 d=3 d=4 d=>5 d=>6
3
= Ref. 1 0.77 0.66 0.57-0.59 0.53-0.54 1
V=g g Ref !
v’:$ [Ref. 20] 0.71-0.72 0.61-0.65 0.55-0.56 0.53-0.54 1
dBf+dBu' -
(a=1)
2+ap
v'=————— [Eq. (12)] 0.75-0.77 0.64-0.66 0.57-0.59 0.52-0.58 1
dR/‘+aRdBu' -
@ dﬁu' _dmm
4+d,
v':—‘m;* [Ref. 22] 0.77-0.78 0.64-0.66 0.56-0.58 0.52-0.53 %
;
V' 0.75-0.76° 0.61-0.62°
0.81+0.03° 0.65¢
"Reference [2].
"Reference [3].
“Reference [1].
Harris and Aharony [17] have argued that a in Eq. (9) is d min
Harr o ” — = —<a<1. (18)
qual to the upper bound of true a, which is from aver d,—d_.

ages over typical configurations; while o in Eq. (8) is
equal to the lower bound when one averages over all pos-
sible configurations, including very rare ones. In con-
trast, simulation data [2] for v' lie between v’ by Eq. (12)
and v' by the Flory-type formula [20]

, 3

=———(a=1).
dny tdn, (a=1) (17)

V

From these results we can conclude that as far as SAW’s
on CPC’s are concerned, a satisfies

The exact results of v' of SAW’s on the generalized 2d
gaskets [21] are in between v' by Eq. (12) and v' by Eq.
(17) and the SAW’s on 2d gaskets also support the in-
equality (18). As far as SAW’s on the fractal are con-
cerned, we believe that the true a should satisfy the in-
equality (18).
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