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Multilayer adsorption with increasing layer coverage
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Numerical Monte Carlo studies and analytical considerations are reported, indicating that in certain
models of multilayer irreversible surface adsorption the density may actually increase away from the
substrate. This unexpected conclusion is contrary to simple intuitive considerations in the formation of
amorphous deposits. The behavior of the density is found to obey a universal power law. Some time-

dependent properties are also examined.
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Recently, several experiments on colloidal-particle
adhesion at surfaces have reported formation of multilay-
er deposits [1-3] in essentially irreversible deposition
processes from unstable or marginally stable colloid sus-
pensions. Comprehensive theoretical studies of such pro-
cesses are needed both to explore the scope of the phe-
nomena involved and for applications in experimental
data interpretations, which thus far were limited [4] to
simple mean-field (rate-equation) theories. Since colloidal
experiments usually involve not too many layers (up to
about 30), the details of the transport mechanism of par-
ticles to the surface are less important than in studies of
asymptotic multiple-layer deposits, e.g., in ballistic depo-
sition or diffusion-limited aggregation [5]. Thus the ap-
propriate deposition models may be formulated [6,7] to
eliminate or suppress the screening of lower layers by
particles adhering in higher layers, emphasizing those
correlation and dynamics effects that result from the
“jamming” or blocking due to particle size and irreversi-
bility of the desposit formation.

Generally, deposition dominated by jamming effects
will result in an amorphous deposit so that the notion of
“layers” in a true continuum deposition can be employed
only as an approximate concept. However, simplified /az-
tice models can reveal many general aspects of the deposi-
tion processes as well as new unexpected features. One
such result is presented in this work. Indeed, a common
intuition in the formation of amorphous deposits is that
due to gaps in lower layers, the higher-layer coverage
(i.e., the deposit density) will be decreasing with the layer
number (distance from the substrate). Our results suggest
that in some deposition models the effects of the gaps
may just be reversed: the coverage (deposit density) actu-
ally increases away from the wall. This unexpected be-
havior is first demonstrated numerally, following the
definition of the model. The convergence to the limiting
coverage is found to obey a universal power law. Phe-
nomenological argument is then given supporting the as-
sertion that the observed effect of coverage increasing
with the layer number is indeed due to the presence of
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gaps in lower layers. A monolayer model simulating the
gap effect is formulated and studied numerically.

Lattice models with screening eliminated by disallow-
ing overhangs were studied recently [6] by numerical and
analytical methods. The coverage was found to decrease
with the layer number both in two dimensions (2D) and
in 1D, and its power-law convergence to the limiting
value far from the wall was explained by random-walk ar-
guments. The model studied here is an extension of the
1D model with overhangs allowed [7], but only over gaps
that are small enough so that screening is eliminated.
Thus, we consider deposition of k-mers (i.e., objects of
length k) on a 1D linear substrate that is modeled by a
lattice of spacing 1.

The deposition attempts are distributed uniformly over
the lattice sites, with a certain rate per site that will be
absorbed in the definition of the time variable T. The
group of k lattice sites chosen in each deposition attempt
is examined to find the lowest layer n in which all these k
sites are empty. If n =1, then the k-mer is “deposited.”
However, for layers n >1 the deposition is successful
only if no gaps of size k or larger are covered (this restric-
tion is imposed in order to suppress screening [7]). Thus,
the deposition is always allowed if all the “supporting” k
sites in the n —1 layer are filled or have only small inter-
nal gaps. However, if the leftmost site or the rightmost
site, or both of them are parts of gaps of length k or
larger, extending of course beyond the k group under
consideration in layer n —1, then the deposition attempt
is rejected. For the case of dimers kK =2 the rule is fur-
ther illustrated in Fig. 1.

Our numerical simulations were carried out for
k =2,3,4,5,10. Lattice sizes were 2000, with periodic
boundary conditions. The results were averaged over at
least 2000 different Monte Carlo runs. We measured the
time dependence of the coverage 6, (T) (fraction of occu-
pied sites) in several layers n, up to T =80, where the
time scale is defined to have one deposition attempt per
lattice site per unit time. The behavior of the “jamming”
coverages was then analyzed for layers n <55 since these
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FIG. 1. (a) Configuration of layers n and (n — 1) with shaded
areas showing regions to the right covered by dimers (with pos-
sibly size-1 gaps) while the regions to the left are empty; (b)
deposition of a dimer (open rectangle) in layer n that is immedi-
ately possible in the configuration (a); (c) deposition attempt of a
dimer in layer n that can be accepted only after a gap was de-
creased to size 1 (or zero, not shown here) by an earlier deposi-
tion of a dimer in layer n — 1.

layers were clearly ‘“‘saturated” (up to statistical noise in
the data) at times T =280.

Let us, however, first comment on the time dependence
and, specifically, compare numerical results for Kk =2 and
layers n =1,2 with other studies available in the litera-
ture. These results are presented in Fig. 2. For layer 1,
the deposition in our model is not affected by other layers
and is therefore identical to the monolayer deposition

FIG. 2. Time dependence of the coverage in layers 1 and 2
for the dimer deposition. Monte Carlo results: squares and tri-
angles for layers 1 and 2, respectively. Exact calculation of Ref.
[8] for layer 1, solid line. Approximation of Ref. [7] for layer 2,
dashed line. Note that the dashed line approaches the solid line
from below for T'% 4.
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case for which there is an exact solution [8]. Indeed, the
numerical data follow the exact curve quite closely.
However, the approximate self-consistent approach for
layer 2, see Ref. [7], provides at best a semiqualitative
description of the coverage, typical of self-consistent
theories. In fact, both the short-time behavior and the
large-time asymptotic coverage are not reproduced
correctly by the self-consistent approximation [7].
Qualitatively, since the higher layers have to build up
on top of the lower layers, the coverage at short times fol-
lows the conventional intuition and decreases with layer
number. For example, for k =2 one can establish that

0,(T)=2T"/n! for T <<1, (1)

which is indeed confirmed by the data. However, for the
particular deposition rule considered here the coverage in
layer n eventually exceeds that in layer n —1 at larger
times. For layer 2 this is shown in Fig. 2.

This unexpected behavior was found numerically for
all layers n <55 and for all k values studied. The jam-
ming coverages are shown in Fig. 3. We employed the
sequence-analysis methods described in Ref. [9] with
some modifications appropriate for Monte Carlo data
with statistical noise, which amounted to averaging over
several data points for consecutive n before applying the
sequence-analysis techniques. We found clear evidence of
the power-law behavior

Gn(oo)":éw(oo)—%. (2)
n

All the quantities in (2) depend implicitly on k. However,
the power ¢ was found to be universal and approximately
near 1 for all k studied. The sequence analyses, not de-
tailed here, suggest the range
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FIG. 3. Jamming coverages in layers n =22,23, ..., 55, plot-

ted vs n ~173.
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FIG. 4. Time dependence of the coverage for the monolayer
deposition of dimers with initial blocking density p=0.5, for
several “sleeping times” 7,=1.0, 1.5, 2.0, 3.0, and 5.0. Note
that the coverages follow the same curve for times 0T =T;
and have discontinuous slope at 7 =T,. The inset enlarges the
region in which the coverage curves intersect. (Note that the
data in this figure are numerically calculated. Continuous
curves were plotted instead of points for clarity.)

$=0.30+0.15 , 3)

based on the available data for n <55.

While we cannot explain the value of the exponent ¢ or
substantiate the validity of (2) beyond numerical evi-
dence, we can offer an argument for the unexpected in-
crease in the higher-layer coverage at jamming. Indeed,
when large enough covered (by k-mers or gaps of sizes up
to k —1) regions have formed in layer n —1, then the
deposition with overhangs beyond those regions will be
delayed, as illustrated in Fig. 1. Thus, there will be some
preference for higher density in layer n, especially near
the ends of the regions occupied in layer n —1; see Fig. 1.

To test the above suggestion, we considered the follow-
ing monolayer dimer-deposition model. Let L denote the
lattice size (L =2000 in simulations). We select random-
ly pL /2 dimers and make the pL sites thus selected un-
available for deposition for times 0 =7 =T;. Introduc-
tion of such a “sleeping time” T for fraction p of lattice
sites (grouped in dimers) in monolayer deposition sup-
posedly will model the effect of disallowed overhangs
over gaps of size larger than 1 in the lower layer, n —1,
on the multilayer deposition in layer n, provided we
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FIG. 5. Jamming coverages for several blocking densities,
plotted vs T, '/3.

loosely identify T < n.

Indeed, examination of our multilayer data suggests
that times needed to build up the nth-layer coverage
grow linearly with n. For instance, times T’ ,, defined via

(T, ,,)=16,(0) 4)
grow according to
T, =mn, (5)

where the coefficient 7 is of order 1 and gradually de-
creases with k: our data suggest 7~0.88, 0.81, 0.77, 0.74,
0.65 for k =2,3,4,5,10, respectively.

After time T, all the blocked sites are released and can
be occupied in subsequent deposition attempts. For the
blocked-site density p=0.5, the resulting monolayer-
model coverage is shown in Fig. 4 for several sleeping
times T,. In Fig. 5, we plot the jamming coverages for
several values of p as functions of the sleeping time T;.
Guided by the anticipated approximate correspondence
T, < n described earlier and by relation (2), we plotted the
data versus T, !/3; compare Fig. 3. Indeed, the data
roughly follow straight lines although no careful analysis
of the T, dependence was attempted due to the limited
number of data points collected as compared to the mul-
tilayer case.

In summary, our study illustrates an unexpected prop-
erty of voids in lower layers promoting higher-density-
deposit formation in higher layers. A monolayer model
with “sleeping sites” confirms our conjecture that this
effect is due to the delay in deposition with gaps on top of
the boundaries of covered regions in lower layers.

This research was partially supported by the DFG-
Sonderforschungsbereich 262/D1 (Germany) and by the
Science and Engineering Research Council (U.K.).
V. P. also wishes to acknowledge the hospitality of Pro-
fessor K. Binder at the University of Mainz and support
from The Royal Society for his sabbatical stay at Oxford.




6102 BRIEF REPORTS 45

*Permanent address: Department of Physics, Clarkson
University, Potsdam, NY 13699-5820.

[1] N. Ryde, N. Kallay, and E. Matijevié¢, J. Chem. Soc. Fara-
day Trans. 87, 1377 (1991).

[2] M. F. Haque, N. Kallay, V. Privman, and E. Matijevi¢, J.
Adhes. Sci. Technol. 4, 205 (1990); V. Privman, N. Kal-
lay, M. F. Haque, and E. Matijevi¢, ibid. 4, 221 (1990).

[3] M. Elimelech and C. R. O’Melia, Environ. Sci. Technol.
24, 1528 (1990); J. E. Tobiason and C. R. O’Melia, J. Am.
Water Works Assoc. 80, 54 (1988); M. T. Habibian and C.
R. O’Melia, J. Environ. Eng. Div. Am. Soc. Civ. Eng. 101,
567 (1975); K. M. Yao, M. T. Habibian, and C. R.
O’Melia, Environ. Sci. Technol. 5, 1105 (1971).

[4] V. Privman, H. L. Frisch, N. Ryde, and E. Matijevi¢, J.

Chem. Soc. Faraday Trans. 87, 1371 (1991).

[S] F. Family and T. Vicsek, J. Phys. A 18, L75 (1985); P.
Meakin and F. Family, Phys. Rev. A 34, 2558 (1986).

[6] P. Nielaba, V. Privman, and J.-S. Wang, J. Phys. A 23,
L1187 (1991); R. Hilfer and J.-S. Wang, ibid. 24, L389
(1991).

[7]M. C. Bartelt and V. Privman, J. Chem. Phys. 93, 6820
(1990).

[8]J. J. Gonzalez, P. C. Hemmer, and J. S. Hdye, Chem.
Phys. 3, 228 (1974); E. R. Cohen and H. Reiss, J. Chem.
Phys. 38, 680 (1963).

[9] V. Privman and M. E. Fisher, J. Phys. A 16, 1295 (1983);
A. Margolina, F. Family, and V. Privman, Z. Phys. B 54,
321 (1984).



(a)

(b)

(c)

= 8
p—

-l [ ]

FIG. 1. (a) Configuration of layers n and (n — 1) with shaded
areas showing regions to the right covered by dimers (with pos-
sibly size-1 gaps) while the regions to the left are empty; (b)
deposition of a dimer (open rectangle) in layer n that is immedi-
ately possible in the configuration (a); (c) deposition attempt of a
dimer in layer n that can be accepted only after a gap was de-
creased to size 1 (or zero, not shown here) by an earlier deposi-
tion of a dimer in layer n — 1.



