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Learning from examples in feedforward neural networks is studied within a statistical-mechanical
framework. Training is assumed to be stochastic, leading to a Gibbs distribution of networks char-
acterized by a temperature parameter T. Learning of realizable rules as well as of unrealizable rules

is considered. In the latter case, the target rule cannot be perfectly realized by a network of the
given architecture. Two useful approximate theories of learning from examples are studied: the
high-temperature limit and the annealed approximation. Exact treatment of the quenched disor-

der generated by the random sampling of the examples leads to the use of the replica theory. Of
primary interest is the generalization curve, namely, the average generalization error e~ versus the
number of examples P used for training. The theory implies that, for a reduction in eg that remains
finite in the large-N limit, P should generally scale as nN, where N is the number of independently
adjustable weights in the network. We show that for smooth networks, i.e., those with continuously

varying weights and smooth transfer functions, the generalization curve asymptotically obeys an

inverse power law. In contrast, for nonsmooth networks other behaviors can appear, depending on

the nature of the nonlinearities as well as the realizability of the rule. In particular, a discontinuous

learning transition from a state of poor to a state of perfect generalization can occur in nonsmooth
networks learning realizable rules. We illustrate both gradual and continuous learning with a de-

tailed analytical and numerical study of several single-layer perceptron models. Comparing with the
exact replica theory of perceptron learning, we find that for realizable rules the high-temperature
and annealed theories provide very good approximations to the generalization performance. Assum-

ing this to hold for multilayer networks as well, we propose a classification of possible asymptotic
forms of learning curves in general realizable models. For unrealizable rules we find that the above

approximations fail in general to predict correctly the shapes of the generalization curves. Another
indication of the important role of quenched disorder for unrealizable rules is that the generalization
error is not necessarily a monotonically increasing function of temperature. Also, unrealizable rules

can possess genuine spin-glass phases indicative of degenerate minima separated by high barriers.

PACS number(s): 87.10+e, 02.50+s, 0&.20 —y

I. INTRODUCTION

In recent years, many attempts have been made to
train layered feedforward neural networks to perform
computational tasks, such as speech recognition [1] and
generation [2], handwriting recognition [3], and protein
structure prediction [4]. These networks have also been
used as models for neurobiological systems [5, 6], and
have been employed as metaphors for cognitive processes
such as learning, generalization, and concept formation
[7]

Learning in neural networks, as well as in other para-
metric models [8], has also attracted considerable theo-
retical interest. The activity in this area has centered on
two issues. The first is the question of representation, or
realizabihty. Given a network of some architecture and
size, is there a set of weights that makes the network
perform the desired task? The second is the question of
learning. Given that such a network exists, can its struc-
ture and parameters be found with a reasonable amount
of time, computational resources, and training data?

Here we focus on the question of learning. We further
restrict our scope to supervised learning from examples,
which relies on a training set consisting of examples of
the target task. The training algorithm uses the exam-
ples to find a set of network weight values that perform
the task well. The most widely used class of training
algorithms works by optimizing a suitable cost function
that quantifies the error on the training set.

Such learning algorithms have several potential diffi-
culties. The algorithms may become trapped in local
minima that are far from optimal. Furthermore, finding
good minima may require prohibitively long convergence
times. Finally, there is no guarantee that good perfor-
mance on a training set also leads to good performance
on novel inputs. This last issue, the ability of adaptive
systems to generalize from a limited number of exam-
ples, is the focus of the present work. Understanding the
determinants of generalization ability is crucial for devis-
ing machine learning strategies, as well as for obtaining
insight into learning processes in biological systems.

Our study is based on a statistical-mechanical (SM)
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formulation of learning in neural networks. The training
procedure is assumed to be stochastic, leading to a Gibbs
distribution of network weights. The performances of the
system on the training set as well as on novel inputs are
calculated as appropriate thermal averages on the Gibbs
distribution in weight space and quenched averages on
the sampling of examples. These averages provide an ac-
curate account of the typical behavior of large networks.

The currently dominant approach in computational
learning theory is based on Valiant's learning model and
on the notion of probably almost correct (PAC) learning

[9, 10]. The main achievements of this approach are gen-
eral bounds on the probability of error on a novel input
for a given size of the training set [11,12], as well as clas-
sification of learning problems according to their time
complexity [9, 13]. Most of these (sample complexity)
combinatorial bounds depend on the specific structure of
the model and the complexity of the task through only
a single number, known as the Vapnik-Chervonenkis di-
mension [14—16]. Generally, they are independent of the
specific learning algorithm or distribution of examples.
The generality of the PAC approach is also its main de-

ficiency, since it is dominated by the worst case, atypical
behavior. Our statistical-mechanical approach thus dif-

fers considerably from the PAC learning theory in that it
can provide precise quantitative predictions for the typi-
cal behavior of specific learning models.

The SM formalism can also be applied to certain learn-

ing models for which few PAC results are yet known. De-
spite recent works which extend the original PAC frame-
work [12, 17], most PAC theorems apply to realizable
tasks, namely tasks that can be performed perfectly by
the network, given enough examples. In many real life
problems the target task can only be approximated by
the assumed architecture of the network, so the task is
unrealizable. In addition, many of the PAC learning re-

sults are limited to networks with threshold decision el-

ements, although in many applications analog neurons
are used. The SM approach is close in its spirit, though
not in its scope and results, to the Bayesian information-
theoretic approach, recently applied also to continuous
networks [17,18].

A SM approach to learning from examples was first
proposed by Carnevali and Patarnello [19], and further
elaborated by Tishby, Levin, and Solla [20, 21]. Del Giu-
dice, Franz, and Virasoro, and Hansel and Sompolinsky
applied spin-glass theory to study perceptron learning of
a classification task [22). Gardner and Derrida [23] and
Gyorgyi and Tishby [24, 25] have used these methods for
studying learning of a perceptron rule. Related models
have been studied in Refs. [26, 27]. However the extent
of applicability of results gained from these specific toy
models to more general circumstances has remained un-
known.

Recently an interesting attempt to characterize generic
generalization performance has been put forward by
Schwartz et al [28]. This wo.rk suffers from two basic
deficiencies. First, the analysis relies on an approxima-
tion whose validity has not been addressed. In fact this
approximation is closely related to the well-known an-
nealed approximatiou (AA) in the statistical mechanics of

random systems. Although the AA simplifies enormously
the theoretical analysis of these complex systems, in most
interesting cases it is known to be unreliable, sometimes
even in its qualitative predictions. The second problem
is that no attention has been given to the dependence
of performance on system size. In fact, the behavior of
large systems may be quite difFerent from that of small-
size ones, and its analysis is more involved.

In the present study we attempt to characterize the
generic behaviors of learning from examples in large lay-
ered networks. In particular we investigate the expected
rate of improvement of the generalization with an in-
creasing number of examples, denoted by the generaliza-
tion curve. The PAC theory bounds the generalization
curve by an inverse power law. Such a gradual improve-
ment has also been observed in computer experiments
of supervised learning [20, 29]. In other cases, however,
one observes a rather sharp improvement when a critical
number of examples is reached [20, 28, 30].

These seemingly conflicting behaviors have analogies in
psychological studies of animal learning. The dichotomy
between gradual and sudden learning is at the heart of
the long-standing controversy between the behaviorist
[31]and the gestalt [32] approaches to learning in the cog-
nitive sciences. In this debate the underlying assumption
has been that a learning process that is based on incre-
mental modifications of the internal structure of the sys-
tem can yield only gradual improvements in performance.
The sudden appearance of concept understanding was
therefore related to preexisting strong biases towards the
learned concept, or to mysterious holistic learning mech-
anisms.

In the present study we show that in large systems, a
sudden emergence of good generalization ability can arise
even within the framework of incremental microscopic
training algorithms. We analyze the conditions under
which such discontinuous transitions to perfect learning
occur. Also, we study the asymptotic forms of learn-

ing curves in cases where they are smooth. Other is-
sues addressed in this work include (i) the consequences
of the annealed approximation for learning in large net-
works and the scope of its validity, (ii) the properties of
learning unrealizable rules, (iii) the possible emergence
of spin-glass phenomena associated with the frustration
and randomness induced by the random sampling of ex-
amples, (iv) how the nonlinearities inherent in the net-
work operation affect its performance, and (v) the effect
of stochastic training (noise in the learning dynamics) on
generalization performance.

We address these issues by combining general results
from the SM formulation of learning with detailed an-
alytical and numerical studies of specific models. The
specific examples studied here are all of learning in a
single-layer perceptron models, which are significantly
poorer in computational capabilities than multilayer net-
works. Even these simple models exhibit nontrivial gen-
eralization properties. Indeed, even the realization of
random dichotomies in a perceptron with binary weights
is a hard problem both theoretically and computationally
(see, e.g. , Krauth and Mezard [33] and also [34]). Here
we study learning from examples in a perceptron with
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real-valued weights as well as with binary weights. Some
of the results found here for the perceptron models have
been recently shown to exist in two-layer models also [35,
36]. Furthermore, a perceptron with strong constraints
on the range of values of its weights can be thought of
as representing a nonlinearity generated by a multilayer
system.

In Sec. II we present two useful approximations to the
SM of learning from examples: a high-temperature the-
ory, and the above-mentioned annealed approximation.
Several general consequences of these approximations as
well as their range of validity are discussed. We then
present the full theory, based on the replica method of av-
eraging over quenched disorder, and derive from it some
general results. In Sec. III we derive an inverse power law
for the learning curves in the case of smooth networks,
where the training energy is a diA'erentiable function of
the weights.

Learning curves of nonsmooth networks do not have a
single universal shape. In order to elucidate the possible
behavior of such networks, we study in Sec. IV percep-
tron learning models where both the target rules and the
trained networks are single-layer perceptrons. In Sec. V
we focus on specific examples of realizable perceptron
rules. We study in detail the case of perceptrons with
binary weights, where discontinuous transitions in learn-
ing performance occur. In addition, we investigate the
spin-glass phases that exist in these models at low tem-
peratures and small number of examples per weight.

The annealed approximation has proved to yield qual-
itatively correct predictions i'or most of the properties of
the realizable perceptron models. In Sec. VI we show that
this is not the case for unrealizable rules. We investigate
two models of unrealizable perceptron rules where the
architecture of the trained perceptron is not compatible
with the target rule. Spin-glass phases are found in the
unrealizable models, even at large number of examples
per weight. Also the generalization error as a function of
temperature may have a minimum at nonzero T, demon-
strating the phenomenon of overtraining. Section VII
summarizes the results and their implications. A prelim-
inary report on some of this work appeared previously in
Ref. [37].

(2 1)

where the error function c(W; S) is some measure of the
deviation of the network's output o'(W; S) from the tar-
get output o'0(S). The error function should be zero
whenever the two agree, and positive everywhere else.
A popular choice is the quadratic error function

e (W; S) = —[o (W; S) —o.o (S)]
2

(2.2)

Training is usually accomplished by minimizing the en-

ergy, for example via gradient descent

TvvF(W—) . (2.3)

The training energy measures the network's perfor-
mance on a limited set of examples, whereas the ultimate
goal is to find a network that performs well on all inputs,
not just those in the training set. The performance of a
given network %' on the whole input space is measured
by the generalization function. It is defined as the av-

erage error of the network over the whole input space,
j.e. ,

c(W) = dp(S) e(W; S) . (2.4)

We distinguish between learning of realizable rules and
unrealizable rules. Realizable rules are those target func-
tions era(S) that can be completely realized by at least
one of the networks in the weight space. Thus in a real-
izable rule there exists a weight vector VF* such that

target function oo(S). One way of achieving this is to
provide a set of examp/es consisting of P input-output
pairs (S', oo(S )), with / = 1, . . . , P We assume that
each input S' is chosen at random from the entire input
space according to some normalized a priori measure de-
noted dp(S). The examples can be used to construct a
training energy

e(W*, S) = 0 for all S, (2 5)

II. GENERAL THEORY

A. Learning from examples

We consider a network with M input nodes S; (i =
1, . . . , M), N synaptic weights W; (i = 1, . . . , N), and a
single output node o = o.(W; S). The quantities S and
W are M- and N-component vectors denoting the input
states and the weight states, respectively. For every W,
the network defines a map from S to cr. Thus the weight
space corresponds to a class of functions, constrained by
the architecture of the network. Learning can be thought
of as a search through weight space to find a network with
desired properties.

In supervised learning, the weights of the network are
tuned so that it approximates as closely as possible a

or, equivalently, e(W*) = 0. An unrealizable rule is a
target function for which

c~j~: 111111E'(W) ) 0
W (2 6)

Unrealizable rules occur in two basic situations. In the
first, the data available for training are corrupted with

noise, making it impossible for the network to reproduce
the data exactly, even with a large training set. This
case has been considered by several authors, including
Refs. [24] and [25]. Here we will not address this case
explicitly. A second situation, which will be considered,
is when the network architecture is restricted in a manner
that does not allow an exact reproduction of the target
rule itself.
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B. Learning at finite temperature

We consider a stochastic learning dynamics that is a
generalization of Eq. (2.3). The weights evolve according
to a relaxational I angevin equation

OW
'7w—E(W) —Vw U(W) + r1(t), (2.7)

where g is a white noise with variance

(q;(&)q, (t')) = 2Th, , S(t —t') . (2 8)

P(W) Z —1 PE(w) (2 9)

where the variance of the noise in the training procedure
now becomes the temperature T = I/p of the Gibbs
distribution. The normalization factor Z is the partition
function

We have added also a potential V(W) that represents
possible constraints on the range of weights. This term
depends on the assumptions about the a priori distribu-
tion of W and does not depend on the examples. The
above dynamics tends to decrease the energy, but occa-
sionally the energy may increase due to the influence of
the thermal noise. At T = 0, the noise term drops out,
leaving the simple gradient descent equation (2.3). The
above equations are appropriate for continuously vary-
ing weights. We will also consider weights that are con-
strained to discrete values. In such cases the analog of
(2.7) is a discrete-time Monte Carlo algorithm, similar to
that used in simulating Ising systems [38].

In simulated annealing algorithms for optimization
problems, thermal noise has been used to prevent trap-
ping in local minima of the energy [39]. The temperature
is decreased slowly so that eventually at T 0 the sys-
tem settles to a state with energy near the global energy
minimum. Although thermal noise could play the same
role in the present training dynamics, it may play a more
essential role in achieving good learning. Since the ul-
timate goal is to achieve good generalization, reaching
the global minimum of the training energy may not be
necessary. In fact, in some cases training at fixed finite
temperature may be advantageous, as it may prevent the
system from overtraining, namely finding an accurate fit
to the training data at the expense of good generalization
ability. Finally, often there are many nearly degenerate
minima of the training error, particularly when the avail-
able data set is limited in size. In these cases it is of inter-
est to know the properties of the ensemble of solutions.
The stochastic dynamics provides a way of generating
a useful measure, namely a Gibbs distribution, over the
space of the solutions.

In the present work, we study only long-time proper-
ties. As is well known, Eq. (2.7) generates at long times
a Gibbs probability distribution. In our case it is

cal mechanics may now be applied to calculate thermal
averages, i.e. , averages with respect to P(W) They will
be denoted by ()z . In the thermodynamic limit, such av-
erage quantities yield information about the typical per-
formance of a network, governed by the above measure,
independent of the initial conditions of the learning dy-
namics.

Even after the thermal average is done, there is still
a dependence on the P examples S'. Since the exam-
ples are chosen randomly and then fixed, they represent
quenched disorder. Thus to explore the typical behavior
we must perform a second, quenched average over the dis-
tribution of example sets, denoted by (()) = f Q& d)(d(S').

The average training and generalization errors are
given by

&(T, P) = P '(((E(W))z ))
~ (T, P) = (((~(W))~)) .

(2.11)
(2.12)

The free energy F and entropy S of the network are given
by

F(T, P) = —T(( ln Z )),

S(T, P) = ((fdP(W)'P(W)lnP(W) )).
They are related by the identity

F = Pet, —TS .

(2.13)

(2.14)

(2.15)

Knowing F, the expected training error can be evaluated
via

1 0(PF)
P BP

(2.16)

and the entropy by

F
T (2.17)

The graphs of e&(T, P) and c~ (T, P) as functions of P will
be called learning curves.

Formally our results will be exact in the thermody-
namic limit, i.e., when the size of the network approaches
infinity. The relevant scale is the total number of degrees
of freedom, namely the total number of (independently
determined) synaptic weights N. For the limit N ~ oo
to be well defined we envisage that the problem at hand
as well as the network architecture allow for a uniform
scaleup of ¹ However, our results should provide a good
approximation to the behavior of networks with a fixed
large size.

The correct thermodynamic limit requires that the en-
ergy function be extensive, i.e. , proportional to ¹ The
consequences of this requirement can be realized by av-
eraging Eq. (2.1) over the example sets, yielding

Z= dpW exp —EW (2.10) ((E(W) )) = P~(W). (2.18)

and we have incorporated the contribution from V(W)
into the a priori normalized measure in weight space,
dp(W). The powerful formalism of equilibrium statisti- P=QN, (2.19)

Hence, assuming that e(W) is of order 1, the number of
examples should scale as
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where the proportionality constant o. remains finite as
N grows. This scaling guarantees that both the entropy
and the energy are proportional to N. The balance be-
tween the two is controlled by the noise parameter T,
which remains finite in the thermodynamic limit. A for-
mal derivation of this scaling is given below using the
replica method.

Using the definitions Eqs. (2.11) and (2.12) and the
convexity of the free energy, one can show that

e, (T, n) ( eg(T, n) (2.20)

for all T and n (see Appendix A). We will show below
that, as the number of examples P increases, the de-
viations of the energy function from its average form,
Eq. (2.18), become increasingly small. This implies
that for any fixed temperature, increasing n leads to
~y ~ ~min& ~t ~ ~min~

version of the statistical mechanics of learning in the
high-T limit. Equation (2.23) can be written as

Zp — de exp[ N—Pn f(e)], (2.24)

where the free energy per weight of all networks whose
generalization error equals ~ is

(2.25)

The function s(e) is the entropy per weight of all the
networks with e(W) = e, i.e.,

s(e) = N 'ln dp(W) b(e(W) —e) . (2.26)

In the large-N limit the expected generalization error is
simply given by

C. High-temperature limit (2.27)

A simple and interesting limit of the learning theory is
that of high temperatures. This limit is defined so that
both T and a approach infinity, but their ratio remains
constant:

Pn = finite, 0!~oo) T~oo (2.21)

'Pp(W) = Z exp[ —NPne(W)], (2.22)

where

In this limit E can simply be replaced by its average
Eq. (2.18), and the fluctuations bE, coming from the
finite sample of randomly chosen examples, can be ig-
nored. To see this we note that bE is of order ~P The.
leading contribution to PF from the term PbE in Z is

proportional to P (((bE)2)) NnP~. This is down by a.

factor of P compared to the contribution of the average
term, which is of the order NnP Thus, in t. his limit, the
equilibrium distribution of weights is given simply by

Thus the properties of the system in the high-T limit are
determined by the dependence of the entropy on gener-
alization error.

From the theoretical point of view, the high-T limit
simply characterizes models in terms of an efI'ective en-
ergy function e(W') which is often a rather smooth func-
tion of W. The smoothness of the eA'ective energy func-
tion also implie:- that the learning process at high temper-
ature is relatively fast. One does riot expect to encounter
many local minima, although a few large local minima
may still remain, as will be seen in some of the models
below. Another feature of learning at high temperature
is the lack of a difference between the expected training
and generalization errors, i.e. , ez —ei. From Eq. (2.22)
and the definitions Eqs. (2.11) and (2.12) it follows that
ct ——e& in the high-T limit. Of course the price that one
pays for learning at high temperature is the necessity of
a large training set, as 0, must be at least of order T.

D. The annealed approximation
dp(W) exp[—NPne(W)] . (2.23)

The subscript 0 signifies that the high-temperature limit
is the zeroth order term of a complete high-temperature
expansion, derived in Appendix B.

In the high-T limit, it is clear from Eq. (2.22) that all
thermodynamic quantities, including the average train-
ing and generalization errors, are functions only of the
effective temperature T/n It should be e. mphasized that
the present case is difkrent from most high-temperature
limits in statistical mechanics, in which all states become
equally likely, regardless of energy. Here the simultane-
ous u ~ oo limit guarantees nontrivial behavior, with
contributions from both energy and entropy. In par-
ticular, as the eff'ective temperature T/n decreases, the
network approaches the optimal ("ground state") weight
vector W', which minimizes e(W). This behavior is sim-
ilar to the T = finite, n ~ oo limit of (2.58) below.

It is sometimes useful to discuss the microcanonical

Another useful approximate method for investigating
learning in neural networks is the annealed approxima-
tion, or AA for short. It consists of replacing the average
of the logarithm of Z, Eq. (2.13), by the logarithm of the
average of Z itself. Thus the annealed approximation for
the average free energy I" „ is

—PF „=ln((Z)) . (2.28)

(2.30)

Using the convexity of the logarithm function, it can be
shown that the annealed free energy is a lower bound for
the true quenched value,

(2.29)

Whether this lower bound can actually serve as a good
approximation will be examined critically in this work.

Using Eqs. (2.10) and (2.1) one obtains
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o „(w) = —ln J dp(s) e (2.31)

The generalization and training errors are approximated
by

this relation could be used in actual applications to esti-
mate the generalization error from the measured training
error.

Eg: 1

((z))
dp(W)e(W)e

(W)
~G»(W) Pa—..(w)

(( Z))

Single Boolean output

(2.32)

(2.33)

2. The annealed approximation as a dynamics
in example space

The above annealed results only approximate the
learning procedure described in Eq. (2.7). However, they
can be viewed as the exact theory for a dynamic process
where both the weights and the examples are updated by
a stochastic dynamics, similar to Eq. (2.7), involving the
same energy function, i.e. ,

A particularly simple case is that of an output layer
consisting of a single Boolean output unit. In this case
e(W; S) = 1 or 0 only, so that

G»(W) = —In[1 —(1 —e ~)e(W)] . (2.34)

7'w—E+ vI(t),
t

Sl

t
= —&s E+ &((~).

(2.41)

(2.42)

Since G depends on W only through e(W), which is
of order 1, we can write a microcanonical form of the
AA, analogous to what was done for the high-T limit
in Eqs. (2.24)—(2.27). The annealed partition function

((Z)) takes the form P (W. S( ) Z —i PE(w—;s') (2.43)

Here E is a function of both Vf and S'. This dynamic
process leads to a Gibbs probability distribution both in
weight space and in input space

((~)) = f&' '» &(oo(') —~&-(')) (2 35) where

P
Z = dp(W) dp(S') exp[—PE(W)], (2.44)where

h ~ ~

1=1G,„(e):——ln [1 —(1 —e P )e]

Gp(6) = N ill dp(W)b(E —c(W))

(2.36)

(2.37)

The function NGp(c) is the logarithm of the density of
networks with generalization error e. At finite temper-
ature, it is dift'erent from the annealed entropy S „—:

BF»/BT, —which is the logarithm of the density of net-
works with training error t. . However, since eq

—t.
& in the

high-temperature limit, NGp approaches S „as T ~ oo.
In the thermodynamic limit (N ~ oo), the integral

(2.35) is dominated by its saddle point. Thus at any
given a and T the value of the average generalization
error is given by minimizing the free energy f(c), where

Pf = Gp —aG—». This leads to the implicit equation 8. How good is the annealed approximations

which is exactly the annealed partition function.
From the perspective of Eqs. (2.41) and (2.42) the AA

represents the behavior of a system with a distorted mea-
sure of the input space. The fact that we will And it to
be a good approximation in several nontrivial cases re-
flects the robustness of the performance of the networks
in these cases to moderate distortions of the input mea-
sure. The eR'ect of reducing temperature is also clear.
The larger P is, the larger the distortion of the a priori
input measure due to the Gibbs factor. Consequently,
one expects that deviations from the AA may be impor-
tant at, low T.

OGp

(9e

a(1 —e (')
1 —(1 —e-(')~~ ' (2.38)

e-~~,
1 —(1 —e —i')~~ ' (2.39)

where ez is the average generalization error given by
(2.38), or, equivalently,

Eg
Eg

e ) + (1 —e-)')e, ' (2.40)

To the extent that the annealed approximation is valid,

which is analogous to the high-T result Eq. (2.27). It is
interesting to note that in this case the AA predicts a
simple relation between the training and generalization
errors. Using Eq. (2.33) above, one obtains

lim ~g(T, n) = e(Wt), (2.45)

where W minimizes 0 „. In general, this vector is not
necessarily the same as the vector YV*, which minimizes

First we note that G» ~ Pe(W) as P ~ 0. Thus
the AA is valid at high temperatures, since it reduces to
the high-T limit described above. At lower temperatures
the AA does seems to incorporate some of the eKects of
quenched disorder, in that e& is generally less than ~z, in
accord with Eq. (2.20). This is in contrast to the high-T
limit, in which ez

——e~. On the other hand, the results of
the AA are in general not exact at Rnite temperature.

Ta obtain some insight into the quality of the AA at
finite temperatures we examine its behavior in the limit
of large n. From Eq. (2.34) it follows that in the AA the
asymptotic value of the generalization error is
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lim e, (T, n) = mine(w; S)
T 0 W, S

(2.46)

since annealing both the weights and examples at zero
temperature minimizes the training energy with respect
to all variables. Often the right-hand side is zero, so that
the AA predicts spuriously ei(T = 0, n) = 0 for all n.

e(w). Hence there is no guarantee that the AA correctly
predicts the value of the optimal generalization error or
the values of the optimal weights, except for two spe-
cial cases. One is the case of a realizable rule for which
c(w"; S) = 0 for all inputs S. Clearly the minimum of
G „ in Eq. (2.31) then occurs at G,„(W') = 0. The
second is the case of a network whose output layer con-
sists of a single Boolean output unit, as discussed above.
From (2.34) it is evident that the minimum of G,„, in
this case, coincides with the minimum of e&, and hence
wt = w*.

With respect to the training error, the AA for unrealiz-
able rules is also inadequate: the correct limit cg ~ c~j„
is typically violated, even for the Boolean case, and the
limit e& ~ e& does not hold either. In particular, in the
T ~ 0 limit the annealed training error approaches

e, (T, o) = lim — dp(w )
"

e. Dg„[w ]
o~

(2.51)

X. Replica theory and the high-T limit

The simplicity of the replica formulation lies in the fact
that only the number of examples remains as a simple
prefactor in Eq. (2.48). All other example dependence
has been removed, so that the replicated Hamiltonian g„
depends only on the form of e(W; S) and on the nature of
the a priori measure on the input space dp(S). Equations
(2.48) and (2.49) also make explicit the scaling of the
problem. Since e(w; S) is defined to be of order 1, g„
itself is of order 1 times n. Thus, as the integral on the
weight space in Eq. (2.48) is nN dimensional, where N
is the number of degrees of freedom in weight space, P
must scale as X.

The AA can be obtained from Eq. (2.47) by setting
n = 1 instead of taking the limit n —+ 0. The replicated
Hamiltonian g„[w] with n = 1 reduces to the annealed
expression G „(W), Eq. (2.31).

E. The replica method

To evaluate the correct behavior at all T one has to
evaluate quenched averages such as Eq. (2.13) and its
derivatives. Such averages are commonly studied using
the replica method [40]. The average free energy is writ-
ten as

The replica theory provides a simple derivation of the
high-T limit described in Sec. IIC. Since g„ is an in-
tensive quantity independent of P, the high-T limit can
be derived by simply expanding it in powers of P. The
leading terms are

Pg„[w ]=N nP) e(w )
o=l

—PF = ((ln Z)) = lim —ln(( Z"
)) .

1
(2.47)

One first evaluates Eq. (2.47) for integral n and then
analytically continues to n = 0. Using Eqs. (2.1) and
(2.10) we obtain where

(2.52)

((z" )) dp(W ) exp( —Nng„[W ]), (2.48) g(W, W~) = d)u(S) ~(W; S)e(W~; S)

where the replicated Hamiltonian is
—e(w )e(w~) . (2.53)

g„[w ] = —ln dp(S)exp —P) e(w;S)
)
(2.49)

The average generalization error (2.12) can be rewritten
using replicas as

Note that g measures the correlations in the errors of two
different weights on the same example.

The general form of Eq. (2.52) is similar to that of a
spin-glass replica Hamiltonian [41, 42]. The first term
is the one that survives the high-T limit. It represents
the nonrandom part of the training energy. Taking into
account only this contribution leaves the different replicas
uncoupled, and hence I" reduces to its high-T limit

EyIT, a) = lim z" dp('w)e(w)e ~ ~ ~

))n —+0 PP 1 d (W)
—KPne(w) (2.54)

J... dp (W
~

)~(W i
)e N~ g ~ lM—

o=l
(2.50)

and the average training error (2.11) as

in which the training energy becomes proportional to the
generalization function, i.e. , E(w) ~ Pe(w) As T de-.
creases the second term of Eq. (2.52) becomes important.
This term is a coupling between different replicas which
originates from the randomness of the examples.
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2. Spin glasses and rep/ica symmetry breaking &y ~ &min i &t ~ &min y (2.58)

In some cases, the coupling between replicas produce
only minor changes in the learning curves. In others,
such terms can lead to the appearance of qualitatively
different phases at low temperatures. These phases are
conveniently described by the properties of the matrix

Q„, = —(W" W"), (2.55)

which measures the expected overlap of the weights of
two copies of the system. Since the replicated Hamilto-
nian (2.49) is invariant under permutation of the replica
indices, one naively would expect that Q» ——q for all
p g v. The physical interpretation of q would then be

q=N '(((W)~ (W)~)) . (2.56)

It is known as the Edwards-Anderson parameter in spin-
glass theory [40]. The high-temperature phase indeed
possesses this replica symmetry. However, as the temper-
ature is lowered, a spontaneous replica symmetry breaking
(RSB) can occur, signaling the appearance of a spin-glass
phase. In this phase, the expected values of correlations
among different replicas do depend on the replica indices.

Formally, the spin-glass phase is characterized by a
nontrivial dependence of quantities such as Q&„on the
replica indices. Physically, the spin-glass phase is marked
by the existence of many degenerate ground states of the
energy (or free energy) which are well separated in con-
figuration space. The difFerent values of Q&„represent
the distribution of overlaps among pairs of these ground
states. This degeneracy is not connected with any simple
physical symmetry, but is a result of strong frustration in
the system. Furthermore, these degenerate ground states
occupy disconnected regions in configuration space that
are separated by energy barriers that diverge with ¹

Such barriers are important in the context of learning,
since they lead to anomalously slow learning dynamics
[43—45].

In the following section, o, will be used as a control pa-
rameter in a saddle-point expansion to calculate the ap-
proach to the optimum for smooth networks.

III. SMOOTH NETWORKS

bW; = S'; —W (3.1)

The linear terms vanish since W is a minimum of g„.
The leading corrections are

g„=g„'"+ —) 6W, A,,' 6W,',1

~ ~

(3 2)

where

A;,~ = PU;~6'~ —P V~ . (3.3)

The matrix U;& is the Hessian of the error function at the
optimal weight vector W', i.e.,

We define smooth networks to be those with continu-
ously varying weights and error functions e(W; S) that
are at least twice diA'erentiable with respect to W in the
vicinity of the optimal weight vector W*. According to
this definition, whether a network is smooth depends on
both the smoothness of the weight space and the smooth-
ness of the error function e(W; S). In a smooth network,
neither the output neuron nor the hidden neurons are
saturated at the optimal W'. We now use the replica
formalism to derive the asymptotic shape of the learning
curves in these networks.

As stated above, the integrals over the weight space
are dominated, as o. ~ oo, by the optimal weight vector
W, which minimizes both g„(in the n ~ 0 limit) and
e(W). At finite large n, the leading corrections to c~
come from the immediate neighborhood of W*. In a
smooth network we can expand g„ in powers of

U~ = dp S; ~~W')S (3 4)

F. The large-n limit The symbol 8, denotes 8/OW; . The matrix Vz is

The replica formalism can also be used to investigate
the behavior at a large number of examples, i.e. , the o ~
oo limit. From Eq. (2.48) it is clear that the free energy
and the training and generalization errors are all weight
space integrals that are dominated by the minimum of
g„, as n ~ oo. Denoting this minimum by W = W*,
we find

g„'"= —ln dp(S) exp[—Pne(W*; S)]

= Pn~(W') + O(n ). (2.57)

This implies that W' minimizes both the generalization
error c(W) and g„ in the n ~ 0 limit. Hence we can-
clude that for any fixed temperature the training and
generalization errors both approach the optimal value
E'~j~: E(W ) as cx ~ oo&'

V~ = dp S;e W*, S qc W*, S (3.5)

Since Nag„defines a Gaussian measure in weight
space, it is straightforward to calculate the average devi-
ations of the weights from W*. They are

(6W ) =0,

(6W; 6W~) = (Nn) '
(A '); ~

(3.6)

1
[T(v ');, 6 &+ (v 'vv -');,j, --

(3.7)

where we have already taken the n ~ 0 limit. Equations
(3.6) and (3.7) have a simple meaning in terms of the
physical system. Equation (3.6) reads
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((( W)T)) =(((W)T)) -W* = o (3.8)

The diagonal element (in the replica indices) of Eq. (3.7)
yields the average correlations

C,, = (((bW, bW~)z ))
1 [T(v-'),, + (v-'vv-');, ] . (3.9)

The first term, which is proportional to T, represents
the contribution of the thermal fluctuations about VV'.
The second term represents the quenched fluctuations
due to the random sampling of examples. This interpre-
tation is confirmed by inspecting the ofF-diagonal element
of Eq. (3.7), which is

&-;" = &(W') = dI'(S) e(W'; S) = 0, (3.16)

0;e(W';S) & 0

for all S, but also

(3.17)

This is equivalent to the statement that e(W*;S) = 0
for all input vectors S, because the error function was
defined to be non-negative. Since W* minimizes c(W),
we can also assume D;e(W') = 0, as long as W* lies in
the interior of the weight space.

We have e(W'; S) & c(W; S), since the left-hand side
is zero, and the right-hand side is non-negative. This
implies that

(((b~,)T(b%)~)) =
N (U 'VV ') (3.10) dp(S)B;r(W";S) =8;e(W*) =0. (3.18)

To evaluate the corrections to the generalization error,
we expand Eq. (2.12) in powers of bW, yielding

1
&y = &min + —Tr UC .

2

Substituting Eq. (3.9) one obtains

(3.11)

(T TrVU i) 1, (T, )= -.+l —+
I

—+o( -')
(2 2N ) n

(3.12)

PF = NnPe-;, + —[Tr ln(PU) —P '1.'r VU i]
2

l Na+—N ln (3.13)

Using Eq. (2.16) one obtains

(T TrVU i'1
ei(T, u) =~;„+

l

——
l

—+O(~ z).(2 2N ) n

(3.14)

The above results predict an important relationship be-
tween the expected training and generalization errors at
T = 0. According to Eqs. (3.12) and (3.14) both er-
rors approach the same limit c-;„with a 1/n power law.
The coefficients of 1/n in the two errors are identical in
magnitude but diff'erent in sign yielding

The 1/n expansion for the average training error can
be evaluated by calculating first the corrections to the
average free energy. Substituting Eq. (3.2) in Eq. (2.48)
yields, after taking the n —+ 0 limit

Equations (3.17) and (3.18) together imply that
O, c(W'; S) = 0 for all S, which in turn implies V&

—0.
Finally, we have the result

e, (T, n) = +o(a ').
2G

(3.19)

IV. LEARNING OF A PERCEPTRON RULE

A. General formulation

The perceptron is a network which sums a single layer
of inputs S& with synaptic weights 6&, and passes the
result through a transfer function 0

The same holds for eq.
At zero temperature, the coe%cient of 1/n vanishes for

c& and eq. Furthermore, for a smooth network learning
a realizable rule, the higher-order terms also vanish at
T = 0. This implies that there is a finite value n, for
which ez

——eq ——0 for all o & o.„at T = 0. An example
of such behavior will be presented in Sec. VA below.
Such a state we call a state of perfect learning.

It should be noted, however, that a realizable rule
with a smooth network is an unrealistic situation. The
smoothness requirement, as defined above, implies that
the measure of error involves equalities and not inequali-
ties. Therefore to realize a rule would necessitate infinite
precision in determining the optimal weights. Unlike the
case of discrete problems, learning tasks in smooth net-
works are generically unrealizable.

BE) DEg
oo, T=O.

OA' Oo.
(3.15)

This result can be used to estimate the expected general-
ization error from the measured training error in smooth
networks.

A special case occurs when the rule to be learned by the
smooth network is realizable. This means that there ex-
ists a weight vector W* within the allowed weight space
that has zero generalization error, i.e. ,

where g(z) is a sigmoidal function of z. The normaliza-
tion 1/~N in Eq. (4.1) is included to make the argument
of the transfer function be of order unity. learning is a
search through weight space for the perceptron that best
approximates a target rule. We assume for simplicity
that the network space is restricted to vectors that sat-
isfy the normalization
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) W. =N. (4 2)

dp(S) = DS;, (4 3)

where Dz denotes the normalized Gaussian measure

Dz =— e-dS

2x
(4.4)

The a priori distribution on the input space is assumed
to be Gaussian,

overlap with the teacher, i.e. , e(W) = e(R). Learning
can be visualized very easily since R = cos0, where 0
is the angle between W and W . The generalization
function goes to zero as the angle between the student
and the teacher weight vectors vanishes. Perfect learning
corresponds to an overlap R = 1 or 0 = 0.

In the following we discuss perceptrons with either lin-

ear or Boolean outputs, and weights that are either bi-
nary or obey a spherical constraint.

For the linear perceptron, the transfer function is

g(z) = z. The error function, Eq. (4.6), is in this case a
quadratic function in weight space,

We consider only the case where the target rule is another
perceptron of the form e(W;S) = KW —W ) S]

1
(4.9)

a (S) = g ~

W' S
~

(1
N ) (4.5)

Averaging this function over the whole input space, we

find

and WP is a fixed set of N weights WP. We assume that
the teacher weights W also satisfy the normalization
condition (4.2).

Training is performed by a stochastic dynamics of the
form (2.7) with the training energy function (2.1). For
each example the error function is taken to be

e(W;S)= —g(N ' W S) —g(N ' W S)

(4.6)

The generalization function is

e(W) =fDS e(W; S)

1
Dz Dy —g z 1 —R2+yR —g y

2

(4 7)

where R is the overlap of the student network with the
teacher network, i.e.,

e(W) = 1 —R, (4.10)

which is 1 when the student and teacher agree, and 0
otherwise. The generalization error

1
e(W) = —cos ' R (4.12)

is simply proportional to the angle between the student
and teacher weight vectors.

in accord with Eq. (4.7) with a linear g.
A second output function to be considered is the

Boolean output g(z) = sgn(z), which corresponds to
the original perceptron model studied by Rosenblatt [46].
The Boolean percepfron o = sgn(W S) separates the in-

put space in half via a hyperplane perpendicular to the
weight vector. The error function, Eq. (4.6), is (up to a
factor of 2)

(4.11)

(4 8)

(see Appendix C). The relationship between (4.6) and
(4.7) is plain, since in both cases the arguments of g are
Gaussian random variables with unit variance and cross
correlation R.

It is important to note that in perceptron learning, the
generalization function of a network depends only on its

B. The annealed approximation for perceptron
learning

The annealed free energy of perceptron learning is
shown in Appendix C to be

Pf = Gp(R) ——nG, „(R), (4.13)

G „(R)= —ln fDe f Dy exy
l

——g en 1 —Re+ yR —g(y)2
(4.14)

Ge(R) = N 'ln f gy(W) g(R —N 'W W') . (4.15)
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OGO(R) OG (R)
OR OR

(4.16)

Solving for R one then evaluates the average generaliza-
tion error via (4.7). Likewise the average training error
is evaluated by differentiating G „with respect to P, as
in Eq. (2.33).

We will consider the case of a spherical constraint and
that of an Ising constraint. In the perceptron with a
spherical constraint, the a priori measure dp(W) is uni-
form on the sphere of radius ~N, given by the normal-
ization condition, Eq. (4.2). We may write the measure
more formally as

The function NGO(R) is the logarithm of the density of
networks with overlap R, so we will sometimes refer to
it as the "entropy, " even though it is not the same as
the thermodynamic entropy s = Of—/OT T.he proper-
ties of the system in the large-N limit are obtained by
minimizing the free energy f, which yields

tremely simple. The properties of the system can be
expressed in terms of a single order parameter, namely,
the overlap R. The stochastic fiuctuations in the value
of R can be neglected in the limit of large ¹ Hence
the system almost always converges to a unique value of
R given by the minimum of the free energy f(R) D. e-
pending on the details of the problem, f(R) can have
more than one local minimum. If this happens, the equi-
librium properties of the system are determined by the
unique global minimum of f Th. e local minima represent
metastable states. Starting from a value of R near one
of these minima the system is likely to converge rapidly
to the local minimum. It will remain in this state for
a time that scales exponentially with the network size.
Hence for large networks the local minima of f can be
considered as stable states.

C. The replica theory of perceptron learning

dp(W)—: b(W W —N),
dW,.

2
(4.17)

The calculation of g„, (2.49), for perceptron learning is
presented in Appendix D. The dependence of g„on the
weights is through the order parameters Q„„,Eq. (2.55),
and

which is normalized to J dp(W) = 1. In this case, the
fraction of weight space with an overlap R is simply the
volume of the (N —2)-dimensional sphere with radius
gl —Rz. Hence the entropy Gp(R), Eq. (4.15), is (in
the limit of large N)

Go(R) = —ln(1 —R ),2
(4.18)

a result that is derived in more detail in Appendix C.
The entropy diverges as R ~ 1, as the fraction of weight
space with overlap R approaches zero. Such a divergence
is typical of a continuous weight space.

The Ising perceptron corresponds to a network with
binary valued weights W; = +1, or

dp(W)—: dW;[b(W; —1) + b(W; + 1)] . (4.19)

The entropy of Ising networks with an overlap R is given
by

= —W" W
1 0

p ~ ) (4.21)

Q~ =b~ +(1—b~ )q
R„=R.

(4.22)

(4.23)

In this case the order parameters of the replica theory
have simple meanings in terms of thermal and quenched
averages. The order parameter q is given by Eq. (2.56),
and R is the expected value of the overlap with the
teacher,

R= —(((W) )) W'. (4.24)

which measures the overlap of the networks with the
teacher. The values of these order parameters are ob-
tained by extremizing g„.

In general, evaluating the saddle-point equations for
Q„„and R& requires making an ansatz about the sym-
metry of the order parameters at the saddle point. The
simplest ansatz is the replica symmetric (RS) one,

1 —R 1 —R 1+R 1+R2'"2 2'"2 (4.20) The RS free energy of perceptron learning is (see Ap-
pendix D)

a result derived in Appendix C. It approaches zero as
1, meaning that there is exactly one state with

R = 1. This nondivergent behavior is typical of discrete
weight spaces.

To conclude, the picture emerging from the AA is ex-

1—Pf = —
(( ln Z )) = Go(q, R, q, R) —a G„(q, R),

N

(4.25)

where

1 1 0"
Go = ——(1 —q)q —RR+ — Dzln dp(W) exp[W . (zQj+ W R)],

2 N
(4.26)

1 - 2
&. = —f~f &u~ f &* m i pa *pl —e+u&+&de ——&-' —a(v)2

(4.27)
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and z is a vector of Gaussian variables (z;)~i with
Dz = Q,. Dz;. The free energy has to be extremized
with respect to the order parameters q and R, and their
"conjugate" counterparts q and R. Differentiating with
respect to q and R yields the saddle-point equations

q = — Dz (W), (W'), ,
1

(4.28)

R = — Dz (W'), W
N

(4.29)

The definition of the average (W'), in these two equations
reveals the meaning of the parameters q and R,

dp(W) W exp[W (z+q+ WOR)]

(W), =

~dp(W) exp[W (zQq+ WOR)]

(4.30)
In this equation, the local field z+q+ WOR acting upon
W consists of two parts. The first is a Gaussian random
field with variance q originating from the random fluctu-
ations of the examples. The second is the bias towards
the teacher weights W, with an amplitude R.

In general, we know from Eq. (2.58) that W must ap-
proach the optimal weight vector W' as n ~ oo. For a
realizable perceptron rule (W' = Wo), this means that
R ~ l. If W' is unique, the Gibbs distribution in weight
space contracts about it as n —+ oo, which means that
q ~ 1. The approach to the optimum is reflected in a
competition between the two terms of the local field: the
strength of the ordering term diverges (R ~ oo) and the
relative strength of the disorder goes to zero (~q/R ~ 0).

One criterion for the validity of the RS ansatz is the lo-
cal stability of the RS saddle point. Often one finds that
the RS solution becomes locally unstable at low temper-
atures, and hence invalid. In the phase diagram, the line
at which the instability appears is known as the A/meida-
Thouless line [47]. To find the true solution beyond this
line, one must break replica symmetry.

For systems with discrete-valued degrees of freedom,
a simpler diagnostic for RSB is available, based on the
fact that such systems must have non-negative entropy.
Below the zero-entropy line, the entropy is negative and
hence the RS ansatz must be incorrect. Hence the zero-
entropy line provides a lower bound for the temperature
at which RSB first occurs. Since the zero entropy line
is easier to calculate than the Almeida-Thouless line, we
will rely on it to estimate the location of the RSB region.

Since it is generally extremely difficult to find the cor-
rect RSB solution, we will consider only the RS solutions.
The only exceptions are the models of Secs. V D and VI C
below, for which we analyze the first step of RSB. Oth-
erwise, we expect that the RS solution will still serve as
a good approximation in the RSB region.

V. PERCEPTRON LEARNING OF
REALIZABLE RULES

A. Linear output with continuous weights

The case of a perceptron with the quadratic error func-
tion Eq. (4.9) defined on a continuous weight space is

G„= —in[1+ P(1 —q)] +-=1 1 P(q —2R+ 1)
(5 2)

The additional order parameter A is the Lagrange multi-
plier associated with the spherical constraint. Extremiz-
ing f with respect to the order parameters and eliminat-
ing A yields

R = R(1 —q),

q = (q+ R')(1 —q)'

(5.3)

(5 4)

/\ nR=
1+P(1—q)

'

q
—2R+ 1

[1+P(1 —q)]'

(5.5)

(5.6)

First we consider the simple case of zero temperature.
Only those weight vectors with zero training energy are
allowed, i.e. , those that satisfy

(W —W ) S'=0, /=1, . . . , P. (5.7)

For P ( N these homogeneous linear equations deter-
mine only the projection of W —Ws on the subspace
spanned by the P random examples S'. This implies
that the subspace of ground states of E has a huge de-

generacy; it is N —P dimensional. As P ~ N this degen-
eracy shrinks and for P & N there is a unique solution
to Eq. (5.7), W = Ws, for almost every random choice
of examples.

At T = 0 the saddle-point equations reduce to

n, n& 1q= R= (5 8)

For n ( 1, the fact that q ( 1 reflects the degeneracy of
the ground states, according to the definition Eq. (2.56).
When n reaches the critical value

the degeneracy is finally broken (q = 1), and the training
energy possesses a unique minimum W = Wo (R = 1),
in agreement with the simple arguments presented above.
Thus there is a continuous transition to perfect learning
atn=1.

However, this transition does not exist at any finite
temperature, because of thermal fluctuations about the
global minimum. From the saddle-point equations, one
can calculate that the asymptotic generalization curve is
given by

particularly simple. Krogh and Hertz [48] have done
a complete analysis of the training dynamics for this
model. Here we derive the equilibrium properties using
the replica theory.

Applying Eqs. (4.25)—(4.27), yields P—f = Gs —nG„,
with

1 1 - 1 „1R~+q 1
Go ———A + -qq —RR ——ln(A + q) +—

2 2 2 2 A+q 2'
(5.1)
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+O(n '),
2Q'

(5.10)

in accord with the general result (3.19) for smooth net-
works learning realizable rules. This means that at any
finite temperature, perfect generalization is attained only
in the limit of infinite Q. The above results are in agree-
ment with the dynamic theory of Krogh and Hertz [48].

It is interesting to compare the above exact results with
those of the AA. Evaluating Eq. (4.14), with g(z) = z
yields

where

t gq —R2 —yR
V'1 —

q
(5.18)

R= R(1 —q), (5.19)

q = (q + R')(1 —q)' (5.20)

and H(z) is defined as in (5.54). The saddle-point equa-
tions are

G,„=—ln [1 + 2P(1 —R)]
1

2
(5 11)

Adding this to (4.18) yields the annealed free energy of
Eq. (4.13),

R=
x/1 —q

-e2/2
Dt

(eP —1)-'+ H(v)
' (5.21)

Pf(R—) = —ln(1 —R ) ——ln [1+2P(1 —R)]=1 Q

2 2

(5»)

q=
ir(1 —q)

Dy
2

Dt [("—1) '+ H(u)l' '

(5.22)

which is extremized when

R nP
1 —R' 1+ 2P(1 —R)

(5.13)

where u is defined in Eq. (5.18) above, and

r R2) i~2

v ——t(( 1 —
q

(5.23)

The training error is given by

10Pf 1 —R
n BP 1 + 2P(1 —R)

(5.14)

The asymptotic behavior of cz ——1 —R agrees with the
correct result Eq. (5.10).

At T = 0, the AA predicts

The solution of these equations leads to a learning
curve with a 1/n tail for all T. Note that this power
law is not a consequence of the general 1/n law derived
in Sec. III, since a network with a Boolean output is not
a smooth network. At T = 0, the asymptotic learning
curve is

2 —2Q
, Q41.

2 —Q'
(5.15)

a~=2
/

(5.24)

in contrast to the true quenched result ~z ——1 —Q, n & 1.
Although the value of e~ is incorrect, the second-order
transition to perfect learning at Q, = 1 is correctly pre-
dicted.

B. Boolean output with continuous weights

0.625
(5.25)

Unlike the previous models, there is no transition at finite
Q to perfect learning at T = 0. In fact, there is no phase
transition at any T and Q.

The AA for this model is [Eq. (4.14)]

The Boolean perceptron with continuous weights cor-
responds to the original perceptron studied in [46, 49].
At zero temperature, weight, vectors with zero training
energy satisfy the inequalities

G „(R)= —ln
~

1—1 —e-~

yielding for the free energy

cos R (5.26)

(VV S')(W' S') & 0 . (5.16)

G„= —2 Dy Dtln [e ~ + (1 —e ~)H(u)j

(5.17)

Since these inequalities do not constrain the weight space
as much as the equalities (5.7), this model requires more
examples for good generalization than did the preceding
linear model. The quenched theory of this model has
been previously studied in detail [24]. We present below
a few of the results for completeness.

Since the a priori measure dp(W) is the same as in the
linear-continuous model of Sec. VC above, Go is again
given by (5.1). For a Boolean output, G„equals

1 1 —e-~
Pf = —ln—(1 —R ) + n ln 1—

ir
cos R

(5.27)

Evaluating R by minimizing the free energy, we find that

Eg
1 1—+o( ).

1 —e —PQ (5.28)

This agrees with the correct power law, but does not
predict correctly the prefactor; see Eq. (5.24).

Finally, it has been recently shown using the replica
method that the above 1/n law can be improved by at
most a factor of ~2, using a Bayes optimal learning al-
gorithm for the perceptron [50, 51].
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C. Linear output with discrete weights 0.4—

Imposing binary constraints on the weights of a per-
ceptron with a linear output modifies its learning per-
formance drastically. Let us first consider the zero-
temperature behavior. The weight vector must satisfy
the same P homogeneous linear equations as before,
Eq. (5.7), but now it is constrained to W; = +1. For al-
most every continuous input S, the equation (W —W ) .
S = 0 cannot be satisfied unless VF = W . Hence just
one example guarantees perfect learning at zero temper-
ature, i.e. ,

(5.29)

0.3-

T 0.2—

0.0 -,—————

0.0 0.2
t

0.4 0.6 0.8
I

1.0

X. A. nnealed approximation

As the phase diagram of the model at low T is rather
complex, it is instructive to first analyze the relatively
simple AA, which captures most of the qualitative behav-
ior. Using Eqs. (4.14), (4.15), and (4.20), the annealed
free energy is

1—Pf = —-nln[1+ 2P(1 —R)]
2
1 —R 1 —R 1+R 1+R

2 2 2 2

which is extremized when

(5.30)

h-'R = 1+2P(1 —R)

For large n, the learning curve

(5.31)

(5.32)

has an exponential tail. This decay is much faster than
the inverse power law of the linear or continuous model
(5.10), reflecting the severe constraints on the weight
space. Also, the prefactor of n in the exponent diverges
as T ~ 0, signaling the fact that

However, this argument does not exclude the existence
of local minima of E. In this case the main eA'ect of in-
creasing the number of examples is to smooth the energy
surface, in order to make the unique global minimum
dynamically accessible for large networks. In order to
investigate these aspects, study of the finite-T version of
the problem is extremely useful.

FIG. 1. Phase diagram of the linear-discrete model in the

(n, T) plane. The bold dashed lines are from the replica sym-

metric theory, and the solid thin lines from the annealed ap-
proximation. The spinodal lines, marked a and b, demarcate
the region where there are two metastable phases. The line
running between them is the thermodynamic transition line,
at which the two phases have equal free energies. In the RS
phase diagram there is a fourth line, running from the origin
to spinodal b. This is the RS zero-entropy line of the low-R
metastable state.

For n & 0.730 there is only a single local minimum. At
n = 0.730 another local minimum appears at higher R.
This is called a spinodal point of the full spinodal line a
in Fig. 1. At n & 0.756 the high-R minimum becomes
the global minimum of f Howe. ver, the local minimum
of lower R still exists for 0.756 & n & 0.781. Only above
n = 0.781, a second spinodal point, does the low R min-
imum vanish, leaving only the high-R one.

If the system can be truly equilibrated then the tran-
sition to a state with high generalization will occur along
the middle line in Fig. 1, which is therefore the thermo-
dynamic transition line. Note that this line starts from

0.03

0.02

0.01

~g
——0, T=0 (5.33) 0.00

for all n ) 0, in agreement with Eq. (5.29).
Evaluating Eqs. (5.30) and (5.31) one finds that at

low T and small n there are two solutions for R. The
full AA phase diagram is drawn in Fig. 1 with solid thin
lines. The lines marked a and b bound the region where
there are two locally stable states. These lines are called
spinodal lines. The thermodynamic transition hne in the
middle marks the points where the free energies of the
two solutions are the same. All three lines terminate at
T = 0.40, n = 0.87. The appearance of two free-energy
minima is demonstrated in Fig. 2 where graphs of the free
energy for T = 0.3 and various values of n are displayed.

-0.01

-0.02

-0.03—
I

0.4
I

0.6
R

I

0.8 1.0

FIG. 2. Annealed free energy of the linear-discrete model
as a function of the overlap R at T = 0.3 and o. = 0.730
(spinodal), a = 0.756 (thermodynamic transition), and a =
0.781 (spinodal).



6070 H. S. SEUNG, H. SOMPOLINSKY, AND N. TISHBY 45

the origin n = T = 0, implying that for any n as T ~ 0
the equilibrium state is the high-R state. Since in this
state R ~ 1 as T —+ 0 the equilibrium state at T ~ 0
is always R = 1, in agreement with Eq. (5.29). However,
the line approaches the origin as

n~Q. (5.34)

This implies that for a small number of examples even a
small noise in the dynamics will generate a transition to
the low-R state.

For training in large networks the most important tran-
sition is, in general, not the thermodynamic one, but
rather the spinodal line b. This is because starting from
initially random weights (R 0), the system converges
quickly to the nearest metastable state, which is the state
with low R as long as such a state exists. The time
required to cross the free-energy barrier to the thermo-
dynamic high-R phase is prohibitively large, scaling as
t e~N+/ where 6f is the height of the free-energy bar-
rier (per weight) between the two states. It is important
to note that, unlike the equilibrium transition line, the
spinodal line terminates at T = 0 at a finite value of n,
a = 0.556. This implies that in spite of Eq. (5.29), a
finite value of n is required to learn in a finite time. Ac-
cording to the AA the minimal value of n for learning at
T = 0 in finite time, denoted by n„ is n, = 0.556.

the saddle-point equations for q and R, Eqs. (5.36) and
(5.37), behave like

R —tanh R = tanh(nP),

q tanh R tanh (nP) .

(5.42)

(5.43)

n, =0,
n, = 0.48,

(5.44)

(5.45)

respectively. The result n, = 0 implies that for any n )
0, the training energy possesses a unique global minimum
R = 1. However, the training energy may still possess
low-R metastable states. These states vanish above the
spinodal point n, = 0.48.

Hence the generalization curve has the same exponential
tail ez 2e / as given by the AA in Eq. (5.32).

The RS phase diagram is drawn with bold dashed lines
in Fig, 1. The similarity of the RS phase boundaries to
those of the AA (thin solid lines) is remarkable. Between
the spinodal lines marked a and b, there are two locally
stable solutions of the saddle-point equations. The ther-
modynamic transition line runs between the two spin-
odals. The line running from the origin to spinodal b is
the RS zero entropy line of the low R metastable state.

At T = 0 the thermodynamic transition line and the
spinodal line b intersect the n axis at

8. Replica symmetric theory

The replicated Hamiltonian G„, Eq. (4.27), which de-
pends on the error function but not on the weight con-
straints, remains the same as in Eq. (5.2). The resulting
saddle-point equations are

R = Dztanh qz+ R

q = Dztanh qz+ R

(5.36)

(5.37)

1+P(1 —q)
' (5.38)

q —2R+ 1

[1+P(1 —~)1'
For any fixed temperature, R ~ 1 and q ~ 1 as n ~ oo.
To investigate this approach to the optimum, we note
that for large n

(5.39)

nP [2(1 —R) —(1 —q)], (5.40)
R oP. (5.41)

Clearly there is a divergence of R, the strength of the
ordering term in the local field of Eq. (4.30). At the
same time, ~q/R ~ 0, so that the relative strength of
the disordering term is going to zero. This means that

The replica symmetric free energy is given by
Eq. (4.25) where Gp, Eq. (4.26), is

1
Gp ————(1 —q)q —RR+ Dz ln 2 cosh(+qz + R) .

2

(5.35)

8. Numerical simulations

We have used the Metropolis Monte Carlo algorithm to
simulate learning in the linear-discrete perceptron. This
algorithm is a standard technique for calculating ther-
mal averages over Gibbs distributions [38]. The simu-
lations were performed for multiple samples, i.e. , difFer-
ent training sets drawn randomly from a common in-

put distribution. Here the inputs were chosen to be
S, = +I at random, i.e. , S was drawn randomly from
the vertices of the N-dimensional hypercube. This dis-
crete input distribution allowed us to take advantage of
the speedup ofFered by integer arithmetic, yet leads to
the same learning curves as the Gaussian input distribu-
tion (4.3) in the thermodynamic limit (see Appendix C).
The quenched average was performed over these samples,
and error bars were calculated from the standard error of
measurement of the sample distribution. In the figures
of this paper, when a Monte Carlo data point lacks an
error bar, it means that the error bar would have been
smaller than the symbol used to draw that point. In gen-
eral, fewer samples were required for larger N, because
of self-averaging.

In Fig. 3 we present the numerical results as well as the
RS theoretical predictions for the training and generaliza-
tion errors as a function of n. The results of the RS the-
ory are in very good quantitative agreement with Monte
Carlo simulations of the model at least for T ) 0.2. At
T = 0.2 [Fig. 3(a)] the prominent feature is the rapid
transition to R 1 near n 0.65. This is in agreement
with the spinodal point n, = 0.66 for this temperature,
which can be read from line b in Fig. 1. The location
of the thermodynamic transition is shown by a dotted
vertical line, and the first spinodal (corresponding to line
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g. Spin glass -phase

The above theoretical results, which were based on the
replica syrnrnetric ansatz described by Eqs. (4.22) and
(4.23), are not exact, at least for sufficiently low T and
n. This is indicated by the fact that the RS entropy of the
metastable state with low R becomes negative in the re-
gion marked SG in Fig. 1. The zero entropy line is a lower
bound for the temperature below which the metastable

1.0-

0.8-
0 Generalization

o Training

0.6-

04

0.2-

a in Fig. 1) is marked by an arrow on the a axis. The
roundness of the transition in the simulations is consis-
tent with the expected smearing of the discontinuity in
a finite system. At T = 1.0 [Fig. 3(b)] the generaliza-
tion curve decreases smoothly to zero with an exponen-
tial tail. The dependence of ez on N is also shown; the
training error did not vary appreciably. It is interesting
that the finite-size effects are much more noticeable for
the simulations at T = 1.0 than at T = 0.2.

state must be described by a theory with replica sym-
metry breaking. The interpretation of the RSB is that
for small o, the energy surface far away from the optimal
overlap R = 1 is rough. On the other hand, we expect
that the energy surface in the neighborhood of the op-
timal state is rather smooth. Hence the high-R phase
is probably described correctly by the RS theory, and
does not exhibit spin-glass properties. This is substanti-
ated by our calculation of the number of local minima in
Sec. V C 5. Because of RSB, we expect the true location
of the spinodal line at low T and n to differ from the RS
results, but this difference, and in particular the value of
e„may not be large.

$. Local minima

The above finite-T statistical-mechanical results ac-
count for the equilibrium state, as well as for metastable
states that are separated by barriers that diverge as
N —+ oo. However, the system may in addition possess
states that are local minima of the energy (2.1), but are
separated by barriers that remain finite in the N -+ oo
limit. Although these states are washed away by thermal
fIuctuations at any finite temperature, they may domi-
nate the dynamics at T = 0. Even at finite low T these
barriers may be high enough to prevent equilibration in
a reasonable amount of time.

Following Gardner [52], we calculate an upper bound
for the number of local minima as a function of the over-
lap R. Defining the outer product matrix of the examples
by

P

0.0 -,

0.0 0.2

: O
0 0 0 0 ~ O 0

0
I

) o.e0.4 0.8 1.0 the energy can be written as

(5.46)

1.0-

0.8-

0.6-

N

) TqW W~ + Nn, —
i,j=1

(5.47)

with W; = +1. This has the standard form of an Ising
Hamiltonian. The condition for a local minimum is

0.4-
h;W; &0

for all i, where the local fields h; are defined by

(5.48)

0.2- h; = ) T;~ (W~ —W~) + rr W; . (5.49)

0.0 -,

0.0 0.5 1.0 1.5 2.0 2.5

The number of local minima is then

O(h;W;) . (5.50)

FIG. 3. Learning curves for the linear-discrete model. (a)
Monte Carlo simulations at T = 0.2 for N = 100, averaged
over 64 training sets. The generalization and training curves
are from the replica symmetric theory, and portray the tran-
sition at spinodal 6 in Fig. 1. The thermodynamic transition
is marked by the dotted vertical line, and spinodal a by the
arrow on the a axis. (b) Monte Carlo simulations at T = 1
for N = 20, 50, and 600.

For a typical sample of examples we expect the loga-
rithm of the number of local minima in'(N, R) to be
extensive and hence self-averaging. We instead perform
the simpler annealed average

NF(R, n) = ln((A/(N, R) )), (5.51)
which yields an upper bound for the typical number of
such states ((ln Af(N, R) )). A saddle-point expansion
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yields

F(R = l, n) = 0

and (for R ( 1)

ln H( y)—

1 —R 6 1+
~

ln H(z) + —(z+ y)')2 2

n (z (1 —R)y2——
~

—+ ln + ln2
2 (y
1 —R 1 —R 1+R 1+R

ln ln
2 2 2 2

Here we have defined

(5.52)

(5.53)

confirmed by numerical simulations of the model at T =
0. We have found that the system converges rapidly to
R = 1 from almost all initial conditions for

n&1.0. (5.55)

D. Boolean output with discrete weights

This Boolean-discrete model, first studied by Gardner
and Derrida [23], exhibits a first-order transition from
a state of poor learning to a state of perfect learning
[37, 53]. Unlike the linear-discrete perceptron discussed
above, this model's transition persists at all tempera-
tures. The occurrence of this remarkable transition can
be understood using the high-temperature limit.

(5.54) The high-temperutere limit

and F has to be extremized with respect to z and y.
Figure 4 shows graphs of F(R, n) as a function of R

for various values of o. , obtained by solving the saddle-
point equations for z and y numerically. Wherever I"
is negative, then there are no local minima in the ther-
modynamic limit, since the annealed average is an upper
bound. As seen in the figure, F is negative near R = 1
for all values of o. In fact, it can be shown that as R ~ 1,
F ~ —n(z In 2 —

&) = —0.0966n. This implies that there
are no local minima in the neighborhood of the optimal
W, and the energy surface there is smooth. Note that at
R = 1, F = 0, i.e. ,

A' = 1 as expected.
Figure 4 also shows that as o. increases the size of the

hole in the number of local minima increases, until o. =
2.39, above which I" is everywhere negative, so that there
are no local minima at all. The implication for learning
dynamics is that there exists some o., & 2.39 above which
learning is fast even for T = O. This prediction has been

In the high-T limit the energy of the system is given
simply as Nnc(R). Hence, using Eq. (4.12) for c(R), the
free energy is simply

nP, 1 —R 1 —R 1+R 1+R
cos 'R— ln ln

2 2 2 2

(5.56)

R= tanh
nP
1 —R~

(5.57)

This state of poor learning R & 1 is the equilibrium state
for

This free energy is shown in Fig. 5 for various values of
n/T. In contrast to previous models, the state R = 1 is
a local minimum of f for all values of T and n. For small
values of n/T the state R = 1 is only a local minimum of
f, as can be seen in Fig. 5. The global minimum is given
by the solution of the saddle-point equation

0.2—

0.6-

0.1 0.5—

c
2.39

-0.1

0.2-

0.1

-0.2 —,

0.0
I

0.2
I

0.4
I

0.6
I

0.8 1.0

0.0—

-0.1

0.0 0.2 0.4 0.6
R

0.8 1.0

FIG. 4. Annealed upper bound for the logarithm of the
density of local minima in the linear-discrete model as a func-
tion of R. For n = I.o there is a small gap around R = 1.0.
As a increases, the density of local minima decreases, until
above a = 2.39 there are no local minima at all, except the
isolated minimum at R = 1 (marked with a solid dot).

FIG. 5. High temperature limit of the free energy Pf of
the Boolean-discrete model as a function of the overlap R for
n/T = 1.4, 1.7 (thermodynamic transition), 2.08 (spinodal),
and 2.5. The vertical dashed line at R = 1 marks the upper
bound of the allowed range of R.
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T & 0.59A . (5.58) 2. Replica symmetric theory

In this regime the optimal state R = 1 is only metastable.
If the initial network has R which is close to 1 the learning
dynamics will converge fast to the state R = 1. However
starting from a random initial weight vector R 0 the
system will not converge to the optimal state.

For T/a & 0.59 the equilibrium state is R = 1, al-

though there is still a local minimum, i.e. , a solution of
Eq. (5.57) with R & 1. Finally for

Because of the unusual features of the transition in
this model we will analyze the quenched theory in some
detail. We first study the replica symmetric theory and
then investigate the replica symmetry breaking in this
system.

The RS free energy is given by combining Go of the
perceptron with discrete weights, Eq. (5.35), with G„ for
a Boolean output, Eq. (5.17), yielding

T & 0.48A, (5.59) 1—Pf = —-(1 —q)q —RR+ Dz ln 2 cosh(Qqz + R)
2

there is no solution with R & 1 to Eq. (5.57). In this
regime (beyond the spinodal), starting from any initial
condition the system converges fast to the optimal state.

The collapse of the system to the energy ground state
at finite temperature is an unusual phenomenon. The
origin of this behavior is the square-root singularity of
c(R) at R = 1. This singularity implies that a state
characterized by bR = 1 —R « 1 has an energy which is
proportional to R = Dz tanh qz+ R (5.67)

Dy Dtln e P+ (1 —e ~)H(u)
0 —OO

(5.66)

where the function H(z) is as defined in (5.54). The
saddle-point equations are

E oc N MSR . (5.60)
q = Dztanh qz+ R (5.68)

SNGo(R) oc N(SR) ln (SR) . (5.61)

This big increase in energy cannot be offset by the gain
in entropy, which is proportional to OO e-o2/2

R= Dt
z gl —q (eP —1)-' + H(v)

' (5.69)

This effect can be nicely seen using the microcanonical
description. According to Eq. (2.27) above, a smooth
low-temperature limit exists provided that

Bs c)
lim =oo.

&~&min
(5.62)

On the other hand, Eq. (4.20) implies that in the present
case

88(c) —~ln~, ~~0. (5.63)

Thus the rate of increase in entropy is too small to give
rise to thermal fluctuations below some critical temper-
ature.

It is instructive to apply the above argument to the
case of states that differ from the ground state by a flip
of a single weight. According to Eq. (5.60) the energy of
such states is

2OO OO e
q = Dy Dt

(1 —q) o K" —1) '+ ( )j' '

(5.70)

where u and v are given by Eqs. (5.18) and (5.'23) above.
At T = 0, the equations simplify somewhat, since q =

R and q = R. For n less than

o, , = 1.245, (5.71)

there are two solutions, one with R = 1 (perfect gen-
eralization), and one with R & 1 (poor generalization).
The R & 1 saddle point has the lower free energy, and
is therefore the equilibrium phase. Upon crossing this
critical o. , the balance of free energy shifts, and there
is a first-order transition to the R = 1 state. Hence at
o,, = 1.245 there is a discontinuity in the generalization
curve, a sudden transition to perfect learning. However,
the R & 1 state still remains as a metastable phase until
the spinodal point

E oc V N, (5.64)
o,, =1492. (5.72)

whereas the entropy associated with such an excitation
is only

SNGo(R) oc ln N .

It should be emphasized, however, that examining the
spectrum of the first excitations is not generally su%cient
for determining the thermodynamic behavior at any fi-
nite T, where the relevant states are those with energy
of order NT.

At any fixed T, there is the same sequence of thermo-
dynamic transition followed by spinodal transition with
increasing a. The RS phase diagram is shown in Fig. 6.
To the left of the dashed thermodynamic transition line,
the state of poor generalization R & 1 is the equilibrium
state, and the state of perfect generalization R = 1 is
metastable. In the region between the dashed line and
the solid spinodal line, the situation reverses, with R = 1
becoming the equilibrium state and R & 1 the metastable
state. To the right of the spinodal line, there is no low R
metastable state.
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1.0- (((~ ) )) . (5.73)

08 - Po
The parameter qo represents the average overlap between
a pair of two different states a and 6, i.e. ,

0.6- « = + (((~ )& ' (~b)T )) . (5.74)

0.4—

0.2-

When the n ~ Q limit is taken, the size rn of the step in

q(z) (see Appendix E) must be determined variationally,
like qo and q~. Denoting the Gibbs probabilities of the
diH'erent states by P, = exp( —PF, ), it can be shown [45]
that

0.0 -,

1.0 1.5
I

2.0
a

I

2.5
I
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FIG. 6. RS and one-step RSB phase diagram for the
Boolean-discrete model. To the left of the dashed thermody-
namic transition line, the equilibrium state has R ( 1 (poor
generalization), while the perfect generalization state (R = 1)
is metastable. Between the dashed line and the solid spinodal
line the R = 1 state is the equilibrium one, while the R ( 1
state is metastable. To the right of the spinodal line, there
is no 8 ( 1 phase. In the region marked "SG," the one-step
RSB calculation predicts a metastable spin-glass state.

m=1— p2
a (5.75)

Hence m is the probability of finding two copies of the
system in two different states.

In the present model, a one-step RSB solution exists
in the regime marked SG in Fig. 6, below the line Tz(n)
This SG phase is special in that q~

—1, independent of
both T and n. From Eq. (5.73) it follows that each of
the different valleys is completely frozen, i.e. , there are no
fluctuations in W within each valley. Indeed, the entropy
of this phase is zero (to linear order in N) For fixed. n,
the order parameter qo does not vary with temperature
within the SG phase; it is frozen at its value on the phase
boundary T&(n) The same. holds true for eq and R, i.e. ,

8. Replica symmetry breaking
and metastable spin-glass phase

qo (T, n) = qo (T~ (n), n),
e, (T, a) = e, (Tg(n), n),
R(T, n) = R(Tg(n), n),

(5.76)

(5.77)
(5.78)

The line Tz(n) in the T nplane, wh-ere the RS "poor
generalization" state (R ( 1) has zero entropy, is the up-
per border of the region marked SG in Fig. 6. It should
be noted that this line Tz(n) is to the right of the ther-
modynamic transition line and coincides with it only at
T = 0 (at a = 1.24). This implies that the RS theory is
invalid for this metastable phase only. To find the cor-
rect metastable state (with poor generalization) at low T
we must search for saddle-point solutions to the replica
theory that break the replica symmetry.

To gain a better understanding of this metastable
state, we have studied a solution to the replica mean-
field theory with a one-step replica symmetry breaking
ansatz. Our study is based on the work of Krauth and
Mezard [33] concerning the problem of loading random
dichotomies on a perceptron with discrete weights. The
formal derivation of the mean-field equations is presented
in Appendix E. Here we present the main results and
their physical meaning.

In the one-step ansatz of replica symmetry breaking,
the n x n order parameter matrix Q&„acquires two off-
diagonal values qo and qq arranged in a block structure of
m x m submatrices (see Appendix E). This block struc-
ture reflects the existence of many, almost degenerate,
spin-glass (SG) states [45]. These states are valleys in
the free-energy surface that are separated by barriers that
diverge with the system size [43]. The parameter qq rep-
resents the overlap of each state with itself, i.e. , it is the
order parameter q, Eq. (2.56), measured within a single
valley denoted a,
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FIG. 7. Training and generalization errors of metastable
spin glass phase in the Boolean-discrete model, according to
the one-step RSB ansatz. In this phase, the errors are inde-
pendent of temperature, and are given by their RS values on
the zero-entropy line T~(a) of Fig. 6.

everywhere in the SG phase. The values of cq(n) and
ez(n) in this phase are shown in Fig. 7. The parameter
m is linear in T, m = T/T~(n) Near t.he transition
temperature T&, the degeneracy is very severe so that
m 1. At T = 0 the degeneracy is broken, and the
Gibbs weight concentrates in the SG metastable state
with minimal energy, resulting in rn = O.
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A similar frozen SG phase exists in the perceptron
model of Krauth and Mezard [33], and was first discov-
ered by Derrida in the random-energy model [54]. How-
ever, unlike these other examples, the SG phase in the
present model is only a metastable phase, as evidenced
by the nonzero e& in Fig. 7. Hence the one-step RSB
theory does not alter the RS prediction that the zero
temperature thermodynamic transition is at o = 1.245.
However, it raises to

1.45-

1.40-

1.35-

o,, = 1.628 (5.79) 1.25-

the spinodal line for the vanishing of the metastable SG
phase in Fig. 6.

g. Numerical simulations

1.20 -,

0.0
I

0.02 0.04
1/N

I

0.06 0.08
I

0.10

Figure 8 shows learning curves for Monte Carlo sim-
ulations with N = 75, averaged over 32 samples. At
T = 1, there is quite a good fit if the transition is taken
to occur at the spinodal line. At lower temperatures, the
Metropolis algorithm tends to become trapped in local
minima, making equilibration dif6cult. Hence we cannot
use it to check the T = 0 predictions of the quenched
theory.

The Metropolis algorithm produces a random walk
through weight space that samples the Gibbs distribu-
tion. For small system sizes, we do not have to sample
the weight space; we can explore it exhaustively. Gard-
ner and Derrida [23] applied this idea to compute n, at
T = 0. Starting with all 2N possible student vectors,
an example is chosen at random, and all student vectors
that "disagree" with the teacher are eliminated. Eventu-
ally some number of examples P is reached such that the
addition of one more example produces perfect learning.
Then n, (N) = P/N for this sample. The procedure is
then repeated with a different set of examples, so that o;,
can be sample averaged.

FIG. g. Graph of n, vs 1/N at T = 0 for the Boolean-
discrete model from exhaustive search. Each data point is the
average of roughly 10 or 10 random samples of examples.
The error bars are the standard error of measurement over
the sample distribution. A least-squares fit to a quadratic
function yields the extrapolation n, (N = oo) = 1.30 + 0.03.
The replica symmetric prediction a, = 1.24 is also marked.

We have extended the results of Gardner and Derrida
up to the size N = 23. With the discrete inputs S; =
+1, only odd N were used, so as to avoid the situation
W S = 0. Figure 9 exhibits n, as a function of 1/N,
with each data point an average of from 10s (large N) to
10s (small N) samples. Fitting to a quadratic function
and extrapolating to N = oo yields the estimate n, =
1.30+ 0.03, which is fairly close to the prediction 1.245
of the quenched theory. It is possible that the quadratic
function assumed here may be a poor approximation to
the true finite-size scaling. This would account for the
remaining disagreement between the numerics and the
theory. See Ref. [55] for more simulations and an at tempt
at addressing the question of finite-size scaling.

0.5- VI. PERCEPTRON LEARNING
OF UNREALIZABLE RULES

04-

0.3-

0.2—

0.1

& Generalization

o Training

p

0

So far we have studied examples of perceptron learning
of realizable rules. In this section we study three rules
that are unrealizable because of architectural mismatch.
In the first model, the student and teacher perceptrons
are mismatched due to their different transfer functions.
In the second and third models, the teacher's weight vec-
tor is not included in the weight space of the student.

A. Linear-continuous perceptron
with unrealizable threshold

0.0 -,

0.0
I
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I
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FIG. 8. Learning curves for the Boolean-discrete model.
Monte Carlo simulations at T = 1.0 and N = 75, averaged
over 32 samples. The solid line and dashed lines are the RS
generalization and training curves for the spinodal transition.
The thermodynamic transition is marked by the dotted ver-
tical line.

In this model, the perceptrons of the student and
teacher both have linear outputs and continuous weights,
as in the model of Sec. V A. However, in the present case
the transfer function of the teacher has a threshold, i.e. ,
the rule is given by Eq. (4.5) with a transfer function
g(z) = gp(z), where

gp(z) = z y 0 .
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g(z) = z . (6.2)

The realizable linear-continuous model of Sec. VA cor-
responds to the case 8 = 0.

The average of the error function

1
~(W; S) = [(W —Wo) S —V N8]2N (6 3)

The output of the trained network is given by Eq. (4.1)
with

In the T ~ 0 limit there is a critical n below which
the examples can be loaded with zero training error. This
value is

2+ 02 —0+2+ 02

2
(6.12)

For n & n„q is less than 1 and the values of the order
parameters are given by the saddle-point equations

(6.13)
over the input distribution, Eq. (4.3), yields the general-
ization error

n02
g = n+

1 —n
(6.14)

12
e(W) = 1 —R+ —8

2 (6 4)

1 p02
pf = p—fe=o ——

2~1 p(1 ), (6.6)

where fe 0 is the —RS free energy of the realizable case;
see Eqs. (5.1) and (5.2). The saddle-point equations are
the same as (5.3)—(5.6), except that Eq. (5.6) for q must
be modified to

2q —2R+ 1+ 0

[I+P(1 —q)]'
(6 7)

For fixed temperature and n —+ oo, we find the asymp-
totic learning curves

At R = 1, the generalization error takes on its minimum
value e;„=82/2. Recall that according to Eq. (2.58),
the average training and generalization errors both ap-
proach cmj„as n ~ oo, at all T.

As in the linear-continuous model, the T = 0 behavior
can be understood from geometric arguments. Weight
vectors with zero training error must satisfy P linear
equations

(W —W ) S' = MN0, t = 1. . . P (6.5)

and the spherical constraint W W = N. There exists
an n, ( 1 such that for n & n„ these equations have
solutions. For n ) n„ the equations have no solution, so
that the training error rises from zero, and asymptotically
approaches E'~jn as n ~ oo.

The RS free energy is

In this regime the minimum of e& is highly degenerate
with an extensive zero-temperature entropy. Note that
for any threshold 0, the critical n satisfies the bounds
I/2&n, &1. Forn) o„q~1 asT~O, with
P(1 —q) approaching a finite value. Thus at T = 0 the
order parameters are given above n, by

2Rs = (2+ n + 0')R' —n,

P(1 —q) = R
(6.15)

(6.16)

The zero temperature n, of this and other unrealiz-
able models is similar to the n, defined for the prob-
lem of loading random patterns onto a network. In both
cases n, is the limit of storage capacity above which no
weight vectors can achieve zero training error. This is in
contrast to the n, that we defined for realizable models,
above which there is exactly one weight vector which can
achieve zero training error.

As in the zero-threshold linear-continuous model, we
expect that in this linear model the RS theory is exact for
all T and n. Furthermore, the learning dynamics should
be quick, since there are no spurious local minima in the
training energy.

In Sec. II D we noted that the AA may yield the wrong
n —+ oo limit, for unrealizable, non-Boolean rules. The
present model is a simple example of this phenomenon.
In the present case, G, Eq. (4.14), is

=1 P02
G,„(R)= —in[1+ 2p(1 —R)] +—

(6.17)
T+ 0'

ee
——e~;„+ + O(n ),2n

T —0t: min+ + ( ).
2n

(6.9) P f(R) = ——ln(l —R ) ——ln [1+2P(1 —R)]
2 2

(6.8) The resulting annealed free energy, Eq. (4.13), is

To compare with the general results Eqs. (3.12) and
(3.14) for smooth networks, we note that in the present
case 0;e(W, S) = N i 0S, and 0;Bze(W— , S)
N S,Sz, so that the matrices defined in Eqs. (3.4) and
(3.5) are

2 1+ 2P(1 —R)
(6.18)

In the n —+ oo limit R is determined by minimizing G „,
yielding

U~=N 0 b~.

(6.10)

(6.11)

1, 0'(T
R= 1 —i(02 —T), T & 02 & T+4

—1, T+4&0'.
(6.19)

Hence the coeKcient N Tr VU in Eqs. (3.12) and
(3.14) equals 02, in agreement with Eq. (6.8) above.

According to these results, when 0 ~ 4 and T = 0, the
weight vector W approaches —W as n ~ oo.
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1 pg(1 —R) 0

~~ 1+2P(1 —R)
(6.20)

implying that the inputs are biased towards —0W . It
is important to note that the magnitude of the bias is
small —down by ~N from the magnitude of S. However,
it is enough to push W towards —W, leading to overlaps
as low as R = —1. Finally, note that in the realizable case
0 = 0, the average of S is zero. However, even in this
case the second moments of S are in general distorted,
except when R = 1. This is consistent with the general
expectation that the distortions of the input distribution,
implied by the AA, are relatively small in realizable rules.
But they vanish only in the limit of o. ~ oo.

B. Linear output with weight mismatch

To understand the origin of this gross failure of the
annealed approximation we recall from Sec. II D that the
annealed approximation can be viewed as the exact the-
ory for a stochastic training dynamics in both weight and
input space, leading to the Gibbs distribution (2.43) in
both W and S space. The magnitude of the resulting
distortion in the posterior distribution of the inputs rel-
ative to their a priori one determines the quality of the
approximation. In the present case we can obtain a mea-
sure of this distortion by calculating the average of an
input vector, e.g. , (S~) „. In the a priori Gaussian dis-
tribution of inputs (4.3), the average value of an input is
of course zero. On the other hand, evaluating this aver-

age using the posterior Gibbs distribution (2.43), implied
by the AA, we find

~min: 1 —Roo: 0.202 (6.24)

Before we present the replica solution we note that
both the high-T and the annealed approximations predict
for this model e&(n) —e,„ocn, n ~ oo. As we shall
see below, this is not the correct asymptotic behavior.

f. Bey/ica symmetric theory

R ~ q
—2R+ I

(I- q)' ll+P(I-q))' '

nP(1 —q)
1+P(1 —q)

'

q = Dztanh (+qz) .

(6.26)

(6.27)

(6.28)

To obtain the asymptotic form of the learning curves we

have expanded the solutions in powers of o. keeping T
fixed. We find

Here the replicated Hamiltonian G„ is that of the pre-
vious linear models, Eq. (5.2). From Eq. (4.26) Go may
be calculated for the case of mismatched weight spaces.
Making the change of variables q+ R ~ q, and then
eliminating R altogether, one obtains the free energy

1 1 R2
Pf—= ——(1 —q)q —— + Dz ln 2 cosh(Qqz)

2 2 1 —q

——In[1+ P(1 —q)] ——Q n P(q —2R+ 1)
(6.25)

2 2 1+P(1 —q)

The saddle-point equations are

In this model, the unrealizability is due to a mismatch
in weight space between teacher and student. We as-
sume that the weights of the teacher network W are
real valued whereas the trained network is restricted to
W; = +1. For simplicity we consider here the case where
the individual teacher weights W; are drawn from a con-
tinuous Gaussian distribution P(W; ),

&min R~
&g = &min+

A'

3 3 5+R ——————+4R
2 7r3 7r

~' ( 6R+—
l

T —
l

—+ 0(n ), (6.29)
24 ( z2 ) n2

P(Wo) (2 )
-1/2 —(1/2)(w, ) (6.21)

~t —&min
&min R~

W;* = sgn(W; ), (6.22)

which corresponds to the maximal overlap

R = —) lw'l

dW PW W = 27r. (6.23)

As in the previous linear perceptron models the error
function is given by Eq. (4.9), and the generalization er-
ror for a given network by Eq. (4.10). In the present
model the optimal weights for the restricted architecture
of the trained network are

+R
l

—+ ——R + T'
l

—+0(n—-s) .
k2 z 24 ) nz

(6.30)

Thus for any fixed T the leading behavior of the errors is
an o. power law. This power law is not a consequence
of the general results (3.12) and (3.14), since the present
network is not smooth. Note that in the high-T limit,
only the term T a survives. Thus for this unrealizable
rule the behavior predicted by the high-T limit (as well
as by the annealed approximation) does not reflect the
correct behavior at large 0 for any fixed T.

In the T ~ 0 limit with 1 —
q finite the saddle-point

equations reduce to
The second equality holds in the thermodynamic limit.
The minimal generalization error, achieved in the limit
A ~oo) ls

R=0. ,

q(1 —q) = —n2+ n(1+ q),
(6.31)
(6.32)
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1 —q = Dz sech qz (6.33)
0.25-

Criticality is reached when q ~ oo, and 1 —
q

—+ 0, which
happens at

0.20-

( 2) i/2
n, = 1 —

i
1 ——

i

= 0.397 .z') (6.34)

0.15—

0.10-
Above n„ the limit P ~ oo must be taken with P(1 —q)
constant, yielding 0.05-

0 = 2R —(2+ n)R + (6.35)

(6.36)

0.00 -,

0.0 0.5
I

10 50

At n„p(1 —q) diverges, indicating that the finite 1 —
q

solution takes over.

2. Optimal temperature

FIG. 10. The RS zero-entropy line for the linear-
mismatched model, which is a lower bound for the temper-
ature at which RSB occurs. The line approaches the limit
T = 0.242 (dashed line) as n ~ oo.

We define the optimal temperature T &t, (n) as the tem-
perature that minimizes es(T, n). For our models of real-
izable rules, the optimal generalization error was at T = 0
for all values of n. But in general, T pt, may be greater
than zero, although the convexity of the free energy guar-
antees that the training error is a nondecreasing function
of T. This is the case in the present model, as can be
seen from Eq. (6.29), which implies that

(6.37)

8. Replica symmetry breaking

The above RS theory is not exact at low T First, .
the prediction of a finite value of o., is probably incor-
rect. As in the corresponding realizable discrete model
of Sec. V 8, we expect that

n, =o, (6.38)

i.e. , there is no vector of discrete weights that satisfies or-
der N real, random linear equations. Second, the entropy
of the RS solution becomes negative at low T, as shown
in Fig. 10. The asymptotic form of the zero-entropy line
can be calculated by expanding the entropy in powers of

as o. ~ oo. Note, however, that the leading term of
Eq. (6.29) is independent of T, implying that in the
present model the effect on es of optimizing with respect
to T is relatively small.

temperature gives a lower bound on the temperature at
which replica symmetry is broken. Below this tempera-
ture, a spin-glass phase with replica symmetry breaking
occurs. As T ~ 0, the zero-entropy line approaches the
origin, i.e. , the RS entropy is negative for all n at T = 0.
This means that the RS solution is incorrect at T = 0 for
any n, and in particular that the RS prediction (6.34) for
n, is incorrect, which is consistent with our prediction,
Eq. (6.38).

Below T = 0.242, the system never escapes from the
spin-glass phase even as n ~ oo (see Fig. 10). Note,
however, that the entropy (6.39) approaches zero from
below. This suggests that the eKects of RSB become less
severe as o. ~ oo.

g. Numerical simulations

Figure 11 exhibits Monte Carlo simulations at T = 0.5
and 0.1 with 1V = 100 and 64 samples. Even at T = 0.1
[Fig. 11(b)j the fit to the RS theory is very good, even

though for a ) 0.76 the curves are in the RSB region.
This suggests that the eKects of RSB in this system are
weak. The RS T = 0 learning curves are also plotted for
comparison. Note that above n ) 0.6, the generalizat, ion
error for T = 0.1 is less than that at T = 0. At least
in this range, we may thus conclude that the optimal
generalization temperature T pt- ) 0, assuming that the
RS theory is a good approximation for the true behavior
in the RSB region.

(6.39)

The s = 0 temperature approaches the finite limit

3R
T, ,(~) , = 0.242 (6.40)

as n ~ oo. The full line is drawn in Fig. 10 for all o.. This

C. Boolean output with weight mismatch

As in the previous model, the teacher weights are again
drawn from a continuous Gaussian distribution, whereas
the student weights are constrained to +1. However, here
we consider the case where the perceptron transfer func-
tions of both the teacher and the student are Boolean.
The maximal overlap is still R = g2/s, but the opti-
mal generalization error is now
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1;„=—cos R = 0.206 .
7r

(6.41)
where the function H(z) is as defined in (5.54) above.
The saddle-point equations are

As in the previous model, both the high-T and the an-
nealed approximations predict cs(n) —e~;„ocn, n ~
oo. Vk shall see below that the true asymptotics are
quite de'erent.

f. Replicu symmetric theory

For this model, Go is the same as that of the previous
section, and G„ is that of the previous Boolean models

Kq. (5.17). Hence the RS free energy is given by

1 . 1 R2
Pf—= —-(1 —q)q —— + Dz ln 2 cosh(+jz)

2 2 1 —q

+2n Dy Dt ln [e ~ + (1 —e ~)H(u)
0 —OO

(6.42)

1.0-

R oo —e /2
Dt

+1 —q
z. (e& —1)—'+ H(v)

' (6.43)

OO OO —tL
2

e

t -~r 'f. "f= 'r ~- ~- + (.)i
(6.44)

q = Dz tanh qz (6.45)

The quantities u and U are given by Eqs. (5.18) and (5.23)
above.

The large-n limit of the RS theory is derived by ex-

pansion in 1/~n keeping P fixed,

1 z i&4 I(P) 1
cs —~,„+ ——1 ( + 0(n '),

ps~' n

(6.46)

0.8-
ion

where we have defined the integral

0
UJ

0.6-

0.4-
As P ~ oo, I(P) (2P)si z/3, so that

(6.47)

0.2 - ~p-a--o~
D-D- D 0~a~ 0 4 ~a~ 0 0 0 ~

~/4 1
~s(T = O, n) = c;„+-Q2/7r ——1 +0(n ') .

3 2 n

0.0 -,

0.0

1.0-

0.8-

I

0.5 1.0 1.5 2.0 2.5

(b)

(6.48)

Thus for any fixed temperature, the RS generalization
curve possesses a 1/~n tail.

At T = 0, one solution of the RS equations is obtained
by taking the limit P ~ oo with 1—q finite. This solution
ceases to exist when q ~ 1, which happens at the point

0.6-
or

Rc

1 —R2
Qc 2= —' =cot-
7r O;c

(6.49)

UJ

0.4- n, = 1.99, R, = 0.534 . (6.50)

0.2

a p p p p p p p p

Above n„ the limit T -+ 0 must be taken with P(1 —q)
finite, yielding

0.0
0.0 0.5 1.0

I

1.5
I

2.0 2.5

—p(s —q)/(s —a') (6.51)

FIG. 11. Learning curves for the linear-mismatched
model. (a) Monte Carlo simulations at T = 0.5 with N = 100
and 64 samples, with lines from RS theory. The dotted hor-
izontal line is the asymptotic error c „. (b) Simulations at
T = 0.1. Note that the RS curves (solid lines) fit the data
even beyond the zero-entropy point a = 0.76, where there
is RSB. The dashed line is the T = 0 RS curve, shown for
comparison.

R~ —Qo Q~ ~20

(6.52)

The RS theory predicts that the optimal tempera-
ture for generalization T &,(n) is nonzero for n above

ath = 1.27. The shape of T»t(a) for large n can be de-

rived using the high-temperature expansion of Appendix
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F. The dominant terms are which leads to the power law

T pt; 0 239 ct' (6.54)

However, as we will see below, this RS optimal temper-
ature lies below the zero temperature line, i.e. , in the
regime where the RS solution is unstable.

2. Spin-glass phase

The RS entropy vanishes on the line shown in Fig. 12.
Here again the 8 = 0 line provides a lower bound for
the spin-glass transition temperature. Comparing with
Fig. 10 two differences should be noted. First, the line
intersects the a axis at a finite value, at

o., = 1.106 . (6.55)

1 vr i~4 1 i/2 T&y: &mjn+ —1 T 0'+—

(6.53)

The I/~n term comes from expanding the coefficient of
the quenched result (6.46) in P. Thus it represents the
result of first taking the T/o. ~ 0 limit and then the
P ~ 0 limit. The I/n~ term is just the leading term
from the high-T limit, which amounts to taking first the
P ~ 0 limit and then the T/o. ~ 0 limit. The optimal T
at large a is obtained by minimizing with respect to T,
yielding

0.315Q', 0! ~ oo . (6.57)

Eg(T, Q') —t~in ~ 0.185 o (6.58)

which is independent of T. This power-law decrease is
faster than the RS prediction I/~n, Eq. (6.48).

Equation (6.56) also reveals that at fixed T, the RS en-
tropy goes to —oo as o, ~ oo, indicating that replica
symmetry is violated more and more severely.

Like the realizable Boolean model with discrete
weights, this model possesses a frozen one-step RSB so-
lution (see Appendix E). However, in contrast to the
Boolean or discrete model, this one-step solution is the
equilibrium, not the metastable phase, and exists for ar-
bitrarily high n. According to this RSB solution there is
spin-glass phase everywhere below the s = 0 line. The
training and generalization errors in the SG phase are
given by their values on the phase boundary Tz ——T,—o
at the same a [see Eq. (5.76)j. This is shown in the plot
of es in Fig. 13. Since T~(n) is above the RS T ~i(o),
there is no minimum in cz(T) for any n. Instead there is
a whole regime of temperatures where e& does not change
with T, implying that optimal generalization can be ob-
tained anywhere on or below the zero entropy line,

For any fixed T, the n ~ oo limit enters the RSB
regime. Hence the large o, limit of E'g for any fixed T is
given by substituting Eq. (6.57) in Eq. (6.53), yielding

Second, T,—ii(o. ) diverges with n. The asymptotic be-
havior can be calculated using a double expansion in the
variables P and T/n In Appen. dix F, we discuss the ex-
pansion, and how to locate the dominant; terms through
power counting. They are

i/4 1 ~2 ~ 1/2 T8= ————1 — 0,' T+ ———1
4x 2 T 6 2

(6.56)

8. Numerical simulations

Figure 14 shows Monte Carlo simulations at T = 0.5
and 1.0 with N = 75, averaged over 64 samples. Be-
low T = 1 the training curve is significantly different
from the RS result. These deviations for T = 0.5 are
significantly larger than those observed for the linear-
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10 50

FIG. 12. RS zero-entropy line for the Boolean-mis-
matched model. The line intersects the a axis at the finite
value a = 1.106.

FIG. 13. Generalization error for fixed a = 1.2, 1.6,
2.0, 2.4, 2.8, and 3.2 as a function of T for the Boolean-
mismatched model. Each curve is a combination of the one-
step RSB solution below Ts(a) (marked with a dot on each
curve) and the RS solution above. The light dotted lines are
the continuation of the RS curves below Ts(a). Note that the
minimum of each of the RS curves is below Ts(a)
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in certain circumstances to train the system at finite T
because convergence times may be prohibitively long at
T = 0. This is particularly true for highly nonlinear
models, such as the Boolean perceptron with discrete
weights. Although the critical number of examples per
weight n, (T) increases with T in this model, we have
found in our simulations that the time it takes to con-
verge to the optimal state in this model, increases dra-
matically as T is lowered. It should be stressed however
that we have used only a simple Monte Carlo algorithm.
Recently several heuristic training algorithms for percep-
trons with binary weights have been proposed [34, 56]. It
would be interesting to study their dynamic and gener-
alization properties.

0.5

0.4
o Generalization

o Training

0.3
o o 0 0 a n
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0 0

0 0
0

e s o.
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FIG. 14. Learning curves for the Boolean-mismatched
model. (a) Simulations at T = 1.0 with N = 100 and 32
samples. Each learning curve is a combination of the RS so-
lution below the zero-entropy point a = 6.4 and the one-step
RSB solution above. The light dotted lines are the contin-
uation of the RS curves above n = 6.4. (b) Simulations at
7 = 0.5.

mismatched model, indicating the importance of RSB for
this model. The RSB solution fits fairly well at large o, ,

but in the vicinity of the transition, there are still some
deviations between the theory and simulations. These
deviations may be the result of difficulties in equilibrat-
ing the system near the transition.

VII. DISCUSSION

A. Learning at Bnite temperature

In this paper we have studied the process of learning
from examples with a stochastic training dynamics. The
level of noise in the dynamics is denoted by the tem-
perature T. One of the most important results of our
analysis is that learning at finite temperature is possi-
ble, and sometimes advantageous. For any finite T, as
the number of examples increases, the network weights
approach their optimal values, namely the values that
minimize the generalization error. Thus even when the
generalization error increases with T it may be profitable

B. The high-temperature
and annealed approximations

%e have presented two approximate theoretical ap-
proaches to the problem of learning from examples in
layered networks. The first approximation replaces the
training energy by the number of examples times the gen-
eralization error, and becomes exact in the limit of learn-
ing with high thermal noise level. The dependence on T
and o; is only through the effective temperature T/n
Even in this simple approximation, perceptron models
exhibit a rich spectrum of generalization behaviors.

The second approximation, the annealed approxima-
tion, reduces to the proper high-T limit, but deviates
from it significantly at finite o, and T, where the behav-
ior is no longer a function of only the ratio of the two
parameters.

In all four realizable perceptron rules studied here,
these approximations have predicted correctly the shapes
of the learning curves at finite T and large o, . Further-
more, the AA has yielded interesting results at finite T
and o, that are qualitatively correct. For instance, the
first-order transitions predicted by the AA for the per-
ceptrons with discrete weights are clearly observed in the
simulations, Figs. 3 and 8, and are in agreement with the
full quenched theory.

On the basis of our general arguments in Secs. II and
III, we expect that these approximations will also hold for
realizable rules in the more complex cases of multilayer
networks. This is borne out in recent, studies of tw~layer
networks of local feature detectors [35], and other mul-
tilayer systems [36]. Thus these approximations provide
powerful theoretical tools for the study of learning from
examples, at least for realizable rules.

Our treatment should be contrasted with the di%cult
problems of the capacity of single- and multilayer net-
works [57—59]. The capacity problems usually deal with
loading random sets of data. In this case the system
is highly frustrated and one has to employ the complex
methods of spin-glass theory, such as replica symmetry
breaking [33, 60]. In the learning problems of the present
work, the training set consists of very structured data,
generated by a well-defined rule. The underlying struc-
ture is represented in our formulation by the general-
ization function e(VV), Eq. (2.4), which dominates the
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behavior of the system at least when the number of ex-
amples is large. This function would be completely flat,
and therefore meaningless, in the case of random training
sets.

In fact, the high-T limit ignores completely the fluc-
tuations due to finite sampling of the rule. It is thus
useful in studying how learning is affected by the na-
ture of the target rule [e.g. , through the function c(W)]
as well as by the network architecture [e.g. , the entropy
s(e), Eq. (2.26)]. As has been explained in Sec. III the
AA does take into account the effect of randomness in-
duced by the examples, though only approximately. The
reasonable results generated by the AA even at finite n
and T imply that this randomness may not have major
effects (e.g. , frustration and other spin-glass phenomena),
at least in models where the chosen architecture is com-
patible with the rule to be learned. This may explain
why, in many applications of supervised learning, simple
local gradient algorithms seem to yield good results.

It should be emphasized that the above approxima-
tions may be useful not only for studying specific "toy"
models, but also in generating general approximate pre-
dictions that could perhaps be useful in applied research
on neural networks. An example is Eq. (2.40), which pro-
vides a way of estimating the generalization error from
the observed training error for a multilayer network wit;h

a Boolean output.

C. Inverse power law for smooth networks

The most important general result is the inverse power
law for the asymptotic behavior of both the generaliza-
tion and training errors, Eqs. (3.12) and (3.14) of Sec. III.
These results also provide a simple relationship between
the two errors, namely Eq. (3.15). This power law is

consistent with the general bound obtained within PAC
learning theory. However, our theory is not distribution-
free and holds only for smooth networks. On the other
hand, it holds for general unrealizable rules, whereas the
PAC bounds are essentially for realizable rules.

The results regarding smooth networks were derived
using a perturbative approach, i.e. , assuming that essen-
tially all the components of W deviate only slightly from
W' for sufficiently large n. Of course in reality there
can also be contributions coming from W far away from
W*, leading to nonperturbative terms to ez. However, we

expect that for su%ciently large o. the nonperturbative
terms will be negligible (e.g. , exponentially dependent on

n) relative to the power-law contribution of the smooth
fluctuations. On the other hand, these localized non-

perturbative errors may be important for the dynamics
of the training, since their relaxation may be extremely
slow compared with the continuous fluctuations.

In nonsmooth networks the generalization performance
depends on the nature of the task as well as the network
architecture, as the results of Secs. V and VI demon-
strate. These results also indicate that there is a qual-
itative difference between the learning of realizable and
unrealizable rules, as discussed below.

D. Learning, realizable rules

The results of the specific models studied here indicate
that the shapes of learning curves may be very different
from the PAC learning bound of an inverse power law.
The shape of the generalization curve depends strongly
on the degree of constraint imposed on the network space.
In the case of a linear output, the imposition of binary
constraints changes a T/n tail [Eq. (5.10)] into an expo-
nential exp( —2n/T) [Eq. (5.32)]. In addition, at low T
there is a discontinuous transition at finite o, from poor
to good generalization; see Figs. 1 and 3. The superior
generalization ability of the constrained network is not
surprising. Since the target rule itself was assumed to be
realizable in the constrained architecture, imposing the
constraints is essentially using prior knowledge (or as-

sumptions) of the nature of the rule to restrict the space
of possible networks.

The most dramatic effect of constraining the network is
found for the conventional perceptron rule, i.e. , one with
a Boolean output. In the unconstrained network the gen-
eralization error again behaves as an inverse power law

[this time even at T = 0, Eq. (5.28)]. On the other hand,
in the case of binary weights there is a discontinuous tran-
sition at a critical a from poor to perfect learning (see
Fig. 6). This transition is unique in that it exists even
in learning at high temperatures. The collapse of a ther-
modynamic system at finite T to its ground state above
some n, stems from the singular spectrum of excitations
above this state, as discussed in Sec. V D.

In all the realizable models studied in this work, the
quenched RS behavior at finite T is qualitatively similar
to that given by the AA. Furthermore, the asymptotic
shapes of the RS learning curves in the different mod-
els agree with those of the AA. This suggests that for
realizable rules the effect of disorder is minor for large n.

The main qualitatively different result of the quenched
theory is the appearance of spin-glass phases, as shown in

Figs. 1 and 6. These phases result from the randomness
and frustration associated with optimizing for a particu-
lar realization of examples, and cannot be predicted by
the high-T or the annealed approximations. Two special
features distinguish the SG phases of realizable models.
First, it exists only at low T and in restricted regime of n,
typically o. 1. Second, it is only metast;able, i.e. , its free
energy (as well as training energy) is higher than that of
the optimal state, which is therefore the true equilibrium
state in that regime of o.

The absence of SG phases at large n indicates that
as o, increases, the relative scale of fluctuations in the
training energy becomes smaller, i.e. , the training en-

ergy surface get, s smoother as the number of examples
increases. This is indeed demonstrated by the analytical
bounds of Sec. V B on the number of local minima for the
linear perceptron with discrete weights (Fig. 4). These
bounds exhibit two important, and possibly general, fea-
tures. First, the energy surface in the neighborhood of
the optimal state R = 1 is smooth. Second, the number
of local minima is exponentially large for small e, but
decreases monotonically with a. In the linear-discrete
model there are no local minima above a critical value of
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E. Classification of learning curves
for realizable rules

The discontinuous behavior of the Boolean percep-
tron with discrete weights calls for an understanding of
the general conditions which determine whether a given
learning task will be achieved gradually or not. Insight
into this question is provided by the high-T limit of
Sec. II C. According to Eqs. (2.25)—(2.27), a system can
be classified according to the behavior of its entropy s(c).
Recall that e '~'~ is defined as the number of networks
that yield a given generalization error e. The general
form of s(e) for small e is expected to be

s(c) ocr in~, a~0. (7.2)

For a smooth weight space we expect s to diverge log-
arithmically to —oo, i.e. , z = 0. This naturally leads,
via Eq. (2.27), to the inverse power law. For a discrete
weight space, we expect the entropy to approach a finite
value, i.e., z & 0. When 0 & z & 1 the generalization
curve obeys a nontrivial power law

as=(nP) '~~' ~, nP~oo, 0(z(1. (73)
up to logarithmic corrections. When z = 1 this law turns
into an exponential,

ines oc —np, np ~ oo, (7.4)

An example of this case is the perceptron with discrete
weights and linear output; see Eq. (5.32). When z &
1, Os/Be remains finite at small e, so there must be a
discontinuous transition at some (nP), to es = 0,

cs = 0, aP & (nP)„z & 1 . (7 5)

The Boolean perceptron with discrete weights is an ex-
ample of an entropy with z = 2; see Eqs. (5.6'2) and
(5.63).

In our perceptron models, nontrivial shapes of learning
curves resulted only when the weights were constrained
to discrete values. In contrast, for multilayer networks we
expect that the exponent z in Eq. (7.2) may be nontrivial
even when the weights are allowed to vary continuously,
possibly leading to Eq. (7.4) or (7.5). This will occur, for
example, if the optimal solution involves discrete internal
representations of the hidden neurons, as demonstrated

a. Fontanari and Koberle [61] have studied numerically
the local minima of the Boolean-discrete model for small
system sizes. The number of local minima was found to
scale exponentially with N and to decrease monotonically
with o, . No critical value of n for the disappearance of
local minima in the Boolean model was found. However,
a definitive conclusion would require the investigation of
larger sizes.

Finally, in all our realizable models the generalization
error decreases monotonically with T, so that the optimal
temperature for learning is

Tops = o. (7 1)

Of course this refers to the equilibrium properties,
whereas from dynamic point of view the optimal tem-
peratures may be finite even in realizable rules, as has
been pointed out above.

in the two-layer model network for the contiguity problem
[351.

The above classification requires knowledge of the be-
havior of s(c) near e = 0. In general, evaluating s may be
diKcult even in relatively simple models, since the pri-
mary interest is its behavior in the limit N ~ oo. For
this reason, the simple existence of a gap in the spec-
trum of e is an insufIicient basis for classification. At the
very least, the scaling of the gap with N must be deter-
mined (see Sec. IV F). Finally, it should be stressed that
the classification of the asymptotic shapes of the learn-
ing curves according to the properties of s(e) has been
justified so far only in the high-T limit. It may be, how-

ever, that in many classes of realizable rules these results
apply also to finite T or even T = 0. If this is true then
our results may provide useful hints for understanding or
even predicting the behavior of some real-world learning
problems.

F. Unrealizable rules

&s(~) &) &min ~ u' -a/5 (7.7)

An n i~z tail in es has also been found in Boolean Per-
ceptrons with continuous weights where the rule is unre-
alizable due to corruption of the examples by noise [24]
or due to the random nature of the rule itself [22].

The RS theory of perceptrons with unrealizable rules
predicts that, for su%ciently large a, e& is nonmonotonic
with T, but possesses a nonzero optimal temperature.
Similar results have been obtained in [22, 24]. In the case
of a Boolean perceptron with weight mismatch, where
the corrections to RS theory could be calculated, it has
been found that rather than having a minimum at finite
T, e& is independent of T at low T; see Fig. 13. Whether
correction to the RS theory will modify substantially the
conclusions regarding T &t of the RS theory in the other
models remains to be studied.

Another feature of unrealizable rules is the prevalence

For unrealizable rules the optimal weight vector W'
is reached only in the limit n ~ oo. This is true at all
temperatures. As T ~ 0 the generic shape of the learn-
ing curves is roughly that shown in Fig. 11(b). There
is a critical value o., which marks the loading capacity,
i.e. , the point below which the examples are memorized
perfectly. Above o., the training error increases, and ap-
proaches the same limit as the generalization error, i.e.,

approaches e;„ from below as n ~ oo. Also, in some
unrealizable models (not encountered in this work, but
see Refs. [22, 24]) there is a local maximum in es near n, .

One of the important results of our study is that for un-

realizable rules the learning curves are substantially dif-
ferent from the high-T and AA predictions at any fixed T.
For example, for the models with weight mismatch, these
approximations predict n z tails for fixed T, whereas the
RS theory yields [see Eqs. (6.29)]

~s(T, o.) —c;„-n

for the case of a linear output, . In the Boolean output
case the full spin-glass theory predicts
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of spin-glass phases even at large o, . In the present work
we have evaluated the T at which the entropy vanishes.
This provides a lower bound for the onset of the spin-glass
phase. Here again the linear and Boolean perceptrons
diH'er. In the linear case this temperature levels oA' at a
finite value as e increases, as shown in Fig. 10. In the
Boolean case it grows with the same power law as T pt,

.

see Eq. (6.57) and Fig. 12. These results suggest that
spin-glass eHects are strong in unrealizable cases.

The fact that the spin-glass phase exists also for large o.

suggests that the fluctuations in the training energy do
not necessarily shrink as o, increases. Nevertheless, we
believe that their reLative scale does indeed vanish. This
is because the energy itself grows linearly with o. . This
conjecture is supported by the observation that the tem-
perature that marks the onset of spin-glass phenomena
grows only sublinearly with n [see Eq. (6.57)]. The effect
of increasing the number of examples on the roughness of
the training energy surface (particularly in unrealizable
rules) is an important issue which deserves further study.

APPENDIX A: TRAINING-GENERALIZATION
INEQUALITY

Let Ep denote the average value of the training energy
PE(W), as in Eq. (2.18) and bE the difference E —Ep.
Define the function

dp(W)e ~ ' ~ bE

dp(W)e-~~ -~~~
(A1)

dp(W)e ~ 'bE

dp(W)e
(A2)

This can be interpreted as the energy of a system at
temperature I/P with Hamiltonian bE and measure
dp(W)e ~+'. By the convexity of the free energy, the
energy is a decreasing function of P. Hence 6 is bounded
above,

G. Uniqueness of the optimal solution

Throughout this paper we have assumed that the opti-
mal network weights, i.e. , the components of the weight
vector W* that globally minimizes the generalization
function e(W), are unique. If they are nonunique, we
assume that the degenerate global minima are at least
widely separated in network space, forming a discrete
set. This is related to our assumption that the training
dynamics searches for the values of the network weights
within a well-defined architecture. Under these condi-
tions it is reasonable to expect that the optimal solution
is generally unique up to obvious symmetries. For in-
stance, in multilayer networks the solution may be unique
only up to permutation of the hidden neurons [62]. Other
symmetries may result from the nature of the rule itself.
An example is the up-down degeneracy of the optimal
solution of the two layer network of edge detectors in
Ref. [35). This uniqueness does not hold if the architec-
ture of the network, e.g. , the number of neurons or the
number of layers, is allowed to vary significantly. The
important issue of learning under these circumstances is
planned to be discussed elsewhere.

e((T, cr) ( ~g(T, n),
which was stated without proof in Eq. (2.20).

(A4)

AP PEND IX B: HIGH- TEMP ERATU RE
EXPANSION

In this appendix, we show using a cumulant expansion
that the free energy (2.13) can be written as a power
series in P, with coefficients that are functions of nP. The
zeroth-order term of this series is the high-temperature
limit discussed in Sec. II C.

The first step is to separate the energy into random
and nonrandom parts. The nonrandom part is

Ep = (( E)) = Pe(W) = Nne(W),

and the random part is

(B1)

We now take the quenched average of both sides. In
the integrals, the average can be applied directly to bE,
since Ep is independent of the quenched disorder. But
(( bE)) = 0, so the right-hand side vanishes, and we have

(A3)

In particular, for 7 = P, ((4)) = P(c, —cz), so that we

finally obtain
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where

b~„= c(W; S")—e(W).

We now treat bE as a perturbation to the "free Hamil-
tonian" Ep. The partition function takes the form

Here ()p denotes the average with respect to the distri-
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bution Zo e ~ '. The factor C, - NnL ~'lc, (nP), (811)

S ()lz) = f dy(W)e g ' = f dy(W)e

(85)

is the high-7 partition function introduced in Sec. II C.
Taking the logarithm of both sides and performing the

quenched average, we obtain

—PF = InZp(nP) ~ ) .
, ((C, }},

- (—P)'

j=l
where the Ci are from the cumulant expansion of

to leading order in n.
In the expansion for the free energy, the term contain-

ing Ci only contributes to terms of order PL))'2l or higher
in the ultimate high-temperature expansion. Hence the
free energy can be written in the form

PF—= ln Zp+ ) P F (nP),
j=l

(812)

where F& contains contributions from the finite number
of cumulants C), . . . , Cqi.

In general, any quantity A that is finite in the high-T
limit possesses a high-temperature expansion of the form

Cg ——(b E}p,

C = ((b&)'} —(b&}'
~ ~ ~

(87)
(88)
(89)

A(P, T/o() = ) P'A;(T/n).
i=0

(813)

If bE were a quantity of order unity, the cumulants would
be functions only of esp, the only parameter governing the
distribution e ) '. Hence Eq. (86) would be the desired
power series in P. In fact, the situation is somewhat more
complicated because bE scales like o. .

To investigate the scaling of the cumulants with o. , we

write them as sums over connected correlation functions

P

) (be„, be„,},. .

)t 1) ~ . .)Pg =1
(810)

Counting the P& terms in this sum, the naive estimate
would be that C& P~. However, the quenched average
makes any term containing an unrepeated index vanish,
since ((be& )} = 0. In other words, if an index appears, it
must appear at least twice for the term to be nonvanish-
ing. This means that the cumulants can scale no faster
than C& P~~ ~. At the same time, there are also fac-
tors of N which make the cumulant extensive, so that it
behaves like

In the high-temperature limit (P ~ 0, T/og = const),

A(P, T/cy) ~ Ap(T/n), (814)

APPENDIX C: ANNEALED APPROXIMATION
FOR PERCEPTRON LEARNING

In this appendix, we give a fuller account of the results
that were outlined in Secs. IV A and IV B. We begin with
a derivation of Eq. (4.7) for the average generalization
error, which illustrates many of the calculational tech-
niques of this paper. Integrating the error function (4.6)
over the a priori input measure (4.3), we obtain

which depends only on the effective temperature T/cd
In general, the functions A; can be nonanalytic functions
of T/od. In particular, the high-T limit term Ap can be
nontrivial and lead to such behavior as the first-order
transition in the Boolean-discrete model.

e(W) =jDS e(W', S)

1
dz dy —(g(z) —g(y)] fDSg (z —N & W S) g (y —N ~ W S), (C1)

dgdp . - -1 —1 2 " 0-
2~ 2

e' +'""—Ig(z) —g(y)] DS exp iN '~ (Wi + W—y) . S (C2)

b(z) = —e'z~~

2x (C3)

The two auxiliary variables x and y are introduced to
remove S from the argument of the g functions, and x
and y are introduced to transform the 6 functions into
exponentials using the identity e(W) = dzdy z2+ y2 —2zyR)

2+v'I —R' 2(1 —R') )
x —[g(z) —g(y)] . (C

simple Gaussian integral in x and y is left. These vari-
ables can in turn be integrated out, leaving

When the Gaussian average over S is now performed, a This result has a simple interpretation. It is the average
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of
2 [g(z) —g(y)]2, where z and y, like W S/~N and W

S/~N in (4.6), are Gaussian variables with unit variance
and cross correlation R. A simple change of variables in

Eq. (C4), a shift followed by a rescaling, yields the form
(4.7).

To derive the annealed approximation for perceptron
learning, we begin by evaluating Eq. (2.31) for G „(W).
The calculation is essentially the same as the previous
one for c(W), and results in a similar formula,

1
Gp ———ln

N

%co dR
. exp

~

N—RR

0)+ ln dp(W) e

AVe can write the stationarity equations in a more re-
vealing form by proceeding further in the evaluation of
Gp. The b function in (C8) can be expanded by intro-
ducing another order parameter R,

G,„(W) = —ln
dz dy z2+ y~ —2zyR

2(1 —R')

exp( —P[g(z) —g(y)] /2) . (C5)

In the thermodynamic limit, this reduces to

G = —RR+ —ln dp(W) e

(C10)

(Cl1)

Again, the answer depends on W only through the over-
lap R. A change of variables in the integral (C5) yields
the form (4.14). Evaluating the integral for the cases
of g(z) = z (linear perceptron) and g(z) = sgn(z)/y 2
(Boolean perceptron), we obtain

where the right-hand side must be stationary with re-
spect to the saddle-point parameter R. The free energy
can now be written as a saddle point over two order pa-
rameters

A

Pf =—extr - RR+ ——ln dp(W) eR,R N

0 „= &
ln [1 + 2P(1 —R)] (linear)

(C6)
—ln [1 —(1 —e ~)7r i cos i R] (Boolean).

—nG „(R)

The saddle-point equations are

(C12)

(( Z)) = dRexp N[Gp(R) —nG, „(R)), (C7)

Although derived using the Gaussian a priori input dis-
tribution (4.3), the above results for e(W) and G „(W)
apply also to the case of the discrete inputs S; = kl
in the thermodynamic limit. This insensitivity to input
distribution is explained by the central limit theorem,
which guarantees that W S/~N and WP S/~N are
Gaussian variables (in the N ~ oo limit) with very weak
assumptions about the distribution of S. This assertion
may be verified by a straightforward calculation for dis-
crete S, which yields Eqs. (C6) as the leading terms in a
saddle-point expansion in 1/N

Since G „(W), Eq. (2.31), depends only on the over-
lap R, the annealed partition function (2.30) can now be
rewritten as an integral over R,

G„
R

R= —(W)- W
1 0

(C13)

(C14)

where

J dp(W) W exp(RW WP)

Idp(W) exp(RW WP)
(C15)

The order parameter R has a natural interpretation: it
is the strength of a local field pushing W in the direction
of W . Since it increases with n, it forces W toward Wp
as n ~ oo, Upon eliminating R, these equations reduce
to Eq. (4.16).

Equation (Cll) can be evaluated quite easily for the
case of the Ising constraint lV; = +1. Then we can make
the replacement

where

NGp(R) = ln dp(W) b(R —N 'W W ) (C8)

dp(W) ~ )
W, =+1

which leads finally to

Gp(R): —RR + In 2 cosh R

(C16)

(C17)
is the logarithm of the density of networks with overlap
R. In the thermodynamic limit (N ~ oo), the integral
can be evaluated as

assuming that the teacher weights also satisfy the Ising
constraint. Extremizing with respect to R, we obtain the
equation

1
P f (T, n) = ——ln(( Z )):extrR[Gp(R) —nGB~(R)] . R = tanhR (C18)

(C9)

Hence the thermodynamic free energy f(T, n) is deter-
mined by extremizing the free-energy function Pf(R)=-
Gp(R) —nG „(R). DifFerentiating f(R) with respect to
R, we obtain the stationarity condition Eq. (4.16).

Eliminating R, one can finally derive the result (4.20),
which is purely a function of R, and is the familiar result
for the entropy of the Ising model as a function of the
magnetization R.

Calculating Gp for the spherical distribution is some-
what more complicated. We rewrite the a priori spherical
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distribution (4.17) as

dW- '
dA(~) & A(W W N)—

:.-; g2n-e; 2+i (C19)

Eliminating R and A finally yields the result (4.18), which
was justified previously by geometric arguments.

and then Go is determined as a saddle point over R and
APPENDIX D: REPLICA THEORY

OF PERCEPTRON LEARNING

Ge = ——1n(Pee) + RR+ i + 1n f dpPe
2

1 - 1 g2
= ——+ RR+ A ——ln(2A) +

2 2 4A
(C20)

The starting point of the replica calculations is the
derivation of the replicated Hamiltonian (2.49), which
resembles the derivation of the annealed G'» described
in Appendix C. We introduce auxiliary variables z, i
y, and y in order to simplify the average over S,

e ~~ i= DSexp — eW;S
o'=1

dyexp -P).[g-( z) - g(y)]'
2 )

n

DS 6 ~. —N-']'W'. S 6 y —N-'i'W' S
o=1

dz di dy dy i 1
exp —— gz —gy +i z z +iyy~

x DSexp —i' &
l W i~+W y l S

0'

(D1)

The average over S is now a simple Gaussian integral and yields

- —- dz~ dz dydy i 1
e g"lq p' l = exp ——p ) [g(z ) —g(y)] + i ) z z + iyy

xexp —-) i iRQ R
—y) i,R (D2)

Since Q„depends on the weights only through the order parameters Q z and R that were defined in Eqs. (2.55) and

(4.21), the replicated partition function can be written as an integral over these order parameters

((Z" )) = f dQ e f dR exp( —Rng, (Q e, R ])
o(p CJ

x dpW 6 p S W 'W 6 R N W W
C7 e(p CT

(D3)

((&")) = . . exp N(gp[Q R, R, Q R, R ] —ag„[Q R, R ]),dQ RdQ R dR dR

&p CT

where

ge= —) RR —) QeQe+ —Inf dP(W)exP ) RW W +) QeW We
e y(p e(p

(D4)

(D5)



6088 H. S. SEUNG, H. SOMPOLINSKY, AND N. TISHBY 45

is the logarithm of the density of replicated networks with
the overlaps Q~p and R .

In the thermodynamic limit, the integral (D3) over the
order parameters is dominated by the saddle point in
Q p and R . The free energy is obtained by analytically
continuing this saddle point to n = 0,

R =R,
Q p—- 6 p+(1 —6 p)q,
R =R.

(D8)

(D9)

(D10)

With this substitutions, the free energy takes the form

—Pf = lim ln((Z" ))
1

n o~+
extr pe[Q, e, R„Q,r, tt, ] —rrtr„[Q, r, R,])Q p, R

(D6)

According to the RS ansatz, the saddle point takes the
form

Pf—= extr[Gp(q, R, q, R) —nG„(q, R)],
q, R

where we have defined

G„= lim —",
n~0

0
Go = lim-

n-+0

(Dl I)

(D12)

(D13)

Q p
= ~ p+ (I - ~ p)q, (D7)

To calculate G„, we substitute the RS ansatz into
Eq. (D2) and perform the integral over y, leaving

e ~"= Dy
dz. di.

2]l l 2
--~ ) .b(*.) —q(~)]'

1 -2x exp ——(1 —q) ) i, +i) i, (z, —Ry) Dt exp —itgq —Rz) z
d d

(D14)

The auxiliary variable & has been introduced via the identity f Dg e~' = exp(~ bz). performing the integrals over the
id, and shifting and rescaling the zd integrals, we finally obtain

e ' = Dt Dg Dxexp ]

——p g xtt'1 —g+ gtt+ t/g —tt —g(g) )
-g~ 2

2

Taking the limit n +0 gives -Eq. (4.27) for G„.
The RS result for g[] is

1 1) 1 t'
Qo

——n
~

RR ——n(n ——1)qq ——
q ~ + —ln Dz

~ dp(W) exp[W (z+q+ W R)] I2 2) N

The n ~ 0 limit of this expression yields Eq. (4.26) for Go.

(D15)

(D16)

APPENDIX E: ONE-STEP RSB FOR PERCEPTRONS

Following the Parisi theory of RSB [45] we make the following "one-step" ansatz for the form of the order parameter
matrix Q]t tr

'.

(1 qy

1
qo qo

qo qo

qo qo .
qo qo . .

1 q1

1 1 (El)

Fach block in this structure is an m x m matrix. All off-diagonal blocks consist of Q]t„——qp. The diagonal block has

Q» —I and Q„, = q for p g v. The conjugate matrix Q&„has a similar block structure. The order parameters R„
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and R„are symmetric at the saddle point, i.e. , R„=R and R„=R, as before.
Upon replacing Eqs. (D7)—(D10) by the RSB ansatz and taking the appropriate n ~ 0 limit, the free energy (D6)

is given by

P—f = Go(qo, qi, qo, qi, R, R, ») —nG, (qo, qi R m),
where

1 1
Go = —{mqoqo + [(1 —m)qi —1]qi) —RR+

2 Nm

(E2)

(E3)

Z = zo Jqa + zi Qqi —qo + W R, (E4)

1G„= —— Dy Dtp ln Dti
( 1

Dz exp
~

——P[g(t) —g(y)]'
2

(E5)

t —= toVqo —R +tiVqi —
qo

—yR. (E6)

The free energy has to be minimized with respect to qp, qi, qp, qi, R, R, and ms Note that after the n —+ 0 limit
has been taken the allowed range of m is 0 & m & 1. Also, the physical meaning of qp, q], and m is explained in
Sec. V D 2 [see Eqs. (5.73)—(5.75)]. Upon substituting m = 0, the free energy f reduces to the RS result, Eq. (5.66).

Specializing to the case of Ising constrained weights in Gp and Boolean output in Gi, we obtain

1
Gp ———(mqpqp + [(1 —m)qi —1] qi) —RR

2
1+ ) Dzp ln

Nm

m
Dzi 2cosll zp~qp+ ziti —qp+ W R (E7)

2
G

m
Dy Dtp ln Dti e ~ + (1 —e ~)H(r) (E8)

qp
—R2

7 = $p + $y
1 —q1

qs —qp

1 —
qy

(E9)

We now search for a solution to the saddle-point equa-
tions at finite temperature with the property

OO

G„= —— Dy Dtln e P + (1 —e P )H(u)
m p

qy —1, qy =oo (E10) (E12)

According to Eq. (5.73), for such a solution each pure
phase consists of a single (or a few almost identical) mi-
croscopic state. Thus the system collapses at finite tem-
peratures to phases with zero entropy. This is not unlike
the collapse of the system to the ground state at higher
values of n (i.e., the perfect generalization state). How-
ever, it occurs in the metastable, spin-glass regime.

To find a solution with the property (E10) we take
the limit qi ~ 1, qi ~ oo of Eqs. (E7) and (E9) while
keeping P finite. We obtain

1
Go = —[m qp(qp —1) —mRR]

m

+ ) fDzls2cosh (zm~q~+WcmR)

(E11)

qp —R2u=t
1 —qp

yR
gl —

qp
(E13)

Comparing Eqs. (Ell)—(E13) with Eq. (5.66) one obtains

h A

fRsB(qo qo R R, m, P) = fns(qo, m qo, R, mR, pm)

qp(T, m, n) = qns(T/m, n),

R(T, n, m) = RRs (T/m, n) .

(E15)

(E16)

(E14)

This structure is similar to the result of Krauth and
Mezard [33] for the case of training a perceptron with
random input-output mappings.

Stationarity with respect to qp, qp, R and R results in
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Finally, stationarity with respect to rn yields

sRs(T/m, a) = 0,
which implies

m(T, n) = T/Ts (o ),

(E17)

(E18)

where Ts(n) is the s = 0 line of the RS solution.
%'e have not attempted to search for other RSB so-

lutions or to check the stability of this solution. How-
ever, this solution is probably exact both here and in
the random perceptron problem of Krauth and Mezard.
Similar completely frozen SG phases are known to ex-
ist in the REM, the "simplest spin glass" [54], and the
large-P Potts glass. Recently, they have also been found
in learning of random mappings by two-layer networks
[60,62,63].

APPENDIX F: POWER COUNTING
IN THE HIGH- TEMPERATURE EXPANSION

For the Boolean-mismatched model, the optimal gen-
eralization and zero entropy lines both follow power laws
of the form T e", with 0 ( r & 1. The determina-
tion of this exponent requires the balancing of the two
dominant terms in the asymptotic expansion. This is
somewhat tricky, because determining which are the two
dominant terms in turn depends on the exponent.

Since both T and n are diverging, it would seem nat-
ural to perform a double expansion around (1/T, I/cr) =
(0, 0). Such an expansion is in fact ill defined, since the
existence of a nontrivial high-temperature limit shows
that the T, n ~ oo limit depends on the ratio T/cx.

As discussed in Appendix B, the proper high-
temperature expansion for a quantity A that is finite in
the high-T limit is

A(P, T/~) = ) P'A;(T/n) .

i=0
(F1)

If one proceeds to expand the A;, one obtains a double
expansion about (1/T, T/n) = (0, 0)

A(I/T, T/n) = ).A i —
i i

— . (F2)
Ii'(T
T)

This high-T expansion is the proper tool for investigating
power laws of the form T o,". We must only assume

that 0 & r & 1, so that both 1/T and T/n approach zero
RS 0,' ~ OO.

Assuming now that we have an expression for e& of
the form (F2), let us find the power law T zi n" such
that es decreases at the fastest rate. In the series (F2)
each term a, b scales like I/n"'+(i "&~, so that the expo-
nent is some weighted average of a and b. The power of
the dominant term in the sum is min;[ra; + (1 —r)b;].
This exponent must be maximized, to ensure the fastest
decrease of e&.

The problem thus reduces to linear programming.
Given a set of pairs (a, , b;), find the r that maximizes
min; [ra, + (1—r)b;]. The problem looks difficult because
there are an infinite number of pairs (a, , b;) to consider,
but in fact most of the pairs can be eliminated from con-
sideration. We define a partial ordering of the set of pairs:
(a;, b;) & (aJ, bz) means a; & a& and b; & b& Ate. rm
(a, b) is minimal if (a, b) & (c, d) implies (a, b) = (c, d) for
all (c, d). Only the subset of minimal pairs (which can-
not be ordered) are relevant, because (a;, b, ) & (a&, b&)
implies ra; + (1 —r)b; & ra& + (1 —r)bz The li. near pro-
gramming problem thus only includes the finite minimal
subset of pairs (a;, b;)

For the Boolean-mismatched model, we calculated the
asymptotics of the generalization error as a series in
n-'~' at fixed T,

E'g (T~ cr) &min: ) ej /9(P)A
j=l

(F3)

To convert this to the form (F2) of the high-T expan-
sion, we expand the e~. in powers of P. Only the leading
term from each ej need be retained, since the higher-
order terms are irrelevant. From the terms of order e
through n ~ we obtain the (1, 1/2), (1, 1), (1,3/2), and
(0, 2) terms in the high-T expansion (F2). From these
four terms, we finally extract the minimal subset (1, 1/2)
and (0, 2). Terms in (F3) of order n s~~ and higher need
not be considered, since they are all bounded below by
(0, 2) and are thus irrelevant.

The maximin problem, which involves only (1, 1/2) and
(0, 2), has r = 3/5 as its solution, justifying the result
Toi,& n ~ quoted in Eq. (6.54). The calculation of
the zero-entropy line is similar, except that the minimal
terms must add up to zero.
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