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Error thresholds for molecular quasispecies as phase transitions:
From simple landscapes to spin-glass models
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The correspondence between Eigen's model [Naturwissenschaften 58, 465 (1971)] for molecular
quasispecies and the equilibrium properties of a lattice system proposed by Leuthausser [J. Chem. Phys.
84, 1884 (1986);J. Stat. Phys. 48, 343 (1987)] is used to characterize the error thresholds for the existence
of quasispecies as phase transitions. For simple replication landscapes the error threshold is related to a
first-order phase transition smoothed by the complete wetting of the time surface. Replication
landscapes based on the Hopfield Hamiltonian for neural networks allow for the tuning of the landscape

complexity and reveal the existence of two error thresholds, bracketing a region of spin-glass

quasispecies between the simple quasispecies and the fully disordered mixture of sequences.

PACS number(s): 87.10.+e, 64.60.Cn, 05.50.+q

I. INTRODUCTION

The correspondence between Eigen's model for the
molecular evolution of replicating molecules [I—3] and
the equilibrium properties of a surface lattice system,
proposed by Leuthausser [4,5] a few years ago, opened a
route towards the understanding of the error threshold
for the existence of molecular "quasispecies, " within the
well-established framework of equilibrium phase transi-
tions. But so far, this analogy has not been explored
beyond the estimations done in the original work [5]. It
remained to be shown that the method may be applied to
a general type of landscape, to compare the results with
those obtained directly from the time-evolution ordinary
differential equations, and, what is more important, to ex-
plore the global phase diagram for different replication
landscapes, taking advantage of the powerful methods
developed for equilibrium phase transitions. The latter
prospect is particularly interesting for systems with frus-
trated interactions, like the spin glasses, which were first
suggested by Anderson [6] as an appropriate model for
the stability and diversity characterizing biological sys-
tems.

The aim of this work is to advance along these lines.
We start with a review of Leuthausser's approach. In
Sec. III we describe the method used to obtain the exact
(numerical) solution of the problem for simple landscapes
and the results obtained with this method, with particu-
lar stress in the difference between the behavior of the
bulk and the surface, which had been somehow over-
looked, and also in how the nature of the error thresh-
olds, regarded as equilibrium phase transitions, depends
on the structure of the replication landscape. The "selec-
tion transitions;" which have been described for replica-
tion landscapes with quasidegenerate maxima are also an-
alyzed within this framework. In Sec. IV we apply the
method to landscapes derived from the Hopfield Hamil-
tonian for neural networks [7], which proves to be a very

appropriate model to explore the transition from "sim-
ple" to "complex" replication landscapes. Analytic re-
sults, using the replica symmetric theory in the limit of
infinite size, together with the numerical solution of the
problem for finite sizes, give some new insight into how
the structure of the quasispecies may be qualitatively
changed by the complexity of the replication landscape,
leading to the presence of two error thresholds and the
coexistence of different molecular types between them.
In Sec. V we present a general discussion of the results
and the conclusions.

II. MOLECULAR EVOLUTION
AS EQUILIBRIUM STATISTICAL MECHANICS

The model for the evolution of self-replicating mole-
cules, in the mathematical formulation given by Eigen
and Schuster [2], starts with the description of the mole-
cule as a sequence (s, ,s2, . . . , s~) of a fixed number N of
variables s;, representing the different kinds of monomers
which are used to build the macromolecules. There
would be four possible values for the s;, to represent the
four different bases in the RNA or the DNA molecules,
but here we follow Leuthausser [4] and take them to be
binary variables, with values +1, which may be regarded
as the purine and pyrimidine basis in a polynucleotide, or
just as a (more or less artificial) binary code to represent a
complex variable structure. We use Sk, with k =1,2, as
a shorthand for the sequences, and xk for the concentra-
tion of each sequence in population with a very large
number of molecules. The time evolution of this concen-
tration follows from the self-replicating nature of the
molecules,

dxk = g Wq x —[Dk+C&(t)]xk
dt J

where 8'k are the elements of the replication matrix giv-
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X(n)= W"X(0), (2)

ing the probability of getting the sequence Sk as the re-

sult of the replication of molecule S-. This matrix would

be diagonal if each sequence produces only perfect copies
of itself, but the model introduces the possibility of muta-
tions in the replication process, with low but positive
nondiagonal elements in W. The constants Dk in (1)
represent the death probability of each molecule and the
"flux" term 4(t) may be added to include any overall re-
striction on the total number of molecules. If this term is
neglected, the constants D; may be absorbed into the di-

agonal terms of W, and we get a simple set of linear
differential equations. The largest eigenvalue of the ma-
trix W gives the net production rate of molecules in the
stationary state, and the corresponding eigenvector gives
the composition of the population in terms of the relative
concentrations of each type of molecules. If there is a
particular molecular structure or "master sequence" So,
with a value of Woo much higher than any other diagonal
term in W, and the replication is very accurate so that the
nondiagonal terms are small, then it is clear that the sta-
tionary population will be mainly made of So molecules.
If the mutation rate is increased, leading to larger values
of W„ for i', a cloud of mutants around the master se-

quence will appear in the stationary population, in what
Eigen and Schuster called the "quasispecies" [2]. If the
mutation rate is increased still further, there is an "error
threshold" at which the structure of the population
changes sharply to a random distribution all over the se-

quence space (the hypercube), with the loss of the genetic
information carried by the "quasispecies. " Extensive
analysis by Eigen, Schuster, McCaskill, and co-workers
(see [3] and references therein), has shown that this infor-
mation catastrophe is a quite general phenomenon which
should appear in a broad variety of systems, represented
by different structures of the matrix W.

The work of Leuthausser [4,5], to map the time evolu-
tion given by the ordinary differential equations (ODE)
into a system at thermodynamic equilibrium, starts with

the discretization of time in "generations, " so that in-

stead of xk(t) in (2.1), we have xk(i}, with i =0, 1,. . . to
represent the concentration of molecule Sk, i generation
times after a given initial population xk(0). The matrix
element W.k is interpreted as the probability for a mole-
cule Sk of producing a molecule S- in the next genera-
tion. The matrix W becomes the discrete time propaga-
tor, i.e., the population n generations after i =0 is given

by

0= g h[S(i),S(i+1)], (3)

with an arbitrary function h of the two neighbor se-

quences, the matrix Wis given by

Wzk =exp( —Ph [S,Sk ]), (4)

with the usual inverse temperature P= I/k sT. Any re-

plication matrix may, in principle, be transformed ac-
cording to (3}and (4) into an effective Hamiltonian H act-
ing on the two-dimensional lattice representation of the
population dynamics. However, this would be of little
use if the form of this effective Hamiltonian is so awk-
ward that it allows no hope for the statistical analysis of
the lattice model. This would be the case if the time evo-
lution of the system follows nearly any rule other than
the replication with random point mutations.

If each site along the binary chain is copied exactly
with a probability q, independently of the other sites
(point mutations), so that 1 —

q is the error rate per site
and generation, the general form for the matrix W is
given by

H ' k

Wjk
= A [Sk]q

where dH[SJ, Sk] is the Hamming distance between the
two sequences,

N

dH [S,S']=
—,
' N gsksk-

k=l

and A [S] is the "replication landscape, "which is a func-
tion of the 1V variables s along the chain represented by

X(o)

N

X(n)

N-1
C3z.'
Ld J

cf
CR

SJ(i)

tion along the molecular chain and, in the time direction,
i representing the generations from i =0, at the fixed ini-

tial state X(0},up to the final population at i =n at the
other end (Fig. 1). If the Hamiltonian acting on the two-

dimensional lattice may be written as a sum over pairs of
nearest-neighbor rows in the time direction:

n —1

where we use the vector notation X(i)=(x&(i),
x~(i), . . . , x „(i)} This sug. gests the interpretation of W

as a transfer matrix which gives the probability of
configuration X(i +1) in a canonical ensemble in terms
of the configuration of the nearest-neighbor site X(i) [8].
If we go back from the shorthand notation Sk to the full
representation of the rnolecules as binary sequences
(s, ,s2, . . . , sz), we arrive at the description of the popu-
lation time evolution as a lattice system, with Ising vari-
ables s, (i)=+1, at the sites of a two-dimensional square
lattice, with j running from 1 to N to represent the posi-

I

1 2 n-1 n

TIVE (GENERATIONS )

FIG. 1. Sketch of the lattice system used to map the molecu-
lar evolution. Time runs along the horizontal axis in genera-
tions and the vertical axis represents the molecular sequence.
The relevant properties come from the distribution of the last
column, i =n, or "surface. " The dots along this line represent
the lack of the vertical interaction given by the replication
landscape.
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S. This function appears in (5) only with the sequence at
the right-hand side, because it gives the measure of the
fitness of the "mother molecule" to produce copies (either
accurate or mutants) in a generation time. By comparing
(5) with (3) and (4) we arrive at the following effective
Hamiltonian [9]:

PH—= g P g s (i)s, (i+I)+1nA [S(i)]
i=0

+ ln[q (1—q)]2
(7)

III. ERROR THRESHOLDS
FOR SIMPLE LANDSCAPES

and the inverse temperature is P= ln&q /(1 —q) for
q )0.5 (the case with q &0.5 corresponds to the copy
into complementary basis and it is given by the ferro-
antiferromagnetic symmetry P~ —P). The index i runs
along the time direction from the initial time, i =0, at
which the system is set at a given initial configuration,
X(0), to the final time, i =n, at which we wish to know
the molecular population X(n) The. Hamiltonian (7) has
nearest-neighbor interactions along the time direction
and an unspecified interaction, lnA [S], between all the
sites along the chain for each value of i, excluding the
final i =n. This exclusion comes from the asymmetry of
the matrix 8'in (5) and it reflects the intrinsic irreversi-
bility of the original time evolution (1). The structure of
the population after n generation times may only be ob-
tained from the structure of the "surface" in a slab of
length n. The preceding layer in the slab does not give
the structure of the population at time n —1, which may
only be obtained from the "surface" of a slab with only
n —1 rows. The limit n ~ Do gives the steady state of the
system, independent of the initial configuration X(0), as
the structure of the "free surface" with an infinite "bulk"
at one side and nothing at the other side. The properties
of this surface will not depend on its particular position,
but they may be quite different from those of the bulk,
not only because of the lack of neighbors on the right-
hand side (reflecting the irreversibility of the original pro-
cess, with the population at any time tied to the popula-
tion at the past but not to the future), but also because of
the lack of interactions along the surface chain.

The analogy between the original ODE for the time
evolution and the surface properties of a lattice system in
thermodynamic equilibrium may be applied to any repli-
cation landscape 2, with the only restriction imposed by
our capability to solve the resulting problem in equilibri-
um statistical mechanics. Although the short-time dy-
namics of the population may have been changed by the
discretization of time, the stationary state, which is going
to be our only concern here, should not be affected [10].

in the same way as the direct analysis of the ODE in
terms of the eigenvector of the matrix W [2,3]. Our main
concern here is to characterize the error threshold as a
quasiphase transition, i.e., as the signature of a phase
transition in the limit N~ ~. The analysis of the bulk
phase with translational in variance is always much
simpler than the study of the surface, and it may be
thought [5] that any phase transition will be observed in
the bulk phase as well as in the surface. However, the re-
sults presented here show that the characteristics of the
error threshold are strongly affected by its "surface char-
acter, " so that a full solution of the surface system may
be required. We should also notice that, despite the rep-
resentation of our system in Fig. 1 as a lattice in two di-
mensions, the Hamiltonian (7) does not in general have a
two-dimensional structure. This would only be the case if
the interaction along the chain, given by the replication
landscape A [S], has only short-range couplings. Any
realistic model for A [S] includes the interactions be-
tween sites which, being far away from each other along
the chain, may become close in the folded polymer. The
result of these long-range interactions is that the models
and, in particular, their phase transitions will have no
two-dimensional character whatsoever.

We have obtained the exact (numerical) solution for a
few cases, with simple landscapes, using the cluster-
variational method, originally derived by Kikuchi [12], in
which the free energy of the system is written in terms of
the distribution of probabilities for a basic cluster, of p
sites, which tiles the full lattice. The results become ex-
act if the basic cluster is taken to be the "ladder" formed
by two full consecutive columns in Fig. 1, that is, the full
chains for two consecutive generations. This is equivalent
to the Bethe solution for a one-dimensional system with a
variable represented by the ¹omponent vector
S=(s„.. . , s~), with 2 different values instead of a
simple Ising chain. Of course, the number of values for S
grows so fast with N that it makes impossible the direct
computation for N larger than say 10 or 12, unless we
may use some symmetry of the landscape to reduce the
number of independent variables.

A. Replication landscapes
with a single sharp maximum

The simplest possible case corresponds to a replication
landscape which only depends on the distance (6) to a sin-
gle "master sequence" SQ =(g„gz, . . . , gz ). In that case
the steady-state concentration of any sequence depends
only on its distance to S0, which may take only N +1
different values instead of 2 . Landscapes with this sym-
metry have been explored with the original ODE [2,3]
and the simplest possible type within the class is

A [S0]=AD and A [S]=A, ( A0 for any SWS0,

To study the steady state we take the limit n ~ 0o and
the lattice system represented in Fig. 1 becomes semi-
infinite in one direction and it has a large but finite size N
in the other direction. It may in principle be exactly ana-
lyzed with transfer-matrix techniques [11],although this
will become computationally difficult as N grows, much

which has been studied in detail [2,3,13,14], including the
effects of finite population and the limit N ~ 0o.

To study this landscape we have to obtain the equilibri-
um surface structure of a lattice system with the Hamil-
tonian
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n —1 N
p—H = g p g sj (i )sj (i + 1)

i=0

,s.(i)+1
+in(A /A, ) g

j=1
(9)

~here we have dropped constant terms which only add a
trivial shift to the free energy. This Hamiltonian is quite
different from the usual two-spin additive interactions of
most lattice models; there are up to ¹pin interactions
which produce strong many-site correlations and make
the mean-field approximation inaccurate. Probably for
this reason, this type of landscape was not considered by
Leuthausser [5], who turned to other models leading to a
more "natural" effective Hamiltonian in the lattice.

Within our "ladder-cluster" method, there is no partic-
ular difficulty in studying this problem. The minimiza-
tion of the free energy with respect to the probability dis-
tribution of the possible configurations for the "ladder, "
z; [S(i),S(i +1)], leads to a system of coupled equations
for the chain distributions, y, [S(i)],and the Hamiltonian
(9) is simple to handle within this description. The equa-
tions (see the Appendix) may be solved numerically, with
the usual procedure for surface problems in statistical
mechanics. First we get the properties of the "bulk"
phase, with translationa1 invariance along the "time"
direction, and then we study a slab coupled to the bulk
solution at one side and with a free surface at the other.
The slab has to be large enough to have a surface struc-
ture independent of its size. The "surface layer" approxi-
mation, used in [5] for a different landscape, is equivalent
to taking the slab width of only one lattice site, so that
the surface is forced to follow closely the structure of the
bulk.

In Figs. 2 and 3 we give the usual representation of the

quasispecies [3]:the relative concentration of the sum of
all the sequences at the same distance of the master se-
quence. The data correspond to a system with %=20
and a replication landscape (8) with Ao/A

&
=10. Figure

2 was calculated with the bulk distributions and Fig. 3
with the surface distribution, using a slab width of 40
sites. The differences between the two figures are evident.
Both of them show a clear error threshold, at
1 —

q =0.11, beyond which the population is randomly
distributed over the sequence space (so that most of the
sequences are at a distance of about N/2 from So). For
any error rate below the threshold the distribution of the
bulk has an overwhelming majority of master sequences
and the error threshold appears as a very sharp change in
the structure of the system, clearly reminiscent of a first-
order phase transition. In Fig. 3, the surface shows a
very different behavior, the structure of the quasispecies
changes in a smooth way when approaching the error
threshold, the quasispecies becomes a broad distribution,
in which the master sequence only provides a small num-
ber of sequences to the total population. This is precisely
the most celebrated characterization of the error thresh-
old for molecular quasispecies [3],which makes clear that
the correspondence between the ODE and the equilibri-
um lattice system is well founded, but only if in the latter
we obtain the properties of the free surface. The bulk
phase gives the correct value for the error threshold but a
wrong structure of the quasispecies in its neighborhood.

To understand the nature of the error threshold as a
phase transition and to analyze the difference between
bulk and surface, it is better to shift to a representation in
terms of an order parameter. The natural choice for lat-
tice systems with Ising variables is the projection of the
population on the master sequence:

1
N

m= — j sj (10)
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FIG. 2. Relative concentration of the sequences at given
Hamming distance from the master sequence, as a function of
the error rate 1 —q. The data correspond to the bulk distribu-
tion for a sequence with N =20 and a single-peak landscape, as
in Eq. (8), with Ap/Al =10.
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FIG. 3. Distribution of the steady-state population, given by
the relative concentrations for the same system as in Fig. 2, but
obtained from the surface layer.
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where ( ) represents statistical average over the popula-
tion at a given generation. For m =1 the population is
fully made of master sequences, for m =0 it is dispersed
over the sequence space, and for m = —1 it would be
made of the sequence complementary to the So, i.e., in
the opposite corner of the hypercube [with the landscape
(g) this would never appear, but is becomes useful with
other replication landscapes]. An alternative, but fully
equivalent representation would be given by the average
distance of the population to the master sequence,
(d ) =N(1 —m)/2.

In Fig. 4 we present the order parameter m evaluated
at the bulk, m&, and at the surface, m, . At the error
threshold both m& and m, go to error, but mb shows the
sharp decay of a first-order phase transition (only slightly
rounded by the finite size of the sequence) while m, goes
continuously to zero with a divergence of the derivative
at the transition (again rounded by the finite N). The
analysis of the order parameter in the chains next to the
surface makes clear that we are in the presence of what is
known as "complete wetting" of the surface by the disor-
dered phase, a phenomenon which has been extensively
analyzed over the past decade with many theoretical
models and experiments [15]. Having a surface with
complete wetting, some of the most typical characteris-
tics of first-order transitions like hysteresis and nu-
cleation disappear. The wet surface provides a barrierless
nucleation site so that the transition is smoothed on the
wet side of the phase diagram. We may conclude the
analysis of the replication landscape (8) by stating that
the error threshold, in this case, corresponds to a quasi-
transition of first order in the bulk with complete wetting
at the surface, giving the characteristic one-sided smooth-
ness which has been carefully analyzed with the ODE
[2,3,13,14]. The same applies to replication landscapes
with a broader peak around the master sequence as far as
A [S] goes flat as the distance to the master sequence
goes to X/2.

B. Quasidegeuerate quasispecies

Our second example of simple landscape has two maxi-
ma at opposite corners of the hypercube, so that both

1.00

0.80-

1.00

0.50-
s

So=(gi, . . . , (z) and its complement, SN=( —g„.. . ,—g'~), have larger values of A [S] than any other se-
quence. If A [So ]= A [S~] we have degenerate
quasispecies and the population, below the error thresh-
old, is a mixture of both of them. Ho~ever, any small
difference between A [So] and A [Sz] would be enough
to erase one of the quasispecies from the steady-state
population. The reason for this instability is that the two
quasispecies come from different eigenvectors of the ma-
trix 8, so that they compete with each other, and only if
they have strictly equal eigenvalues do they coexist.
Schuster and Swetina [16] have proved that (in the limit
of perfect replication, q ~ 1) the two peaks in the
landscape may only cooperate to build up a quasispecies
if the two maxima are very close to each other, at a dis-
tance less than 3.

When the two quasispecies are competing with each
other and they are nearly but not quite degenerate, an in-
teresting behavior may be observed [16] if one of them
has a high but narrow maximum and the other is not as
high but broader. The simplest example is

A [Sp)= Ao I A [S~]=A~, A [S~,]—A

and for any other S

A [S]=A i & A~ i & A~ & Ao

For high replication accuracy the quasispecies is centered
at So but as the error rate, 1 —

q, increases the broader
quasispecies would be at advantage around Sz. The tran-
sition from one to the other was found to be very sharp
[16], in contrast with the relative smoothness of the error
threshold.

We have studied a quasidegenerate landscape of this
kind with X =20, Ao/A

&
=10, A~/A

&

=9 9, and

A~, iA, =2. The same order parameter (10) may be
used to follow the two possible quasispecies, with m =1
for So and m = —1 for Sz. The results for the surface
distribution show the same qualitative features as those
studied by Schuster and Swetina [16], and the order pa-
rameters shown in Fig. 5 give a clear understanding of
the differences between the "selection" transition, at
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0.00 0.05 0.10 0.15

-1.00-

-1.50
0.00

I

0.04
I

0.08
l
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FIG. 4. The order parameter as defined in Eq. (10), for the

bulk, mb, and the surface, m„of the same system as in Figs. 2

and 3.

FIG. 5. The order parameters in the bulk, mb, and at the sur-

face, m„ for sequences with X =20 in a quasidegenerate
double-peak replication landscape, as described in Eq. (11) with

Ap /3 I
= 10 3 po /3 l

=9.9, and 3» /2, =2.
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C. Mattis landscape

Our last example of simple landscapes was proposed by
Leuthausser [5] and it is derived from the Mattis Hamil-
tonian [17] for long-range spin systems. The replication
landscape still depends only on the distance to a master
sequence So=(g&, . . . , g~), but as a smooth function,

K
A [S]=exp g gg~'s s'

2N
(12)

The equivalent Hamiltonian in the lattice system (7) be-
comes

1 —
q =0.056, and the error threshold at 1 —

q =0.113.
The bulk order parameter mb shows sharp changes at
both transitions, indicating their first-order character,
but the surface, m„goes through the "selection" transi-
tion without any signature of wetting. Thus the qualita-
tive difference between the two transitions corresponds to
the presence or absence of surface wetting in first-order
phase transitions.

with the usual definition of the trace over the spin
configurations. The Gaussian variables m (i) provide in-
dependent fields Km (i) acting at each site along the
chain. For large values of N, the interals in (14) may be
obtained by the saddle-point method leading to

2K n —1

lnZ~ = — g m (i) +N lnZ,
2 0

(16)

evaluated at its minimum with respect to m(i) which,
rescaled as m ~m /N, become precisely the order param-
eters defined in (10).

The bulk order parameter mb is easily obtained from
(16) as the solution of the following equation:

e~sinh(Km IN)

[e i +e ~sjnh (Km /N) ]
(17)

which has only the trivial solution, m =0, unless e~ is of
order N', in which case the coupling along the "time
direction" is strong enough to compensate for the extra
factor N in the denominator in (13). The relevant tem-
perature parameter is

n —1 N

PH= g— P g sj(i)s (i+1)
i =0 j=1

N (1 q)N — (1 q)N-
Ke2i qK 2q ln( A,„/A, „)

(18)

K g gjgj ~
(i)sj'(i).

2N2 J J J J (13)

nKZ =exp
2N

Nn

n —1 N2K n —1

X dm i exp — m i
i=0 2 0

+N lnZ1 (14)

where Z1 is the partition function of a one-dimensional
Ising chain

where we have again dropped the last constant term in
(7). The original Mattis Hamiltonian is only the last term
in the brackets of (13) but with N instead of N in the
denominator, to have a difference between the maximum
and the minimum energy of order N and give a nontrivial
thermodynamic limit N ~~. As pointed out by
Leuthausser [5], this would correspond to a maximum
fitness landscape growing exponentially with the length
of the sequence, which is in contradiction with experi-
mental results for the RNA of coliphages [18]. The
landscape (12) gives A,„/A;„=exp(K/2), as N~~
and the nontrivial thermodynamic limit of the Hamiltoni-
an (13) may only appear through the nearest neighbors
coupling along the time direction.

With the introduction of Gaussian variables [5,19],
m(i), i =0, n —1, the partition function with (13) is ex-
actly transformed into

n/2

and there is a critical point at 8, =1 at which the system
becomes ordered in one of the two degenerate states
around the master sequence SO, or its complement SN,
with I =+(1—8 )'~ . That is, the error threshold ap-
pears in this system as a continuous, second-order bulk
phase transition, in the limit of N~ ~. For any finite N
it would be rounded and it only appears in (17) as an ar-
tifact of the saddle-point approximation for (14).

As in the previous cases, the population near the error
threshold has to be obtained from the surface structure.
The expectation for a normal surface with a critical bulk
[20] is that the order parameter m, will go to zero like
8, —8, and the population distribution would go
through the error threshold in a much smoother way
than in Fig. 3. These trends are confirmed by calcula-
tions of the surface structure within the saddle-point ap-
proxirnation for (14) and also by the exact solution of the
problem with the method described above (Fig. 6).

IV. COMPLEX LANDSCAPES
WITH HOPFIELD HAMILTONIAN

In the preceding section we have explored different
kinds of simple replication landscapes to characterize the
error threshold as a phase transition. However, the main
interest of Leuthausser's formalism is to take advantage
of the powerful methods developed, in equilibrium statist-
ical physics, to deal with complex systems [21]. A possi-
ble route towards complex replication landscapes was al-
ready suggested by Leuthausser [5]: the Mattis landscape
(12) may be considered as a particular case, with p = 1, of
a Hopfield landscape,

n —1

Z, =Tr(, )
exp g [Ps (i)s (i + I )+Km (i)s (i) ]

i=0

N p
A [S]=exp g g g'Ps s,

2N2j~jp=1 J J JJ (19)

(15) where there are p different master sequences or overlap-
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'] .00— averaged, i.e, the average over the chain in (20) may be
substituted by the average over the random pattern, P',
denoted by (( )):

g
CI

LLI

~ 0.50

LLJ

O

LLI

CL

9, 11
8, 12
7, 13
6, 14

0.00 0.05 0.10
l
—

q

0.15 0.20

FIG. 6. Relative concentrations in the steady-state popula-
tions for molecules at the distance given by the numbers, from
the master sequence, as function of the error rate 1 —

q for se-
quence with N =20 in a Mattis replication landscape, Eq. (12),
with A,„/A;„=10. The degeneracy between the master se-
quence and its complement has been broken by taking
A (20) =0, to get a simpler representation. The inset represents
the bulk (full line) and surface (dashed line) order parameters.
These are results from the exact numerical solution and, be-
cause of the relatively small value of X, they still show some
quantitative difference with the results of the saddle-point ap-
proximation described in Eqs. (16)—(18), which becomes in-
creasingly accurate for larger N.

Nm"=—
0" + g 112 ~p

2 1/2 (20)

Each of the m" variables corresponds to the averaged
overlap with one of the master sequences,

N
m"= — " s.

N
(21)

and the results depend on the particular set of patterns
which have been chosen. If the number of patterns p is
kept finite as N~ao, then the random fluctuations are
suppressed and the order parameters become self-

ping 'patterns. " The equivalent Hamiltonian in our lat-
tice system is the direct generalization of (13). It is simi-
lar to the original Hopfield Hamiltonian for neural net-
works [7] but, as in (13) it contains an extra factor N in
the denominator which may only be compensated by the
nearest-neighbor interactions along the time direction.
The solution may be obtained following the same pro-
cedure as in the Mattis Hamiltonian [5,19], but using p
different Gaussian variables, m "(i), for each site along
the chain. The saddle-point equations give self-
consistency equations for these variables, which in the
bulk phase and neglecting terms in 1/N, become

8+ g m'g'
v=1

This was the stage reached by Leuthausser [5] and, as dis-
cussed there, the solutions of (22) would follow the quali-
tative trend of the Hopfield Hamiltonian, which leads to
equations similar to (22) but with tanh(x) instead of
x/(1+x )

' (or the equivalent function used in Ref.
[5]). The system still has the same critical temperature,
8, =1, as in the p =1 case and below this temperature
the system has 2p degenerate states. But the coexistence
of the different master sequences in the steady-state popu-
lation is an artifact of the absolute symmetry assumed for
the replication landscape. As discussed in Sec. III 8, any
small difference between the maxima for the different
master sequences will destroy the balance and only one of
the 2p sequences would contribute to the population.
The landscape (19) also has secondary maxima, created
by the overlap of any odd number of patterns [19],but in
the self-averaging limit, p/N~O, they only appear as
metastable states below the critical value of 8, so that
this seems to add nothing new to the simple landscapes of
the preceding section.

However, if one actually carries out the computation of
the order parameters m" from (21) (without assuming
self-averaging) for large but finite N (N =100—1QQQ

would be the relevant values for simple strands of RNA),
the result show something very different. In Fig. 7 we
present a set of results for N =300 and p =5, which cor-
respond to different random choices of the patterns gj".
The differences between them make clear that they are
not self-averaging, but there are some features present in
all them. At low 8 (high replication accuracy) there is
always a pattern which, because of the random overlaps
with the others, has a small but crucial advantage in
building up the stationary state quasispecies. The left
part of the diagram is very similar to the result for the
Mattis landscape and the constant lower values for the
other order parameters just reflect their random overlap
with the ground state. As the error rate increases there is
a region of strong changes. The structure of this region
depends on the particular choice of the random patterns,
in some cases there are sharp changes reminiscent of
phase transitions, in other cases the changes are smooth-
er, but in general they lead to a region in which several
order parameters have similar (absolute) values. A fur-
ther increase of 0 leads to an error threshold in which all
the m" become zero indicating the end of the
quasispecies. These features are enhanced by increasing
p, the transition between the two regimes becomes
sharper and the structure of the intermediate region be-
comes more and more complex.

Some understanding of the phenomenon may be
achieved by the analysis of the average with respect to
the patterns, in the limit X~~, but keeping a constant
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FIG. 7. The order parameters m", for a Hopfield landscape with N =300, p =5 master sequences and A,„/A;„=10,as a func-
tion of the effective temperature defined in Eq. (18). The four different sets correspond to different random choices of the patterns
1'=+1.

ratio a=p/N. The case considered by Leuthausser cor-
responds to a=0, in which the self-averaging makes it
unnecessary to average over the patterns. For a & 0, the
average may be done with the replica symmetric theory
following a procedure similar to that done by Amit, Gut-
freund, and Sompolinsky [22] for the original Hopfield
model for neural networks. As in the simple Mattis
landscape [(12) and (13)] the extra factor I /N would give
only the trivial solution m"=0 unless the coupling along
the time direction is strong enough to compensate it.
This leads to a mapping into the phase diagram for origi-
nal Hopfield model [22], with 8 defined in (18}, as the
relevant temperature. For finite but small values of a
there are two different phase transitions. At low 0 we re-
cover the Mattis states, as fully degenerate (because of
the limit N~00} ground states. The lower transition
line, 8&(a), is a first-order phase transition leading to a
spin-glass phase in which the system has no macroscopic
(of order 1) overlap with any of the patterns but it has
nonzero Edwards-Anderson order parameter [21]. The
transition line at the higher 8G(a) is the second-order
transition to the fully disordered (paramagnetic) phase.

To make sure that a=@/N is the appropriate parame-
ter to measure the "complexity" of the replication
landscape for finite but large N, we have analyzed the

case a=0.02 for different values of N from 50 to 1000
(i.e., p from 1 to 20). For each random choice of the pat-
terns, gj"=+1, we have solved (20) as a function of 8,
with different initial conditions to get in each case the ab-
solute equilibrium state. The upper error threshold 8„
was easily determined by the vanishing of all the m". To
get a criterion for the lower one was more difficult, be-
cause its nature is very variable. Finally we used the
value OI giving the maximum of

r= m" —max m
@=1

(23)

i.e., the sum of the squared order parameters excluding
the largest, which was in good agreement with the ap-
parent location of the threshold by inspection of Fig. 7.
The values of O„and OI depend on the random patterns,
and were averaged over a series (typically of 20 sets) to
get the mean value and the standard deviation. These are
shown in Fig. g, which makes quite clear that a (and not
any other combination of p and N) is the relevant param-
eter to describe the "complexity" of the landscape (19).
Of course, as p ~1 we go back to the simple Mattis case,
no matter the value of N, but for p ) 5 (N )250) the only



P. TARAZONA 45

1.5--

1.0-
P

tI

0.5
0.00 0.01

I

0.02

effect of increasing N keeping constant a is to decrease
the error bars without appreciable shift of the mean
values.

Repeating the process for different values of a we lo-
cate the two transition temperatures, or error thresholds,
in terms of the complexity parameter a. Both lines
shown in Fig. 9 go to 8= 1 as a ~0, giving back the sin-
gle error threshold of simple replication landscapes. As
a increases S„goes above 1 and 8I goes below 1, open-
ing a gap between the two error thresholds. The compar-
ison with the predictions of the N~ ~ limit show that
8„ follows the track of 8& but always above it, while 8&

1.5-

1.0 '( q

FIG. 8. The effective temperature parameter Eq. (18) evalu-
ated at the upper, 8„, and lower, 8I, error thresholds for a
series of Hopfield landscapes with a=p/N =0.02, as a function
of 1/N. The central points and the error bars correspond to the
mean value and the mean quadratic deviation in series of 20
random choices of the p master sequences.

seems to follow not the first-order transition line between
the Mattis states and the "spin-glass" Oc, but the line
8M at which the Mattis states become unstable [22], and
again with 0& )8G. This is easy to understand because
the results for N~ ~ correspond to the transition tem-
peratures averaged over all the Mattis states (and there
are an infinite number of Mattis states), while the results
for finite N correspond to the transition from the most
stable of the possible states (the one giving the equilibri-
um configuration at each O), so that the transition lines
are necessarily pushed towards higher temperatures.

To check how robust the results are with respect to
changes in the model landscape, we have studied the case
a =0.01 (with N =500 and p =5) with a modified version
of (19) including a weight factor w", for each of the mas-
ter sequences, p=1 to p, which are taken as random
variables with unit mean value. Increasing the dispersion
of the w" increases the difference between the main peaks
in the landscape, which otherwise comes only from their
random overlaps. The results show similar mean values
for the error thresholds. The only apparent effect is to
produce a larger dispersion between the different realiza-
tions of the system, as may be expected.

Altogether, we may confirm the existence of the two
error thresholds as a result of the complexity of the repli-
cation landscape. The region between the two thresholds
becomes a spin-glass phase in the limit of N~ ~ and is
characterized, for large but finite X, by the simultaneous
overlap with many of the patterns. The implications for
the structure of the quasispecies in the spin-glass phase
are discussed in the next section. To end this one, we
should just remember that Fig. 9 corresponds to the bulk
phase diagram and the real population structure may
only be obtained from the surface layer. However, as in
all the cases above, the location of the error threshold
may be obtained from the bulk phase diagram and we
may predict that the structures across the lower (first-
order) transition are not going to be changed qualitative-
ly, while near the upper error threshold the surface
would have a smoothed behavior as in the simple Mattis
case.

V. DISCUSSION

0.5- - eM

ec

0.05
I

0.1

FIG. 9. The upper and lower error thresholds, O„and OI,
for Hopfield landscapes for different values of cx=p/N. The
central point and the error bars correspond to the mean value
and the mean quadratic deviation in series of 20 random choices
of the master sequences. THe sequence length N was adapted to
the value of p to get mean values independent of N, as shown in
Fig. 8. The dashed lines correspond to the averaged transition
lines (as labeled) for the pure Hopfield Hamiltonian in the limit
N~ oo as given in Ref. [22].

We have applied the formalism proposed by
Leuthausser to map Eigen's model of molecular evolution
into a lattice system in thermodynamic equilibrium, with
a direction to represent the time. The steady-state popu-
lation is given by the surface structure along this "time"
direction. The exact solution for simple replication
landscapes allow us to characterize the quasispecies error
threshold as a phase transition. For landscapes with a
single sharp peak, which have been extensively analyzed
within the ODE of the original model, we found that (for
sequence length N~ oo) the error threshold is a first-
order phase transition, with complete wetting of the
"time surface" by the disordered phase. It is this wetting
behavior that produces the characteristic one-sided
smoothness of the changes in the quasispecies approach-
ing the error threshold. The contrast with the sharp
"selection transition, " which had been described for
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double-peak landscapes, is due to the lack of complete
surface wetting in this case. We expect that this wet
first-order transition is the most common case for simple
models of the rephcation landscape. The requirement for
this seems to be that, in terms of the distance d to the
master sequence, the replication landscape goes flat
around d =N/2, with In[A (d)/A (N/2)] —~1 2d—/N~"
and v) 2 (the case in Sec. III A corresponds to v~ ~).
For the Mattis landscape proposed by Leuthauser [5],
v=2 and the error threshold becomes a continuous
(second-order) transition. Also in this case the surface
structure changes much more smoothly than the bulk
near the error threshold, so that the order parameter (or
the average distance of the population to the master se-

quence) varies linearly with the error rate.
The extension to a landscape based on the Hopfield

model allows us to study the effects of the landscape com-
plexity. As in the original Hopfield model for neural net-
works, the ratio a=@/N, between the number of master
sequences and the length of the sequence, is the relevant
parameter to measure the "complexity" of this model
landscape. The self-averaging regime studied by
Leuthausser [5] is valid in the limit a=0, even if p is
large but finite as N~~, but it gives no qualitative
change with respect to the simple p =1 case. For a&0
there is not self-averaging, so that the results depend on
the patterns of the master sequences. The relevant prop-
erties come out of the "quenched average" over these
patterns as usual in spin glasses [21] and which has al-
ready been described by Demetrius [23] in the context of
chemical kinetics. This has been done here with the re-
plica symmetric theory for N ~~ and with the solution
for finite N (between 100 and 5000) of series with random
patterns, with p between 5 and 50. The result is that for
small but finite 0, a new global structure appears. The
system presents two different error thresholds, which de-
pend on a, rather than on any other combination ofp and
N, and they only collapse as a~0. Below the lower
threshold error, 8I in terms of the effective temperature
(18), the system is in a Mattis state, so that the
quasispecies is centered around one of the master se-
quences. Between 81 and the upper error threshold 8„,
the system has a structure which, for N~ 00, becomes a
spin-glass phase. The structure of this phase may be un-
derstood, following the close connection with the original
Hopfield Hamiltonian [22]. Besides the main 2p minima
of the Hamiltonian (maxima of the replication land-
scape) at the master and their complementary sequences,
there are secondary minima (maxima) produced by the
overlap of any odd number of sequences. For large p
(and finite N) these secondary peaks of the replication
landscapes form a complex network, connected through
the saddle points which appear at the overlap of any even
number of patterns. The secondary peaks are always
lower than those of the master sequences, but as the
quasispecies becomes broader, by increasing the error
rate (or 0), the quasispecies percolates through the net-
work of secondary peaks and this provides a collective
broad peak which becomes more favorable than the nar-
row and higher peaks at the master sequences, much as in
the simple case of "quasidegenerate" quasispecies of Sec.

III B. The use of the term "percolation" implies that it is
not just the spreading of the quasispecies over a small
subspace of the full sequence space, the network of secon-
dary maxima contains a tiny fraction of the possible se-
quences but it spans over the full sequence space in a very
complex network which gives to the spin-glass
quasispecies a qualitative difference with the simple
quasispecies centered around a single maximum of the re-
plication landscape. The upper error threshold corre-
sponds to the usual spreading of the quasispecies over the
full sequence space with the loss of any genetic informa-
tion.

McCaskill and co-workers [3,24] proposed a Watson
renormalization scheme to study the error threshold in
terms of statistical distributions of replication rates, fol-

lowing the work of Anderson [25] for the localization
spins or electrons in the impurity conduction band. The
idea is that those sites in the sequence space connected by
a mutation path with high replication rates may be treat-
ed as a cluster, so that the Brillouin-Wigner perturbation
analysis of the replication matrix is not messed up by the
multiple connections within the clusters. This seem to
lead directly to the spin-glass quasispecies described
above, with a cluster of secondary maxima competing
with the isolated main peaks. For the simple Mattis
landscape, p =1, the predictions for the error threshold
obtained with this approximation are in fair agreement
with the exact results. However, this treatment fails to
show any hint about the presence of the intermediate
spin-glass quasispecies in the Hopfield landscape, even for
fairly large p, and the error threshold is still predicted to
be around 8= 1.0, nearly independently of the value ofp.
This failure is probably due to the mean-field approxima-
tion used in the derivation of the statistical treatment
[25]. In this context it is worth pointing out that the
spin-glass quasispecies only appears as the result of the
random overlaps between the p master sequences. If
these overlaps are made zero, either by taking the limit
N~ oo with finite p or by selecting the patterns to be or-
thogonal even with finite N, then the "complexity" of the
landscape disappears and we recover the results of the
simple Mattis landscape independently of the number of
patterns. It is the overlap among the random patterns
that creates the network of secondary maxima and the
spin-glass quasispecies. This implies a kind of correla-
tions that is missed by the statistical treatment [24] which
only contains the information about the distribution of
landscape values but not the correlation between the
values at neighbor sites.

The use of a "spin-glass" analogy in molecular evolu-
tion was first proposed by Anderson [6], as an alternative
to the model of Eigen and Schuster [2] which could pro-
vide for both the stability and the diversity in the popula-
tion. As discussed in Sec. III B, for simple landscapes the
coexistence of quasispecies around difterent master se-
quences may only be achieved with the precise tuning of
the landscape which would never appear in real systems.
Without this coexistence it is hard to imagine how prebi-
otic systems could evolve and form cross-catalytic net-
works linking the genetic information to metabolism, and
the formation of quasispecies of polynucleotides would be
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the end rather than the beginning of self-organization.
The "escape" through the nonhnearity of the ODE
defining the molecular evolution was already proposed by
Eigen and Schuster [2] leading to the concept of hypercy-
cles. These ideas have been extensively explored in the
past decade, but the overall picture which has emerged is
that most of these systems will again evolve in a unique
stable molecular structure unless the cross-catalytic
effects are tailored in a very precise form, which is unlike-
ly to appear spontaneously.

The alternative proposed by Anderson [6] uses the con-
jugation of the sequences to allow for increasing the se-
quence length, leading to a sequence space more complex
than Eigen's hypercube and also to a mutation mecha-
nism which may direct the evolution along a preferential
path much more efficiently than the independent point
mutations [26]. The final ingredient in Anderson's model
is a death function which depends on the molecular se-
quence through a spin-glass Hamiltonian, with random
long-range couplings between the sites along the se-
quence, which will allow for stability and diversity at the
same time. The complexity of the mutation-replication-
growth mechanism through conjugation of sequences
only allows for computer simulations of the model [27].

What comes out of this work is that the spin-glass
quasispecies may also be obtained within the model of
Eigen and Schuster [2], even in its most simple version
with fixed sequence length and uncorrelated point muta-
tion. Leuthausser's mapping makes it possible to analyze
it as a system in thermodynamic equilibrium, with the
powerful theoretical techniques developed for these sys-
tems [21]. The Hopfield landscape seems also to be a
better (theoretical) choice than the Sherrinton-Kirpatrick
model used by Anderson [6]. The parameter a allows
one to turn on the complexity of the replication
landscape and shows that for moderate values, a (0.14,
there are two error thresholds. Too accurate replication
will drive the system into the Mattis region, with the
whole quasispecies around one single master sequence.
Only in the intermediate range of mutation rates is there
a spin-glass quasispecies, with a complex structure of
coexisting sequences, which is stable at the linear order
for the replication equations. We may speculate that
small nonlinear terms may now be included, acting as a
perturbation but on the basis of the intrinsic "stability of
the diversity" granted, as the linear level, by the complex-
ity of the landscape.

This work has only been concerned with the deter-
ministic limit of the molecular evolution, as given by the
limit of infinite population. In the map to the spin-lattice
model this corresponds to the perfect thermodynamical

equilibrium. The stochastic effects in finite populations
have been studied before for simple landscapes [13],
showing clear evidence of the error threshold (at a slight-
ly shifted value of the error rate) even for quite small
populations. The stochastic effects may be more impor-
tant for complex landscapes, because the existence of
metastable states may freeze the system in configurations
quite out of the true equilibrium. We know that this is
the case for the original Hopfield model and work is in
progress to investigate these effects in the present con-

text. A particularly appealing idea has been raised very
recently by Derrida and Peliti [29,30] about the spin-glass
structure of the population produced by a purely stochas-
tic process for a completely Aat replication landscape.
We have two very different sources of population diversi-
ty with spin-glass structure: the landscape complexity for
infinite population and the finite population effects in the
simplest possible landscape, corresponding to opposite
and clearly oversimplified limits of real systems. The
crosseffects between these two sources, as well as the role
of geographical separation, should be explored.
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APPENDIX: BETHE SOLUTION
FOR SIMPLE REPLICATION LANDSCAPES

Y, [S]= g Z;, +,[S,S']= g Z. . . [S',S]
I s'I I s'I

(A 1)

where IS I represents the sum over all the configurations
of S. The free energy for a chain of M sites, without the
trivial last constant term, the Hamiltonian (7), may be
written as

M —1

13F= g g Z, ;+,[S,S']lnZ;, +&[S,S'] f3S.S')—
i =0 IS,S'I

M —1

+ g g Y, [S](ln Y, [S]—in' [S])
i=0 ISI

(A2)

where S.S'=+~,s s' and the expression (A2) has to be

minimized with respect to all the variables Z;;+& with

the restriction that they satisfy (Al) and are properly nor-
malized,

Z, ;+,[S,S']=1 .
I s s'I

(A3)

For the "bulk" phase, with translational invariance the

Using the vector notation, S =(s„sz, . . . , s~), the sys-
tem in Fig. 1 may be treated as a one-dimensional chain
with a variable S at each site i, taking any of the 2
values which represent the full configuration of the
binary sequence. The Bethe approximation for this sys-
tem becomes exact as a variational expression for the free
energy in terms of the probability Z;;+,[S,S'] of finding
the configurations S and S' at the neighboring sites i and
i+1 along the chain [12]. The probability of finding a
single site i in the configuration S is represented by Y; [S]
and it may be obtained from the two-site probability on
the left or on the right of the site i:
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minimization may be done with respect to a single and
symmetric function Zb [S,S']=Zb [S',S], and it leads to

Z, [S,S']=C„pb [S]p„[S']exp(PS S' }, (A4)

where Cb is a Lagrange multiplier used to satisfy (A3)
and we define the auxiliary function, pb [S]
=Q Yb [S]A [S]. The Euler-Lagrange equation is
transformed in an equation for the one-site probability:

Ys [S]=Cbp, [S] g p„[S']exp(PS.S'),
IS'I

(A5)

Z;, +, [S,S']=C,p, [S]tI,+,[S']exp(pS S') (A6)

with the auxiliary functions

p; [S]= ( Y; [S]A [S]4;[S])'i'

and

(A7a)

which is easily solved by iterations.
To study the surface structure we have to keep each of

the functions Z;;+& as a different variable and to intro-
duce the restriction (Al) with a set of Lagrange multi-
pliers 4;[S]. The final equations follow the same scheme
as for other lattice surface problems [28],

@;[S]=
C; ]P; 1[S]
C;Q; ~,[S]

where

(A9)

P; [S]= g p;[S']exp(PS S'),
IS'I

Q; [Sl= g e; [S']exp()t)S S' }
I S'I

(A 10)

The constant C; are determined by the normalization of
(A8}. This set of equations (A7) —(A10) is not the most
compact representation of the solution but it provides a
simple way to solve the problem by iterations.

So far the equations may be applied to any replication
landscape represented by the function A [S], but as N
grows the sum over the configurations [S] soon becomes
unfeasible unless we may use some symmetry to reduce it.
The simplest case is that studied in Sec. III in which
A [S] is only a function of the distance d =dh [S,So] to
master sequence So. A11 the functions depend only on
that distance and the sums in (A10) may be done as

Y; [S]= I C; C;+,exp(PS S')P, , [S]Q;+,[S']j
'r~ (AS}

and

tI; [S]= ( Y;[S]A [S]/4, [S])'r (Ajb)

The one-site functions Y; [S] and 4;[S] are given by the
solutions of

N

P (d ) = g p [S']exp(PS S')= g p (d')Mz z, ,
I
S'I d'=0

where the (N + 1)X (N + 1) matrix M is given by

(A 1 1)

min(d, d') d!(N —d)!

,„(o q+q. „) k!(d —k)!(d' —k)!(N —d d'+k)!— (A12)

Similar expressions may be found for replication landscapes which depend on the distances to several master sequences,
but the computational difficulty grows very fast with the number of different sequences.
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