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Sine-Gordon breathers on spatially periodic potentials
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We have carried out an extensive simulation program to study the behavior of sine-Gordon
breathers initially at rest in the presence of perturbations that are periodic in space and constant
in time. We report here a number of different observed phenomena and the range of the relevant
parameters (the ratio of the breather width to the perturbation wavelength and the perturbation
magnitude) for which each one of them occurs. We also propose some qualitative explanations valid
for certain regimes.

PACS number(s): 03.40.Kf

The study of nonlinear disordered systems has recently
become the subject of a great deal of research [1]. A
model that has been widely used as an approximate de-
scription of quasi-one-dimensional physical phenomena
is the sine-Gordon (SG) equation (see, for instance, [2]
and references therein). The effects of a large variety
of perturbations on the properties of that equation have
been investigated (see [3, 4] for recent reviews). However,
starting from the seminal work by Fogel et al. [5], only a
few papers have been devoted to disordered systems, cor-
responding to the addition of certain properly chosen in-
homogeneous terms to the original equation. In particu-
lar, a simple form of inhomogeneity, which to some extent
is amenable to analytical work, is a spatially periodic, ex-
ternal potential. The propagation of SG kinks on such a
potential has been previously studied by Mkrtchyan and
Shmidt [6] and Malomed and Tribelsky [?], and the same
problem has been analyzed as the limiting case of a spa-
tial lattice of impurities when this lattice becomes very
dense [8].

In this work we concern ourselves with the influence
of these periodic potentials on the SG breathers. Some
preliminary work has been done by Pascual [9]. We in-
troduce this issue as an excellent example of the compe-
tition between two characteristic length scales, which is
an ubiquitous phenomenon in real physical systems: In
this case, these length scales are the breather width (AB)
and the perturbation period (Ap). The aim of this work
is twofold. First, our immediate goal is to learn whether
the particle picture of solitons, often very useful, holds
or not, and, if not, when and how it breaks down due
to this perturbation; second, our ultimate purpose is to
apply our results to lsolllinear wave propagation in po-
tentials which are stochastic in space (this problem has
been considered in [10]), viewing the periodic potential
as a particular componellt, or "colo&" of the noisy one. As
is explained below, understanding one color is a funda-
mental input to treating propagation in a general color
distribution. On the other hand, we are also interested
in comparing the phenomena we are describing here to
those caused by the same kind of potential on the nonlin-
ear Schrodinger (NLS) equation, often viewed as a weak
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FIG. 1. Schematic "phase diagram" summarizing our
main results (see text).

nonlinearity limit of the SG equation. Our investigations
on this related system are planned to be reported else-
where [11].

To approach the above issues, we have carried out a
number of numerical simulations spanning large inter-
vals of the problem parameters, namely, the lengths ra-
tio (Att/Ap) and the potential strength (e). We have
found that there are basically three possible behaviors
for the breather, largely independent of its amplitude.
Thus, if As ( A~ (see Fig. 1) the breather. can indeed
be considered a particle in the external periodic poten-
tial, and if A~ & A~, this is still valid except that now
the effective potential in which the particle moves is not
the original but a renormalized one; on the contrary, if
As At (competing lengths), this particlelike behavior
ceases to be true even for small e values, and the breather
rapidly breaks up, either into a kink-antikink (I~-It) pair
(if its amplitude is large enough) or into two or more
breathers, involving always a great amount of radiation.
Interestingly, we also found that breather breakup hap-
pens also for noncompeting lengths when e is above a
certain threshold e„which depends on A~/At . We have
also observed for large As/Ap nonradiative splitting of
large-amplitude breathers into I~-I~ pairs, which seems
to have its origin in energetic considerations and not in
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the lengths competition [12]. All these phenomena are
smoothed out by dynamical effects when breathers are
moving, as observed in detail in the NLS model [11].

The SG equation we deal with is

The length scale of the potential is given by Ap = 2x/k.
For small-amplitude breathers (p (& x/2) the breather
length scale is given by AB = 1/sin p, whereas for large-
amplitude breathers (p, n/2) one finds using Eq. (2):
Ag arccosh(tan p, sin[(t, —tp) cos p])/ sin p, .

In principle, several analytIcal techniques are available
to tackle this problem. Nevertheless, all of them involve
very dificult calculations and it turns out at last that
the amount of information one can obtain from them is
limited in terms of the phenomena outlined above. We
will summarize them here for completeness, as well as a
suggestion of further research. The first one is inverse
scattering transform (IST) perturbation theory [3]. IST
perturbation theory provides information in two comple-
mentary ways: the adiabatic corrections to the unper-
turbed breather, which neglect radiative contributions
treating the breather as a particle (and leading to the
same results as other, simpler collective coordinates tech-
niques, see below), and the nonadiabatic estimations of
the amount of radiation [3, 13]. IST perturbation theory
is useful in the small-e regime; this restricts the interval
of interest to the competing lengths region because, away
from it, small-t. values have little effect on the breathers
(see Fig. 1); it will be interesting to evaluate the radia-
tion contribution in the competition region, which, were
it large, would indicate that some instability is developed
by the breather when its length is similar to the perturba-
tion wavelength. This is quite complicated, but there is
progress in that direction in the case of the NLS equation
with spatially periodic potentials [11].

A different procedure, which has the advantage of its
easy physical interpretation, is the already mentioned one
of the collective coordinates (see [14] for a very recent
account on these techniques). We will show that they
indeed provide some useful information, without overly
involved algebra. With the basic assumption that the
effect of the potential on the breather is to allow it to
move, without changing its shape, it is possible to de-
rive [further detail is planned to be given elsewhere [12],
but the basis is the fact that the evolution under Eq.
(1) conserves energy, see, e.g. , [3]] the following effective
potential for the breather coordinate at rest:

~.fr(~p, z) = 4x sinh z cos(kzp)

sin p cosh z sinh(I~ x/2)
sin Ii z

x + Ii cos(Iiz) sinhz
~cosh z

(3)

ups —u + [1+ecos(kz)]smu = 0,

and we are mainly interested in the behavior of breathers,
whose expression in the unperturbed case is

sin[ t —tp cos p]n" (a, i) = 4 San ' (tan is
cosh[(z —zp) sin p] r

'

(2)

w here Ii = k/sin p = A~ /A~ and z, defined by sinh z-:
tan p sin(t cos p) (gp

—0), is a measure for the distance
between the kink and the antikink bound in the breather.
From this expression, it immediately turns out that if the
collective coordinate approach is valid, for small A~/A~
the breather will move in an effective potential which
is similar to, and of the order of magnitude of, the one
entering Eq. (1), namely,

8 sinh z cos(kzp)
Vetr &p, z

sin p cosh z

( sin(I~ z)x
~ . + cos(I~z)sinhz ~, (4)

I'a cosh z

whereas if Ag /A& becomes very large, the resulting effec-
tive potential Vtr(zp, z) oc cos(kzp)/sinh(I~a/2) is neg-
ligible for practical purposes. The question as to whether
there is a regime in which such an effective potential
makes physical sense can only become clear after com-
paring to the simulations. However, some agreement can
be expected for small e, at least when A& /A~ is far away
from 1 (i.e. , the lower left regions of Fig. 1). Unfortu-
nately, Eq. (3) also points out some of the main obstacles
to any analytical treatment, namely, the breather-time
dependence; obtaining a similar effective potential but
for a moving breather is a harder task.

There is still another way to obtain insight, but it
has the drawback that it only applies to small-amplitude
breathers, while the two summarized above do not, im-

pose a priori any rest, rict, ion on the breather anxplitude.
This approach is based on t, he well-known fact, that, a
perturbed NLS equation can be derived from Eq. (1) to
describe breathers in the limit, of large frequency (equiva-
lently small amplitude) ~8 = cos p. 1. To achieve this,
it is enough to look for solutions of Eq. (1) of the form
u(z, t) = bA(X, T)e"+c.c. (c.c. stands for complex con-

jugate) where 6 is some small parameter, and X = bx,
T = b~t; substitution of this Ansafz in Eq. (1) and the
change A ~ 2Q, 7. ~ 2T yield, —to order bs,

~@.+ @xx+2INI'@ = @»n i

-X
~ (5)

At a step in this procedure, one has to specify how 6

and e relate to each other. To reach Eq. (5), this must
be set to e b2, which means that Eq. (5) is only valid
for small-amplitude breathers on even smaller perturba-
tions. This limitation is often overlooked, and we believe
that keeping it in mind is crucial to make a correct com-
parison of NLS solitons to small-amplitude SG breathers.
It is possible to remove this restriction by starting from
more sophisticated Ansa/ze, including terms in 6 and b

(see [15]; see also [16]); this technique leads to a more
complicated perturbed NLS equation, given by

which, in turn, only requires c 6 for it to be valid up

to O(b ). We see that the comparison of SG and NLS

results is not at all trivial, and seriously depends on the

4 k
isb, +si»»+2~si~ si = —

tocsin

~

—X ~+—si» cns —X),k2 (e r k2

(6)
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25 000 time steps.
In Fig. 2 we show some typical results of our numeri-

cal simulations, from a breather behaving in a particlelike
manner (An « A~), over a breather decaying into radi-
ation due to competition of length scales (An A~), to
a breather smoothing over a short-wavelength potential
(A~ &) Ap). In Fig. 3 we show a breather breaking up
into kink and antikink upon a small change of p.

The outcome of our numerical simulation program is
summarized in Fig. 4, which completes the qualitative
picture we already presented in Fig. 1. We start by de-
scribing the small-e regime, equivalently, the lower part
of the "phase diagram" of Fig. 4, for breathers starting at
a maximum of the potential, z = 0, We have found that
when the initial breather is far from the value A~/Ap = 1,
it remains unbroken. By this we mean that it is altered
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FIG. 3. Numerical simulations of breathers for the SG Eq.
(1). Shown is u(x, t), the shape of the breather. Integration
time 0 & t ( 100, time step At = 0.025, spatial step Ax =
0.05. Potential para. meters: e = 0.1, k = 7r/2. Breather
parameters: xp = 0, tp = 7r/2 cos y, . (a) Distorted breather:
y, = 1.53. (b) Breakup into kink and antikiuk: p = 1.54.

with respect to the initial breather but still it keeps its co-
herence and behaves like a single elementary excitation.
The main changes it undergoes are a modulation of its
shape, which develops "ripples" with the same period of
the perturbing potential, and an increase of the breathing
frequency. It is also worth noticing that it emits a certain
amount of radiation at the very beginning of the evolu-
tion, but after this transient and achieving a suitable
shape, radiation ceases completely. Far from A~/At = 1

we have checked that there is a good qualitative agree-
ment with the predictions of the effective potentiaI in
Eq. (3): Indeed, when A~/Ap ~ 0, the breather be-
haves very much like a particle, including features such
as being eventually removed from its metastable initial
state by numerical roundoff errors and then sliding down
to one of the two neighboring wells; on the other hand,
when Atr/Ap is large, the effects on the breather both on
its shape, its frequency, and its center position become
barely visible. We also note that for these small e values,
the shape of small-amplitude breathers is very similar
to the predictions arising from Eq. (6) of a modulated
envelope g(X, 7). With respect to the initial position,
moving it to a bottom of the periodic potential results
in the same basic behavior, whereas any other starting
point will give rise to breathers showing local differences
in breathing frequency (when Atr/At is small, otherwise
again the potential influence is negligible) in addition to
the above-described, mainly particlelike characteristics.

This picture changes dramatically as the initial
breather approaches the competing lengths region
AB/Ap 1. In this regime, the breather is no longer
stable: The radiating transient ends up in a huge amount
of radiated energy and in a rapid decay of the breather
or its breakup either into two or more breathers or into
a I~-I~ pair. Sometimes this breakup is even more spec-
tacular: The initial breather jumps over several potential
barriers and finishes breaking into several breatherlike
excitations, hardly distinguishable from radia, tion. The
whole process seems to happen in a time of the order
of magnitude of 10 or less in dimensionless units, and it
is important to stress that even rather small values of c

(around 0.1) can give rise to this clearly nonperturbative
behavior. A remark is in order concerning the break-
ing into I~-A, namely, that this decay channel seems to
be available only for large-amplitude breathers (p 1.5
the ones we studied, where the separatrix from Ii-I~ for
the unperturbed system is p = n'/2). In connection
with this, another important result we have obtained
in this A~/At 1 region is the extreme sensitivity of
the outcome on the precise-~ value: Small changes in

this parameter can lear), for large-amplitude breathers,
to breaking into breathers, into I~-K, or into radia-
tion [see, e.g. , the sequence at logos(An/A~): 0.5 in

Fig. 4]; analogously, this dependence appears for lower-

amplitude breathers in that they can decay to breathers
or just radiation. Finally, typically this radiated energy is

eventually trapped in the wells of the potential, forming
some small-amplitude, localized excitations.

Having summarized our main findings for small e, we

now describe the full "phase diagram" in Fig. 4. Briefiy,
the same breakup phenomena arise for each value of
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FIG. 4. The "phase diagram" as obtained from numerical simulations (cf. Fig. 1). Squares are results for large-amplitude
breathers (p, = 1.5), triangles for intermediate-amplitude breathers (p, = 0.5), and diamonds and circles for small-amplitude
breathers (p = 0.1). Empty symbols mean that the breather remained unbroken, though dis.orted, whereas full symbols
indicate breaking up. Crosses stand for breather breakup into K-K (see text).

A~/A~ for e ) e, (Ag/A~); the dependence of e, on
A~/A~ can be approximately seen from Fig. 4 as the
boundary between black and white points. The value
e, grows as we move further from the critical competing
lengths region A~/Ay —1, and, for small or large A~/A~
values, we have to go to values of rather large e, even
larger than 1 and thus allowing for the coeKcient of sinu
in Eq. (1) becoming negative (in other words, the natural
frequency of the system can be imaginary). This is what
we already depicted in the schematic Fig. 1. However,
the real situation appearing from the simulations is more
complicated, because there is not a single critical value
but, rather, a narrow region or sequence of c values for
each AB/Ay below which breathers are preserved, above
which breathers are broken, and inside which the precise
outcome (breaking or nonbreaking) strongly depends on
the chosen e. Furthermore, large-amplitude breathers un-
dergo a different process: They can nonradiatively break
up into I&-I& pairs, nonradiatively meaning that the pro-
cess is smooth and that we have not seen an appreciable
quantity of radiation in the system (see Fig. 3). This pro-
cess is not necessarily correlated with the competition of
lengths, because the resulting I~-K pair is made up of
kinks, each one of which may cover several wavelengths
of the perturbation potential, aside from the lack of radi-
ation characteristic of the competing lengths mechanism.
This region can be seen in Fig. 4 as the crosses near the
rightmost edge of the A~/A~ axis.

We can now try to give a global picture of the result
of our study of Eq. (1). We believe that our "phase di-
agram" (Figs. 1 and 4) indeed describes the parameters
regimes in which the system scales to a situation where
either nonlinearity is dominant (below the solid line in
Fig. 1, white zone in Fig. 4) or disorder, in the sense
of inhomogeneity, is dominant (above the solid line in

Fig. 1, black zone in Fig. 4). Besides, we can conclude
that this periodic potential is actually very relevant to
the study of general disorder, i.e. , most random (exclud-
ing probably extreme cases like white noises) potentials,
because it shows that for small perturbations the only
important length scale of such a noisy medium would be
the one of the length of the excitation that one is trying
to propagate (in our case, the breather length), whereas
all other "colors" in the stochast;ic perturbation are ei-
ther smoothed out or have only adiabatic effects. They
have very little inAuence on nonlinear excitations, aside,
of course, from the long-wavelength Fourier components
which will drive the system as a whole in a particle sense.

The underlying mechanism responsible for this length
selection is not clear at present. From our work we
have learned that it is by no means a global one,
e.g. , the energy injected in the system by just placing
the breather in the potential. These global quantities are
in most parameter regions very small and irrelevant. It
is likely that local equilibria between the extra potential
energy and the wave-field gradients are the main drivers
of the breather breakup. This interpretation arises both
from the simulations, that show how these gradients grow
as e increases, and from the approach given by Eq. (6)
which shows that gx is playing a role in the small-
amplitude breather evolution. On the contrary, global
energetic considerations are more suitable explanations
of the nonradiative, K-I~ breakup of large-amplitude
breathers, as we will report elsewhere [12]. We also want
to stress again the fact that we have performed similar
simulations on the NLS system [11] and find the same
kind of "phase diagram, " which is a good indication that
NLS-like approaches to the SG breather problem can be
helpful: for instance, Eqs. (5) and (6) show how the po-
tential strength can enter through a renormalization of
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the wave number. This is in accordance with the breakup
phenomena on the Air/Ap ) 1 side of the abscissa of our
"phase diagram": strong potentials of large wave number
are effectively leading to behaviors like those of smaller
wave-number perturbations, thus causing breakup pro-
cesses to be activated. On the other side of the axis
(A~/At ( 1) such an e renormalization would lead to
spatial intervals of almost constant potential, which, pro-
vided they were large and extended enough, would pre-
vent breathers from existing inside them, this being not
a length competition but a local change in the allowed
breather frequencies.

Although Eq. (1) is rather difficult to study analyt-
ically, we hope to obtain further insight into the com-
peting lengths mechanism along the following lines: The
NLS-like equations (5) and mostly (6) look like promising
points from which to obtain information on the radiative
mechanism governing small-amplitude breather breakup.
We have shown enough evidence that this mechanism is
quite general, with the only possible exception of large-
amplitude breathers where a K-I& decay channel is avail-
able. Perturbation theory for these equations would then
tell us something about the small-e region of the "phase
diagram. " The limiting lines between breaking and non-
breaking for large e (equivalently for Aii/Ap far away
from 1) might be understood through numerical linear
stability analysis of the perturbed breather shape, study-
ing how the corresponding spectrum evolves with e; the
main problem of such an approach is the time depen-
dence of the breather, but either a suitably chosen av-
eraging or a good Ansatz for its shape may remove this
difFiculty. Lastly, a complementary view would be to sim-
ulate the same problem, Eq. (1), but starting from plane
waves of different wavelengths instead of breathers; such
a numerical work would give a different perspective of
the length competition. This length competition will be
more relevant for certain experimental situations (i.e. ,

more uniform energy input) and will address the for-
mation of solitons from modulational instabilities in the
presence of disorder. We envisage scaling to linear disor-
der fixed points (localization) for strong disorder but to
nonlinear fixed points (soliton formation) for sufficiently
strong nonlinearity and length competition. If solitons
are formed, the scenario discussed earlier in this report
takes over.

In conclusion, we have completed an exploratory pro-
gram of numerical work on SG breathers initially at rest
on spatially periodic potentials. We have found that
low-amplitude perturbations are only relevant when their
length scale is of the order of that of the breather, lead-
ing to its breakup. For other length ratios perturbation
strengths above a zone of critical values are needed to give
rise to the same effects. This behavior does not depend
on the breather amplitude except when this amplitude
opens the Ii"-Ix breakup channel. Small-amplitude SG
breathers and NLS solitons are seen to behave quite sim-

ilarly. In this sense the behavior of breather solitons in
mono-color spatial disorder is a key component to under-
standing their transport in disorder of general color. This
preliminary work allows us to propose some explanations
for this group of phenomena which are qualitatively cor-
rect, and to select further research lines capable to coITl-

plete and make our picture quantitative. Work along
these lines is in progress [11,12].
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