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We present results concerning kink-impurity interactions in the sine-Gordon (SG) model. In
particular, we demonstrate that the SG kink may be totally reflected by an attractive impurity if its
initial velocity is in some resonance windows. This effect can be predicted by a suitable collective-
coordinate method, and the resonance structures can be explained with an energy exchange between
the kink translational mode and the impurity mode. We also study the scattering of the kink by an
excited impurity and show that such a scattering strongly depends on the amplitude and phase of the
impurity mode. In particular, resonance phenomena are also observed in the scattering. In addition,
we consider the interactions of the kink with an isotopic (heavy-mass) impurity. We demonstrate
that if the impurity mass is not too large in comparison with the standard mass in the SG model,
the kink can pass the impurity almost freely at any initial velocity. However, if the impurity mass is
large enough, a higher-velocity kink will be reflected while a lower-velocity kink will pass. We explain
this effect analytically and show that the impurity mode plays an important role in the scattering.
In all the cases considered we find good agreements between the collective-coordinate analysis and
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the direct numerical simulations.

PACS number(s): 03.40.Kf, 63.50.+x, 66.90.+1, 42.25.—p

I. INTRODUCTION

In recent years, wave propagation through inhomo-
geneous and disordered media has attracted increasing
attention [1-4]. One central issue is how nonlinearity
can qualitatively modify the effects of disorder on trans-
port properties, and conversely, how disorder may change
the steady-state motion of solitons in nonlinear systems.
Now it is generally recognized that nonlinearity can sig-
nificantly improve the transport properties when it con-
tributes to create soliton pulses. Being more robust than
linear waves or wave packets, solitons can give a nonzero
contribution to the transmission coefficient of a disor-
dered medium. In particular, it has been demonstrated
that the transmission coefficient in the case of dynami-
cal solitons decays according to a power law (see Refs.
[4, 5], and references therein) instead of an exponential
law, as the Anderson localization shows in linear disor-
dered systems. Moreover, an envelope soliton described
by the nonlinear Schrodinger equation can propagate al-
most freely (with very little radiation) if its amplitude
reaches over a certain threshold value [4, 6]. Recently,
the kink dynamics in the stochastically perturbed sine-
Gordon and ¢* models has also been studied extensively
(see, e.g., Refs. [7-11]).

To gain a deeper understanding of the behavior of non-
linear excitations in disordered systems, one has to in-
vestigate the interactions of solitons with separate local-
ized inhomogeneities (impurities). Such impurities break
the translational invariance of the original unperturbed
system, so the solitons can no longer propagate with a
constant velocity and/or a constant amplitude because
a general effect in the soliton scattering by local impuri-
ties is energy loss through radiation (see, e.g., [12-26]).
Furthermore, the impurity may frequently give rise to an
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effective potential (attractive or repulsive) to a soliton;
thus the soliton can be either captured or reflected by
the impurity (see, e.g., Ref. [18]).

In some cases a pointlike impurity can allow the system
to support a localized excitation even in the framework of
the linear theory, the so-called impurity mode (see, e.g.,
(12,13, 16, 19, 20]). The impurity mode may be easily
excited during the soliton scattering and has a long life-
time [19, 23-25]. Most importantly, due to the energy
exchange between a soliton and an impurity mode, the
soliton can be totally reflected by an attractive impurity
[23]. As was mentioned in our previous paper [23], this
effect is quite similar to the resonance phenomena pre-
viously observed in the kink-antikink collisions in some
nonlinear Klein-Gordon equations [27-31].

There are a number of papers discussing the kink-
impurity interactions in the framework of the sine-
Gordon model (see, e.g., Refs. [14, 15, 17, 18, 20, 23, 24,
26], and references therein). Most of the earlier stud-
ies are related to the fluxon dynamics in the presence of
local inhomogeneities (microshunts and microresistors)
in long Josephson junctions, where the inhomogeneities
are installed into the junction during fabrication (see,
e.g., Ref. [32]). Recently, Braun and Kivshar [20] have
considered the Frenkel-Kontorova (FK) model, including
different types of impurities, where the continuum limit
of the FK model is nothing more than the sine-Gordon
(SG) equation.

In this paper we present our results concerning the
kink-impurity interactions in the SG model and describe
the complete “two-bounce” resonance structures in the
interactions. Our main goal is to study the resonance ef-
fects from different perspectives. First, we investigate the
mass impurity in addition to the substrate impurity. We
show that the both types of impurities can support local-
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ized modes in the system, which are found to be responsi-
ble for resonances. Second, we analyze the kink-impurity
interactions by the collective-coordinate method, taking
into account two dynamical variables: the kink coordi-
nate and the amplitude of the impurity-mode oscillation.
This approach allows us to calculate the threshold ve-
locity of the kink capture analytically, and, in partic-
ular, it can help to understand why and how the reso-
nance phenomena may occur in the kink-impurity inter-
actions. Third, we report our direct simulation results
of the kink-impurity interactions and demonstrate that
the ¢, V; plane (V; being the kink initial velocity, and e
the impurity strength) can be divided into three differ-
ent regions: the region of kink pass, the region of kink
capture, and the region of coexistence of capture and res-
onant reflection. Fourth, we study, for the first time, the
scattering of a kink by an ezcited impurity. Such a scat-
tering naturally depends not only on the initial velocity
of the kink but also on the initial amplitude and phase of
the impurity mode. In particular, we demonstrate that
the resonance effects still exist in such a type of scatter-
ing. Finally, we study analytically and numerically the
kink scattering by a mass impurity in the SG model. We
find that, if the mass ratio is less than a certain value,
then the kink with any velocity can pass; however, for a
given heavy-mass impurity with a larger ratio, a lower-
velocity kink can pass the impurity, but a high-velocity
kink will be reflected by the impurity. We point out that
this effect may be easily explained with the help of a suit-
able collective-coordinate method that takes into account
excitations of the impurity mode. A similar problem was
considered by Fraggis, Pnevmatikos, and Economou [19]
for the ¢* chain but they did not provide an analytical
explanation of the effects observed numerically.

The paper is organized as follows. In Sec. II we present
the model and describe the properties of the impurity
mode that is a localized excitation at the impurity site.
In Sec. III we analyze the interactions of the kink with
the substrate impurity by the collective-coordinate ap-
proach and calculate the threshold velocity for the kink
capture. We show how to predict resonance phenomena
in the framework of the collective-coordinate dynamical
system. In Sec. IV we report our direct numerical simu-
lation results and demonstrate that below the threshold
velocity a SG kink is not necessarily going to be captured
by the impurity, instead it still may escape from the im-
purity if its initial velocity lies in certain resonance win-
dows. In Sec. V we discuss the scattering of the kink by
an excited impurity. Section VI is devoted to a detailed
study of the kink scattering by an isotopic (heavy-mass)
impurity. Using the collective-coordinate analysis we ex-
plain why a higher-velocity kink can be reflected by the
mass impurity, while a lower-velocity kink may pass it
almost freely. Finally, in Sec. VII we conclude our paper
with some remarks.

II. MODEL AND IMPURITY MODES

We consider the SG model including a localized inho-
mogeneity (impurity), which is given by the equation
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Uy — Ugr + sinu = €8(z) P(u). (1)

When the perturbation is absent (¢ = 0), the SG model
supports a topological soliton, the so-called kink,

up(z,t) = up(z) = 4tan™" exp(oz), (2)

where z = (. — X)/V1-V?, X = Vt+ Xy is the kink
coordinate, V is its velocity, and ¢ = %1 is the kink
polarity (without loss of generality we assume that o =
+1 below).

Now let us consider the SG model (1) with a substrate
impurity, i.e., P(u) = sinu. For € > 0, the system sup-
ports a localized impurity mode (see, e.g., Ref. [23]). To
show this, we linearize Eq. (1) around its ground state
u = 0, and obtain the equation

Uy — Ugy + [1 — €6(2)]u = 0, (3)
which has a localized oscillating mode
wim(2,0) = a(t)e™ 712, (4)

where a(t) = ag cos(2t + 8g), Q2 being the frequency of
the impurity mode,

Q= \/m, (5)

and 6 an initial phase. Note that the impurity mode
[Egs. (4) and (5)] exists if and only if ¢ > 0 (the so-
called attractive impurity). As follows from Eq. (4), the
impurity mode is periodic in time and localized in space
(it falls off exponentially). In nonlinear systems the im-
purity mode also exists and it may be described as a
small-amplitude breather captured by the impurity (see,
e.g., Refs. [20, 33]). The energy stored in the impurity
mode (4) may be easily calculated as

1 & auim ? 8Uim :
E"”‘“if_md””K o1 ) +< az)

H1 = b

= Q%2 /e. (6)

To introduce an isotopic impurity into the SG model,
we will take in Eq. (1) the perturbation in the form
eP(u) = --yuy, where the parameter v = (M — m)/m
describes the relative ratio of the impurity mass M and
the standard mass m(< M) in the SG chain. In this case
the linearized SG equation takes the form

Uy — Uy + U = —76(2)uy, (7)
and it also supports an impurity-mode oscillation,
Uim = A(t)e ], (8)

where A(t) = Agcos(wt + 6g), ¢ = (y/2)w?, and the
frequency w is given by

w2:%(\/1+72—1). (9)

It is easy to see that the frequency of the impurity mode
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(9) lies in the gap of the phonon spectrum, 0 < w? < 1.
In the case of a heavy-mass impurity, i.e., when v > 1,
the frequency w goes to zero as 2/v, and ¢ = 1.

III. COLLECTIVE-COORDINATE ANALYSIS
A. Effective equations of motion

To describe the motion of the kink (2) in the pres-
ence of a localized inhomogeneity in the substrate, the
so-called adiabatic approximation is usually used [14, 15,
18]. In the framework of this perturbative approach, the
kink coordinate X is considered as a collective variable,
and its evolution is described by a simple motion equa-
tion for a classical particle with mass m.g = 8 placed in
the effective potential (see, e.g., Ref. [15])

U(X) = —2¢/cosh’X. (10)

As a result, if € > 0 the impurity in Eq. (1) creates an
attractive potential to the kink. Since the particle (kink)
conserves its energy, it cannot be trapped by the poten-
tial well if it has a nonzero velocity at infinity. However,
the kink may be trapped by the attractive impurity due
to radiative losses and there exists a radiation-induced
critical velocity V.(e), such that if the kink initial veloc-
ity is larger than V,(¢) it will pass through the impurity
and escape to infinity; otherwise it will be trapped by
the impurity. The critical velocity was firstly discussed
by Malomed with the help of the perturbation theory
based on the inverse scattering technique (since the un-
perturbed SG model is integrable) [17]:

V, = 22Y8 7114318 exp(—+/2/e). (11)

However, the perturbation theory used in Ref. [17] to-
tally ignored the possibility of exciting an impurity mode
during the scattering, so, as we recently proved, the re-
sult (11) is valid only for very small € [24], because, as a
matter of fact, the impurity mode may be easily excited
because of the kink scattering (see Fig. 1). Therefore,
when calculating the critical velocity of the kink capture,

U(0,T)

- 1 1 I
1'00 50 100 150 200

T

FIG. 1. Impurity displacement »(0,t) calculated by nu-
merical simulation of Eq. (1) with a substrate impurity (¢ =
0.5). It shows that, above the critical velocity, the kink passes
the impurity, inelastically losing part of its energy to excite
the impurity mode that is a long-lived oscillating state.

we should take into account the energy transfer to the
impurity mode.

Now we will analyze the kink-impurity interactions by
the modified collective-coordinate approach, taking into
account {wo dynamical variables, namely the kink co-
ordinate X(t) [see Eq. (2)] and the amplitude of the
impurity-mode oscillation a(t) [see Eq. (4)]. Substitut-
ing the ansatz

U= ug + uim = 4 tan"exp[z — X (t)] + a(t)eI=1/2
(12)

into the Lagrangian of the system,
oo
L= / {3uf — 2ul — [1 — €6(x))(1 — cosu)}, (13)

and assuming that a and ¢ are small enough so that the
higher-order terms can be neglected, we may derive the
following (reduced) effective Lagrangian:

Ler =4X2+%(d2—92a2)—U(X)—aF(X), (14)

where U(X) is given by Eq. (10), and

tanh X

F(X) = -2 cosh X’

(15)

The equations of motion for the two dynamical variables
X and a are

8X +U'(X)+aF'(X)=0,
(16)
i+ Q%+ (e/2)F(X) =0.

The system (16) describes a particle (kink) with coordi-
nate X (¢) and mass 8 placed in the attractive potential
U(X) ( for € > 0), and “weakly” coupled with the har-
monic oscillator a(t) (the impurity mode). Here we say
“weakly” because the coupling term aF(X) is of the or-
der of € and falls off exponentially. The system (16) is a
generalization of the well-known equation 8X = —U’(X)
describing the kink-impurity interactions in the adiabatic
approximation.

B. Critical velocity

We find that the dynamical system (16) can describe
all features of the kink-impurity interactions (for € > 0).
First of all, it may be used to calculate properly the crit-
ical velocity of kink capture. The main idea is to use an
energy transfer argument. Let us consider a kink with
an initial velocity V > 0, coming from —oco. Then in the
zeroth-order approximation the equation of motion for
the kink coordinate X (t) takes the form 8X +U'(X) = 0,
which has an exact solution

X(t) = sinh™[Asinh(V1)), (17)

where A = \/V2+¢/2/V. Now we insert the result (17)
into F(X) of the second equation of (16) and consider
the function

€2 Asinh(Vt)

ft) = —(e/2)F(X(t)) = TF AZsnh2(V0)

(18)
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as a pulse force acting on the harmonic oscillator. Intro-
ducing the complex variable {(t) = a+1iQa, Eq. (16) may
be reduced to £ — iQ€ = f(t), which has the solution

g(t):eim/_ f(r)e~ ¥ dr, (19)

with the initial conditions a(—o0) = a(—o0) = 0, i.e., the
oscillator (impurity mode) is not excited prior to the in-
teraction. The total energy transferred from the particle
(kink) to the oscillator (impurity mode) may be calcu-
lated as

1.
Eosc = :(a “+ 92(12)

1
= —[¢(+o0)?
L™ o iDL e 2sinh®[R2(V)/2V]
T € ]/—oo fye™ ) = 2me cosh?(Qm/2V)
(20)
where
Z(V) =cos™! (—3“;—3;—_—2—) . (21)

At the critical velocity V = V,, the particle must trans-
fer all of its kinetic energy, E; = 4V?2, to the oscillator.
Thus the critical velocity of the kink capture should be
determined by

me sinh[QZ(V.)/2V.]
V2 cosh(Qw/2V,)

For a given € > 0, this equation can be solved numerically
to obtain the critical velocity V.(€¢). In Fig. 2 we have
plotted the critical velocity determined by Eq. (22) (solid
line) as well as by Eq. (11) (dashed line). Comparing the
analytical results with the direct numerical simulations
(the stars in Fig. 2), we find that the perturbation theory
used in Ref. [17] is valid only for very small € (in fact, for
€ < 0.05), while the formula (22) gives good estimations
of V.(¢€) for € over the region (0.2, 0.7).

Ve =

(22)

1.2 - 7
/
L Ve
7/
0.8 - 7
— /
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FIG. 2. Critical velocity of the kink capture as a function
of € determined by Eq. (22) (solid line) as well as by Eq. (11)
(dashed line). Dotted line is obtained numerically for the
collective-coordinate equations (16). The stars are the results
of numerical simulations of Eq. (1).
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C. Prediction of resonance structures

The best result we can obtain by using the collective-
coordinate dynamical system (16) is to predict a possible
resonance phenomenon in the kink-impurity interactions.
As is pointed in Sec. IIIB, the system (16) describes a
particle moving in a potential well and locally coupled
with a harmonic oscillator (see the schematic picture in
Fig. 3). There exists a critical velocity V., below which
the particle cannot pass the potential well to escape to
infinity (asymptotically) after the first interaction. In-
stead, the particle will be bounded by the potential and
comes back to interact with the oscillator again. Since
the system is conservative, in the second interaction it is
possible for the particle to restore enough kinetic energy
from the oscillator (provided the phase is right) and es-
cape to infinity in the opposite direction. This energetic
analysis clearly shows that some resonance phenomena
may occur in the kink-impurity interactions.

In order to see the resonance phenomena in the model
system (16), we simulate the equations with the initial
conditions X(0) = —6,X(0) = V; > 0,a¢(0) = 0, and
a(0) = 0. First, we find that, for a given ¢ > 0, there
does exist a critical velocity V.(e€) such that, if the ini-
tial velocity of the particle is larger than V;(¢), then the
particle will pass the attractive potential well U(X) and
escape to +oo, with a final velocity V; < V;, because
part of its kinetic energy is lost to excite the oscillator.
In particular, at ¢ = 0.5, we find numerically that the
critical velocity i1s V, = 0.1697.

Below the critical velocity, resonance phenomena are
indeed observed. More precisely, if the initial velocity of
the particle is smaller than V,(¢), the particle cannot es-
cape to +oo after the first interaction with the oscillator,
but will return to interact with the oscillator again. The
time between the first and the second interactions can be
estimated as

3.05855

T19(V;) = ——=—= +4.84872. (23)
/VCQ — Viu

For some special initial velocities, the second interac-

tion may cause the particle to escape to —oo with fi-

nal velocity Vy < 0 (see Figs. 4 and 5). This resonance

Particle X(t)
o—>

Potential Well U(X)

Harmonic Oscillator a(t)

FIG. 3. A particle moving in a potential well and weakly
coupled with a harmonic oscillator: a schematic drawing of
the dynamical system (16) raised in the collective-coordinate

approach.
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FIG. 4. Particle coordinate X (t) vs time, showing the
pass, trap, and reflection in the framework of Egs. (16).

phenomenon can be easily explained by the energy ex-
change mechanism between the particle and the oscilla-
tor. In this case a resonance condition must be satisfied:
Ti2(Vn) = nTim +7, Tim = 27/+/1 — €2 /4 = 6.4892 being
the period of the impurity mode and 7 = 0.0 being a con-
stant. Combining this resonance condition with Eq. (23)
we can obtain the formula to predict the resonance win-
dows,

, . 3.05855)2
Vi=vVv?-— ( , 24
n ¢ (6.4892n — 4.848 72)2 (24)
where V., = 0.1697 is the critical velocity and n is an

integer. We have checked the formula (24) and find that
it can predict the resonance windows ezactly, at least for
6 < n < 22. For example, at n = 10, the formula gives
Vio = 0.161 87, while in numerical simulation the particle
will indeed be reflected after the second interaction if its
initial velocity is taken to be exactly the same value.

As a matter of fact, the resonance structures of such
kinds of systems (a particle coupled with one harmonic
oscillator, see Fig. 3) have been more extensively stud-
ied in Ref. [31] for the kink-antikink collisions in the ¢*
model. The main results are that below the critical ve-
locity there exist infinite “two-bounce” resonance win-
dows (of reflection), and, also, near the two-bounce res-
onance windows there exist “n-bounce” resonance win-
dows (n > 3 is an arbitrary integer), which means that

-0.4 L L
0 50 100

T

FIG. 5. Excitation and deexcitation of the harmonic os-
cillator a(t), showing a resonance energy exchange between
the particle and the oscillator in the model (16).
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the particle can escape to infinity (either 400 or —oo)
after interacting with the oscillator for n times. Indeed,
we have observed all these resonance phenomena in the
simulation of the system (16).

The reflection of the particle in the system (16) means
that a kink can be reflected by an attractive impurity
through a resonant energy exchange process. In the next
section we are going to report our direct numerical sim-
ulation results; we will demonstrate that a SG kink can
indeed be reflected by an attractive impurity if its initial
velocity lies in some well-defined resonance windows.

IV. DIRECT NUMERICAL SIMULATIONS

To study the kink scattering by a pointlike substrate
impurity, we use a conservative numerical scheme to dis-
cretize Eq. (1), and carry out simulations in the spatial
interval (—80,80) with discrete step sizes Ax = 2At =
0.04. When handling the é function we take its value
equal to 1/Az at 2 = 0 and zero otherwise. The initial
conditions are taken as a kink centered at Xo = —6 mov-
ing toward the impurity with an arbitrary given velocity
Vi > 0.

First, we take the impurity amplitude ¢ = 0.5. In the
numerical simulations, we find that there are three differ-
ent regions of kink initial velocity, namely, the regions of
pass, of capture, and of reflection (see Fig. 6). The region
of pass is the velocity interval (V,,1), V. = 0.16585 being
the critical velocity, such that if the kink initial velocity is
larger than V¢, the kink will pass the impurity and escape
to the positive infinity (see Fig. 6). Such an interaction
is inelastic in the sense that the kink loses part of its ki-
netic energy to excite the impurity mode (see Fig. 1) in
a manner similar to the excitation of the oscillator in the
collective-coordinate model (16), but here the radiation
effect is also naturally presented. Roughly speaking, in
this case a linear relationship between the squares of the
kink initial velocity V; and its final velocity V; is held:

Vi = oV = V2), (25)

where the constant parameter a &~ 0.987 (at € = 0.5) is

-determined empirically from numerical data.

X(T)

reflection™
-8 1 1 -
0 50 100 150 200
T

FIG. 6. Kink coordinate X vs time at ¢ = 0.5. The kink
initial velocity V, is taken from the three different regions: the
region of pass (solid line, V, = 0.19), of capture (dotted line,
V. = 0.1611), and of reflection (dashed line, V; = 0.1600).
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FIG. 7. Impurity displacement u(0,t) vs time in the case

of the kink capture. The kink initial velocity is V, = 0.1611
and € = 0.5.

Below the critical velocity V., the final results of the
kink-impurity interactions are very sensitive to the initial
kink velocity. More precisely, if the incoming velocity of
the kink is smaller than V., the kink cannot escape from
the impurity after the first interaction, but will stop and
then return to interact with the impurity again. For most
of the initial velocities, the kink will lose its energy again
in the second interaction and finally become trapped by
the impurity (see Figs. 6 and 7). However, for some spe-
cial initial velocities, the kink may escape to negative
infinity after the second interaction, i.e., the kink may
be totally reflected by the atiractive impurily (see, e.g.,
Figs. 6 and 8).

Here we would like to point out two salient features in
the resonant kink-impurity interactions. First, the reflec-
tion of the kink is realized by two steps: the first inter-
action removes kinetic energy from the kink and causes
the kink to be trapped by the impurity, while the second
interaction retransfers enough energy back to the kink
and allows it to escape from the attractive impurity. To
explain this trapping-escaping behavior one clearly needs
an energy exchange mechanism. Secondly, below the crit-
ical velocity, the regions of the kink capture alternate
with the regions of kink reflection (see Fig. 9). These
two features make this effect similar to the resonant kink-
antikink collisions in some nonlinear Klein-Gordon equa-
tions [27-31].

In order to analyze the kink-impurity interactions
quantitatively, we define the center of the kink X (t) as
the spatial point z at which the field function u(z,t) is
equal to m. Let us also introduce the time between the
first and the second interaction, T12(V;i), V; being the
kink initial velocity. More precisely, T12(V;) is the time
difference between the first two instants at which the cen-
ter of the kink is just at the impurity. Since the attractive
potential created by the impurity falls off exponentially
[cf. Eq. (10)], based on the classical mechanics we can
obtain an approximate formula to estimate Ti2(V;) [see
Eq. (23)],

a

/ch _ Vi2

where the parameters @ and b are empirically determined

Ti2(Vi) = + b, (26)
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FIG. 8. Impurity displacement u(0,t) vs time in the case
of reflection. The kink initial velocities are taken from the first
four resonance windows: (a) V, = 0.1600, (b) V, = 0.160 94,
(c) Vi = 0.16167, and (d) V, = 16225. Note that after the
first interaction the impurity mode is excited, but after the
second interaction the energy in the excited impurity mode is
transferred back to the kink. The number of impurity oscil-
lations between the two interactions is increased one by one
for the adjacent resonance windows, which agrees with the
resonance condition.
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0.00 ‘
-0.05
-0.10 . L
0.155 0.160 0.165 0.170
Vi
FIG. 9. Final kink velocity as a function of the initial

kink velocity (¢ = 0.5). Zero final velocity means that the
kink is captured by the impurity. In the case of resonances,
we simulate until the kink is reflected far away from the im-
purity [X(¢) > 10], and then the final velocity is calculated
by averaging over 20 time units.

by numerical data. At ¢ = 0.5, we have a ~ 3.153 786,
b =~ 1.608516. We have verified this formula and found
that it is valid, at least in the interval (0.10,0.165), where
the resonance windows are situated (see Table I).

We also observe that the first interaction always re-
sults in exciting the impurity mode (see Figs. 1 and 8),
and the resonant reflection of the kink after the second
interaction is just a reverse process, i.e., to extinguish
the impurity mode [see Figs. 8(a)—8(d)] when the tim-
ing is right, in order to restore enough of the lost kinetic
energy and to escape from the impurity with a nonzero
final velocity (see Fig. 9). Favorable timing in this case
means that the occasion of the second interaction coin-
cides with the passage of the impurity oscillation through
some phase-angle characteristics of the impurity-mode
extinction. Thus the condition for restoration of the kink

TABLE L
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kinetic energy after the second interaction ought to be of
the form

TIQ(V) =nT +r, (27)

where T' = 27/Q =~ 6.4892 (at € = 0.5) is the period of
the impurity-mode oscillation, n is an integer, and 7 is
an offset phase, which is found, for our case, to be about
2.6512.

Combining Egs. (26) and (27), we may obtain the gen-
eral formula to predict the centers of the resonance win-
dows,

Vi = V2 = B/(nT +6)?, (28)

where 8 = a® and § = 7 — b. In particular, at ¢ = 0.5,
we have determined the parameters: V, = 0.16585, f =
9.946 366, 6 = 1.0427, and T = 6.4892.

It is natural that the formulas (26) and (28) are quite
similar to those obtained in Sec. III C, where the reso-
nance structures of the collective-coordinate dynamical
system (16) are analyzed. From Table I we can see that
formulas (26)—(28) are very accurate in comparison with
the direct numerical simulation results.

The resonance windows corresponding to the integers
5 < n < 11 were found to be absent. Instead, we ob-
served quasiresonances at the velocities predicted by the
formula (28) for n < 11, i.e., the second interaction may
cause the kink to be reflected further away from the im-
purity but yet not able to escape to infinity. Vanishing of
these lower-order resonance windows can be explained by
taking into account the strong radiation generated during
the scattering. If the initial kink velocity is too small, the
kink will not be able to restore enough kinetic energy at
the second interaction because the radiative losses have
extracted a sufficient part of the energy from the kink
translational mode and impurity mode.

Furthermore, there are no reasons why higher-order
resonances (n > 22) do not exist. But according to Ta-
ble I, the windows become narrower and narrower when n

Two-bounce resonance windows in the kink-impurity interactions in the SG model

(1) with the substrate impurity at € = 0.5. The value T12(V;,) is defined as the time between the
first and second interactions. The data in the last two columns are obtained by the formulas (26)
and (28), respectively. Note that the resonance windows determined by the numerical simulations
are in very good agreement with the theoretical predictions.

Resonance Window T12(Vy) Predicted
n windows centers V, Numerical Theoretical centers
11 (0.15996, 0.16003) 0.1600 73.9 73.8 0.16003
12 (0.16090, 0.16097) 0.16093 80.2 80.2 0.16095
13 (0.16164, 0.161704) 0.16167 86.8 86.8 0.16167
14 (0.16222, 0.16227) 0.16224 93.3 93.2 0.16226
15 (0.16268, 0.16273) 0.16271 99.8 99.8 0.16272
16 (0.16309, 0.16311) 0.16310 106.5 106.4 0.16310
17 (0.16340, 0.16342) 0.16341 113.0 113.1 0.16341
18 (0.16365, 0.163677) 0.163663 119.3 119.0 0.16367
19 (0.]6387, 0.]6389) 0.16388 125.6 125.4 0.16390
20 (0.16406, 0.16408) 0.16407 132.5 131.8 0.16409
21 (0.16423, 0.16424) 0.164235 138.7 137.7 0.16425
22 (0.16437, 0.16438) 0.164375 145.2 144.5 0.16439
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FIG. 10. The same as in Fig. 9 but at € = 0.7.

increases, so it would be very difficult to detect the high-
order resonance windows even if they did exist. From for-
mula (26) we see that T7(V;) becomes very large when
Vi is close to V;; thus one has to take a long time at
numerical simulations to find the higher-order resonance
windows. On the other hand, since the impurity mode
is an exact solution in the linear theory, it can oscillate
for a long time without any appreciable decay in its am-
plitude (this has been verified by our direct numerical
simulations). Therefore, it 1s more sensible to consider
the kink scattering by an ezcited impurity (see the next
section).

We have demonstrated that a kink can be reflected af-
ter colliding with an attractive impurity for two times;
henceafter, these resonances will be called two-bounce
resonances. Such resonance effects have also been ob-
served for other values of ¢ (see, e.g., Fig. 10 for the
case of ¢ = 0.7; the corresponding tables can be found
in Ref. [23]). Thus, from our numerical simulations and
theoretical analysis, we can make a general conclusion
about the kink-impurity interactions in the SG model.
In Fig. 11 we show that in the €, V; plane (V; being the
kink initial velocity) there are three regions that corre-
spond to kink pass, capture, and coexistence of capture
and reflection (resonance windows), respectively.

Finally, another interesting question is whether it is
possible to observe three-bounce (or higher-bounce) res-
onances, i.e., when the kink escapes from the impurity
after colliding with the impurity for three times. Our nu-
merical simulations show that if the kink cannot escape
after the second interaction, which means that there is no
resonance between the kink translational motion and the
impurity oscillation, then the radiative losses will take
away more energy from the two modes (impurity mode
and kink translational mode) during this process, and as
a result, the kink will never be able to restore enough
energy to escape. On the other hand, even if the three-
bounce windows existed, they would be extremely nar-
row (see Refs. [27-31]), and the numerical detection of
these windows would consume a large amount of com-
puter time. Nevertheless, recently it has happened that
we have observed a three-bounce resonance window in
the kink-impurity interactions in the ¢* model [25], but
for the ¢% model we have found that the kink internal
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FIG. 11. Three different regions in the ¢, V, plane for the
kink interactions with a substrate impurity. It is shown that
above the critical velocity the kink can always pass the impu-
rity and escape to infinity, but that below the critical velocity
(solid) curve the kink can be either captured or resonantly
reflected.

mode also plays a very important role in the resonant en-
ergy exchange process, and the resonance effects in this
model are explained by the energy exchange between the
kink translational mode and two effective oscillators (the
impurity mode and the kink internal mode).

V. KINK INTERACTION WITH
AN EXCITED IMPURITY

In the preceding section we have considered the inter-
actions of the SG kink with an initially unezcited im-
purity. It has been observed that the first interaction al-
ways results in exciting the impurity mode, so that the
second interaction looks like the kink scattering by an
excited impurity, but with the kink being trapped in the
potential well. Our purpose now is to study the scatter-
ing of a kink by an excited impurity, where the kink is
initially separated far away from the impurity and has
a nonzero initial velocity. As far as we know, such a
problem has not been considered previously.

As a matter of fact, the problem can be also ana-
lyzed by the collective-coordinate method described in
Sec. 111 B. The equations of motion for the collective coor-
dinates X (t) (kink center) and a(t) (impurity-mode am-
plitude) are the same as Eq. (16), but the initial condi-
tions for a(t) should be changed. We may use the same
arguments as before to calculate the energy stored in the
impurity mode after the first scattering.

Eump(Vi, a0, 0) = %[GQ(V,-) + Q%2 + 2G(V;)Qao cos 0],
(29)

where, V; is the kink initial velocity, ag is the initial am-
plitude of the impurity mode, 6 is the phase of the im-
purity oscillations at the instant of the collision, and

3/28inh[QZ(V;)/2Vi]
Vare cosh(Qn/2V;)

Z(V;) being given by Eq. (21). Note that if ag = 0, then

G(Vi) = - (30)



45 RESONANT KINK-IMPURITY INTERACTIONS IN THE SINE- . ..

Eimp will be the same as Egs given by Eq. (20).

Equation (29) shows that for a given initial kink veloc-
ity the energy transferred to the impurity mode after the
first scattering depends 2w-periodically on the phase of
the impurity mode. Due to this phase effect, the results
of the kink-impurity interactions will be more compli-
cated. We will analyze the problem in two cases. Let us
first consider the case V; > V,(¢), V:(¢) being the critical
velocity determined by Eq. (22). By a simple energy-
balance argument, it can be shown that the kink may
get trapped by the impurity if the following condition is
fulfilled:

4V? + Q%al/e < sup Eimp(V;, a0,0), (31)
6

which yields the condition for the initial amplitude of the
impurity mode,

J GV — 4V
Z TGV

ap (32)
It is easy to prove that the right-hand side (rhs) of
Eq. (32) is always positive, provided V; > V.. Similarly,
in the case of V; < V,, the kink can still pass through the
impurity if the initial amplitude of the impurity mode is
not small,

1eV2 — G2(Vy)

For a given initial amplitude of the impurity mode,
there exists a critical velocity V.(e,a0) > V.(€) above
which the kink can escape from the impurity just after
the first interaction. By an energy transfer argument as
used in Sec. III B, it is easy to prove that the critical
velocity should be determined by the relation

4V2(e,a0) = G*(V.(€,a0)) — 2Qa0G(Ve(¢,a0)). (34)

Below the critical velocity V. (e, ao) there are three pos-
sibilities: pass, capture, and reflection, because the scat-
tering will depend on the phase of the impurity mode.

To verify the above theoretical predictions by direct
numerical simulations of the SG model, we take the ini-
tial conditions (at € = 0.5) with an excited impurity
mode whose shape is given by Eq. (4), where the am-
plitude ap = 0.1. First of all, we find that for larger
initial velocities (> 0.2) the kink can always pass and
then escape from the impurity (for any initial phase of
the impurity mode). However, for smaller velocities there
are three possibilities, as is pointed out in the above the-
oretical analysis. In particular, we take the kink initial
velocity V; = 0.18, which is lager than the critical veloc-
ity V. = 0.16585 at ay = 0.0, and then change the ini-
tial phase @ of the impurity mode in the interval (0, 2x).
In the numerical simulations we observe that, for 8 in
the intervals (0.0,0.87) and (1.27, 27) the kink may pass
through the impurity (inelastically) and escape to infin-
ity after the first interaction; but for 8 in the interval
(0.97, 1.17) the kink will get trapped by the impurity af-
ter the first interaction. In this region, a two-bounce res-
onance window is observed, i.e., the kink can escape from
the impurity after the second interaction (see Fig. 12).
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FIG. 12. Final kink velocity V; vs the impurity phase 6

when the impurity is excited prior to the collision. The kink
initial velocity V; is taken as 0.18. The pass, trapping, and
reflection are observed at different values of the phase.

We have also made simulations for other kink initial
velocities ranging from 0.15 to 0.19. The results agree
well with our theoretical predictions; that is, the scatter-
ing of the kink strongly depends on the initial phase of
the impurity mode, and the kink may pass, be trapped,
or be reflected by the excited impurity due to the energy
exchange between the kink translational mode and the
oscillating impurity mode.

VI. MASS IMPURITY

Now we will consider the interaction of a kink with an
istopic (heavy-mass) impurity in the SG model (1) when
€P(u) = —yuy,. Since the heavy-mass impurity may also
support a localized impurity mode (8), it is natural to
employ the collective-coordinate technique, taking into
account the impurity-mode amplitude as an additional
variable. Inserting the ansatz

ug = 4tan~!exp[z — X(t)] + A(t)e= 9! (35)

into the system Lagrangian,

L= /°° dz{[l +v6(z)]u; — 2u2 — (1 — cosu)},

(36)

we may obtain, in the lowest approximation, the effective
Lagrangian,

Y
Lg=4(14 ———
ot ( 2cosh? X

2y ..
—coshXXA

where w is the frequency of the isotopic impurity mode
given in Eq. (9), and

G =VI+72(VI+72 +1)/7.

The equations of motion for X (¢) and A(t) are

) K+ 3G - w27

(37)

(38)
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¥ - 2y . 4ysinhX _,
Sl1+———— ) X - A-— X* =0,
( + 2 cosh? X) cosh X cosh® X
(39)
. 2y 5  2ysinhX _,
A+uwiA) - X X?2=0. (40
First, let us consider the case ¥ <« 1, i.e., where the

isotopic impurity is small enough. Then, in the effective
Lagrangian (37) we may neglect the impurity mode and
obtain the energy-conservation relation in the form

x2(1 -——7—):V,-2, 41
( +2cosh2X (41)

where V; is the kink velocity at infinity. Equation (41)
has an approximate solution

X))+ (y/4)tanh X (t) = Vit, v <1 (42)
from which we can see that the effect of the kink scatter-
ing in this case is nothing but a phase shift of v/2.

Taking the approximation X (t) = V;t in Eq. (40) and
using an approach similar to that in Sec. III, we can
calculate the energy transferred to the isotopic impurity
after the kink scattering, assuming that the impurity is
not excited prior to the interaction.

® 2yV?sinh(Vt)
™ ‘/ G(v) coshz(Vt)

2
—iwt
nmp t

_ 49°7
T VT4 721+ 1+ 7%)? cosh®(x/2Vi) “

If v « 1, then the energy transferred to the impurity,
Eimp, is of the order of 'yae"’/w". Therefore, if the impu-
rity intensity v is small, then the kink cannot lose enough
of its kinetic energy, 4V;2, to the impurity, and can pass
the isotopic impurity almost freely at any initial veloc-
ity. However, if the heavy-mass impurity is large enough
(7 > 1) there exists a critical velocity Vi (v) such that,
if the initial kink velocity V; is larger than V..(v), then
Eimp(Vi) may exceed the kinetic energy 4V;2, and that
means that in this case the kink cannot pass the impu-
rity. By using the energy conservation we find that the
critical velocity V., is determined by the relation

737l'2
VT4 72(1+ T+ 72)2 cosh?(n/2Ver)

With the help of the computer we have solved Eq. (44)
and obtained V..(7) at some values of v. In particular,
we have found that for v < 5.0 there is no solution, which
means that the kink can pass the impurity and escape to
infinity if 7 is not big enough. However, for larger heavy-
mass impurities, there indeed exists a critical velocity
Ver(7), which is a decreasing function of 4. In particular,
at ¥ = 30 the critical velocity is about 0.76.

We have verified the above analysis by direct numerical
simulations of the SG model. First, we observe that, if v
is smaller than 6.0, then the kink with any velocity in the
region 0 < V < 0.99 can pass the impurity and escape

=Vi (44)
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FIG. 13. Final kink velocity vs its initial velocity for the

isotopic (heavy-mass) impurity at ¥ = 30. Higher-velocity
kinks are reflected, while the lower-velocity kinks may pass.

to infinity. This is in agreement with our theoretical pre-
diction that the kink cannot be reflected by an impurity
with small mass ratio 4. Second, for ¥ > 6 there indeed
exists a critical (initial) velocity above which the kink will
be reflected; otherwise the kink may pass the impurity. In
particular, at v = 30 we find that the critical velocity is
about 0.415. The latter results differ from the predicted
Vor given by the collective-coordinate model; however,
for such a large value of ¥ the perturbation theory is not
valid anymore, and we expect to have only qualitative
agreements with direct simulations because radiative ef-
fects are very strong,.

We have made a detailed investigation for the case
v = 30, taking different initial kink velocities. In Fig. 13
we plot the kink final velocity V; as a function of its
initial velocity V;. It is seen that for small initial veloc-
ities (V; < 0.3) the kink can pass the impurity almost
freely (V; = V;) and it loses very little kinetic energy.
However, above the critical velocity the kink final veloc-
ity is negative, which means that the kink is reflected.
Moreover, in the case of reflection the final kink velocity
is not proportional to its initial velocity; instead there
are some oscillations in the dependence. This effect can
also be explained by the energy erchange between the
kink and the impurity mode: if the kink final velocity is
smaller, then the amplitude of the impurity mode will be
larger; inversely, if the kink final velocity is larger, then
the impurity-amplitude will be smaller. As an example,
in Fig. 14 we plot the impurity-mode oscillation after the
kink scattering for the three initial velocities V; = 0.46,
Vo = 0.54, and V3 = 0.58, whose corresponding final ve-
locities Vy are —0.41, —0.23, and —0.55, respectively.

Therefore, the collective-coordinate approach may
demonstrate the main features of the kink scattering
by an isotopic (heavy-mass) impurity. In particular, it
has been shown that if the mass ratio is large enough,
a higher-velocity kink will be reflected, while a lower-
velocity kink will pass; such a behavior is explained by
the inelastic interactions of the kink with the impurity-
mode oscillation. At last, we would like to point out that
the similar features were observed numerically by Frag-
gis, Pnevmatikos, and Economou [19] for the kink scat-
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FIG. 14. Excitation of the impurity mode oscillations at
the different initial velocities: (a) V; = 0.46, (b) V; = 0.54,
(c) Vi = 0.58, which result in the different final velocities
Vs = —0.41,-0.234, and —0.55, respectively. Note that at
V. = 0.54 the impurity amplitude is the largest, while the
kink reflected velocity is the smallest.

tering by an isotopic impurity in the ¢* chain, although
they did not explain the origin of this phenomenon.

VII. CONCLUDING REMARKS

In conclusion, we have studied the kink scattering by
an attractive impurity in the SG model and demon-
strated that all the effects observed numerically may
be explained even in the framework of the collective-
coordinate approach, taking into account a concept of
the impurity mode. In particular, we have explained
the resonance structures in the kink-impurity interac-
tions by an energy exchange between the kink transla-
tional mode and the impurity mode tha: is excited at
the first collision. Although the radiative effects were not
included into our analytical consideration, the collective-
coordinate approach allows us to understand qualita-
tively and even quantitatively why and how the reso-

nances may occur. We would like to point out again that
the general features of the resonances observed in the
kink-impurity interactions are similar to the resonance
phenomena in the kink-antikink collisions in some non-
linear Klein-Gordon models that support kinks with in-
ternal degrees of freedoms, the so-called internal modes,
which play the role of the effective oscillators [27-31].

For the isotopic (heavy-mass) impurity the appropriate
collective-coordinate method also gives a general under-
standing of an interesting effect in the kink dynamics,
namely, the reflection of the kink by the heavy-mass im-
purity at higher kink velocities.

Since the attractive impurity may support a localized
impurity mode in the other nonlinear systems, we can
predict, by a collective-coordinate analysis, that reso-
nance phenomena may be observed in soliton-impurity
interactions in the other nonlinear systems, such as a
generalized Klein-Gordon model, e.g., the modified SG
model [28], the double SG model [30], etc. We expect
that the resonance structures will be similar to those de-
scribed in the present paper for the SG model, or to
those reported in our recent work [25] for the ¢* model.
However, we would also like to mention more interesting
expansions of the resonant effects involving other types of
solitons. Indeed, as was shown recently [33], the dynam-
ics of the so-called intrinsic localized modes in the chain
with nonlinear interatomic interactions may be described
by the effective nonlinear Schrédinger (NLS) equation.
Moreover, an isotopic impurity in this nonlinear system
produces a potential inhomogeneity in the NLS equation
for the wave envelope. According to Ref. [34], the in-
teraction of the NLS soliton with such an impurity is
described in the framework of the collective-coordinate
approach by a motion equation similar to the classical
particle equation arising for the kink scattering. There-
fore, for this problem we may obtain the system of the
collective-coordinate equations that is similar to those
described in the present paper. So, we can expect to ob-
serve some kind of resonant interactions for the envelope
solitons, too.

Another large class of soliton problems where the res-
onant kink-impurity interactions may be observed is the
hydrogen-bonded chains (see, e.g., Ref. [35], and refer-
ences therein), where the kink-type excitations are com-
posed of two coupled fields that are nothing but oxy-
gen and hydrogen displacements. Some preliminary re-
sults on the kink-impurity interactions were obtained in
Ref. [21] without the concept of the impurity mode, and
subsequent direct simulations would be needed.

The most relevant systems in which the kink-impurity
interactions may be observed experimently are the long
Josephson junctions, with inhomogeneities installed dur-
ing fabrication (see, e.g., [32], and references therein).
In these systems kinks describe quanta of the magnetic
flux (fluxons). Recently, a method of creating fluxons
in an annular Josephsen junction by a low-intensity elec-
tron beam was reported by Ustinov et al. [36,37]. As a
matter of fact, the electron beam acting on the junction
plays the role of an effective magnetic impurity whose
properties for the kink scattering are known (38, 39]. So,
we may expect the same kind of resonant interactions
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between the fluxon and the magnetic impurity. How-
ever, in real physical systems such as Josephson junc-
tions strong dissipative losses will likely destroy fine res-
onance structures such as those described in the present
paper, because the impurity-mode oscillations will fade
after their excitation. To save the oscillations, we have to
consider a forced impurity dynamics, e.g., assuming that
the electron beam creating the magnetic impurity may
move transversely to the junction coordinate, changing
periodically the impurity intensity. As a result, a fine
structure of phase-locked steps due to the resonant in-
teractions has to be observed on a zero-field step. We
would like to point out that phase-locked steps produced
by a coupling with an external magnetic field through
a junction edge, have been recently analyzed by Salerno
and Samuelsen [40]. Therefore, the effect analyzed in
Ref. [40] is analogous (and, roughly speaking, it has a
common physical origin) to the resonant kink-impurity
scattering described in the present paper.

ZHANG FEI, YURI S. KIVSHAR, AND LUIS VA;ZQUEZ 45

ACKNOWLEDGMENTS

During the long course of this work we have benefitted
greatly from discussions with R. Boesch, D. Campbell,
A. Kosevich, M. Peyrard, and C. Willis. Two of us (Z.F.
and L.V.) also thank A. Bishop, P. Lomdahl, R. Rav-
elo, and P. Sodano for useful conversations during their
stay at the Center for Nonlinear Studies (Los Alamos
National Laboratory). Y.S.K. thanks M. Samuelsen, A.
Scott, and A. Ustinov for useful discussions during his
visit to Denmark, and he also acknowledges financial
support from the Universidad Complutense de Madrid
through a sabbatical program. Z.F. is grateful to the
Ministry of Education and Science of Spain for support.
This work is partially supported by the Comision Inter-
ministerial de Ciencia y Tecnologia of Spain under Grant

No. MAT90/0544.

* On leave from Institute for Low Temperature Physics
and Engineering, 47 Lenin Avenue, SU-310164 Kharkov,
Ukraine. Present address: Institut fir Theoreti-
sche Physik I, Universitat Diisseldorf, D-4000 Dussel-
dorf 1, Germany; Electronic address: kivshar@thphy.uni-
duesseldorf.de.

[1] Disorder and Nonlinearity, edited by A. R. Bishop, D. K.
Campbell, and St. Pnevmatikos (Springer-Verlag, Berlin,
1989).

[2] Nonlinearity with Disorder, edited by F. Kh. Abdullaev,
A. R. Bishop, and St. Pnevmatikos (Springer-Verlag,
Berlin, in press).

[3] A. Sinchez and L. Vdzquez, Int. J. Mod. Phys. B (to be
published).

[4] S. A. Gredeskul and Yu. S. Kivshar, Phys. Rep. (to be
published).

[5] Q. Li, St. Pnevmatikos, E. N. Economou, and C. M.
Soukoulis, Phys. Rev. B 37, 3534 (1988); 38, 11888
(1988).

[6] Yu. S. Kivshar, S. A. Gredeskul, A. Sinchez, and L.
Vazquez, Phys. Rev. Lett. 64, 1693 (1990).

[7] P. J. Pascual and L. Vdzquez, Phys. Rev. B 32, 8305
(1985).

[8] P. Biller and F. Petruccione, Phys. Rev. B 41, 2139
(1990).

[9] M. J. Rodriguez-Plaza and L. Vizquez, Phys. Rev. B 41,
11437 (1990).

[10] A. Sdnchez, L. Vizquez, and V. V. Konotop, Phys. Rev.
A 44, 1086 (1991).

[11] S. A. Gredeskul, Yu. S. Kivshar, L. K. Maslov, A.
Sénchez, and L. Vazquez, Phys. Rev. A (to be published).

[12] F. Yoshida and T. Sakuma, Prog. Theor. Phys. 60, 338
(1978); 67, 1379 (1982); 68, 29 (1982).

[13] A. Nakamura, Prog. Theor. Phys. 61, 427 (1979).

[14] J. F. Currie, S. E. Trullinger, A. R. Bishop, and J. A.
Krumhansl, Phys. Rev. B 15, 5567 (1977).

[15] D. W. Mclaughlin and A. C. Scott, Phys. Rev. B 18,
1652 (1978).

[16] S. Watanabe and M. Toda, J. Phys. Soc. Jpn. 50, 3436
(1981); 50, 3443 (1981).

[17] B. A. Malomed, Physica D 15, 385 (1985).

[18] Yu. S. Kivshar and B. A. Malomed, Rev. Mod. Phys. 61,
763 (1989).

[19] F. Fraggis, St. Pnevmatikos, and E. N. Economou, Phys.
Lett. A 142, 361 (1989).

[20] O. M. Braun and Yu. S. Kivshar, Phys. Rev. B 43, 1060
(1991).

[21] Yu. S. Kivshar, Phys. Rev. A 43, 3117 (1991).

[22] R. Scharf and A. R. Bishop, Phys. Rev A 43, 6535 (1991).

[23] Yu. S. Kivshar, Zhang Fei, and L. Vizquez, Phys. Rev.
Lett. 67, 1177 (1991).

[24] Zhang Fei, Yu. S. Kivshar, B. A. Malomed, and L.
Viazquez, Phys. Lett. A 159, 318 (1991).

[25] Zhang Fei, Yu. S. Kivshar, and L. Vizquez (unpub-
lished).

[26] Yu. S. Kivshar, A. Sdnchez, O. Chubykalo, A. M. Kose-
vich, and L. Vdzquez (unpublished).

[27] D. K. Campbell, J. F. Schonfeld, and C. A. Wingate,
Physica D 9, 1 (1983).

[28] M. Peyrard and D. K. Campbell, Physica D 9, 33 (1983).

[29] D. K. Campbell and M. Peyrard, Physica D 18, 47
(1986).

[30] D. K.Campbell, M. Peyrard, and P. Sodano, Physica D
19, 165 (1986).

[31] D. K. Campbell, Zhang Fei, L. Vazquez, and R. J. Flesch
(unpublished).

[32] A. A. Golubov, I. L. Serpuchenko, and A. V. Ustinov,
Zh. Eksp. Teor. Fiz. 94, 297 (1988) [Sov. Phys. JETP
67, 1256 (1988)].

[33] Yu. S. Kivshar, Phys. Lett. A 161, 80 (1991).

[34] Yu. S. Kivshar, A. M. Kosevich, and O. A. Chubykalo,
Zh. Eksp. Teor. Fiz 93, 968 (1987) [Sov. Phys. JETP 66,
545 (1987)].

(35] St. Pnevmatikos, A. V. Savin, A. V. Zolotaryuk, Yu.
S. Kivshar, and M. J. Velgakis, Phys. Rev. A 43, 5518
(1991).

[36] A. V. Ustinov, T. Doderer, B. Mayer, R. P. Heubener,
and V. A. Oboznov (unpublished).

[37] A. V. Ustinov (private communication).

[38] Yu. S. Kivshar and O. A. Chubykalo, Phys. Rev. B 43,
5419 (1991).

[39] A. A. Golubov and A. V. Ustinov, Phys. Lett. A 162,
409 (1992).

[40] M. Salerno and M. R. Samuelsen, Phys. Lett. A 156, 293
(1991).



