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Light-scattering resonances in small spheres
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Two limiting expressions occur for scattering from very small spheres. One occurs when the refrac-

tive index becomes small (Rayleigh scattering), and the other occurs when the sphere becomes perfectly

conducting (Thomson scattering) ~ We explore the scatter from small spheres having real refractive in-

dices. For such spheres, resonance conditions occur, and the resulting scattering coefficients are no

longer proportional to the volume of a sphere.

PACS number(s): 42.25.Fx

INTRODUCTION

Electromagnetic scattering from small spheres was ex-
plored by Rayleigh [1] and Thomson [2], who calculated
light-scattering expressions for two very different special
cases: where the spheres have sma11 refractive indices,
and where they are perfect conductors, respectively.
They did this before Mie [3] and Lorenz [4] derived a for-
malism for the scatter from arbitrary spheres. The range
of validity of these special limits has been explored by
Kerker, Scheiner, and Cooke [5]. They found that as the
sphere size becomes smaller, Rayleigh theory is valid
over a larger range of refractive index, and Thomson
theory is valid over a smaller range of refractive index.

We might expect the scattering that occurs from small
spheres that lie in the region between the Rayleigh and
the Thomson limits to be composed of some combination
of the modes present at these two limits. However, the
extinction efficiencies of small, dielectric spheres as a
function of refractive index (Fig. 1) are not smooth, but
complicated by sharp resonances. Resonances in the
light scattering from spheres have attracted a great deal
of attention recently [6—16]. Resonances appear as
strong, narrow enhancements in the scattering of a parti-
cle. The large internal fields that are built up within such
particles can create interesting effects and have been used
to investigate various phenomena such as fluorescent and
Raman scattering [17—24].

It is well known that as the sphere size becomes small
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SCATTERING COEFFICIENTS

The electromagnetic scattering a large distance from a
sphere of radius r, illuminated by a unit-normalized plane
wave traveling in the positive z direction, and polarized
in the x direction, may be expressed by two scattering
amplitude functions given by

2n +1
, n(n+1)

P„'(cos8)
a„+ P„'(cosB)b„
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with respect to the illuminating wavelength, the equa-
tions predicting the scatter are greatly simplified, since
only a few sets of coefficients are necessary to character-
ize the scatter. We take advantage of these simplified ex-
pressions and derive the resonance conditions directly
from the a„and b„coefficients [25—27] rather than from
the A„, B„, C„, D„c oem' cient s[28], which is the stan-

dard method. We then explore the scattering behavior
and cross sections on and near resonance. Studying reso-
nances in small spheres gives insight into the resonances
that occur in larger spheres and even in more complicat-
ed particles.

We note that the resonance conditions in these small

spheres are met when the sphere refractive index is large
(rn ) tr/x). Therefore, it would seem that this work
would constitute only a theoretical exercise, which could
only provide insight into other resonance situations.
However, in a recent paper, Scully [29] has shown via

quantum coherence that when operating near an atomic
resonance between an excited state and a coherently
prepared ground-state doublet, a large enhancement of
the refractive index (by many orders of magnitude) may
be achieved with zero absorption. In this case, the light-
scattering resonances that we examine cannot only be
realized, but may prove to be a useful tool in characteriz-
ing the optical properties of such materials.
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FIG. 1. Extinction efficiency for a small (r =0.01K,) sphere as

a function of real refractive index. (lb)
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a„= m g'„(x)g„(mx) —g'„(mx)f„(x)
m g'„(x)g„(mx) —g'„(mx)g„(x)
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where S& is measured in the y-z plane and S2 is measured
in the x-z plane. The Mie scattering coefficients are given
by

case where the sphere size is small (r «A, ). In this limit-
ing case the scatter is determined primarily by the
lowest-order terms of the series given by Eq. (1). The
Riccati-Bessel functions for the n = 1 case are given by

P, (p)= —cosp, g, (p)=exp(ip)( i—p
' —1) . (3)

P
m g'„(mx)P„(x)—g'„(x)Q„(mx)

b„=
m g'„(mx)g„(x) —g'„(x)g„(mx )

(2b) For small arguments, these functions are approximately

where m is the complex refractive index of the sphere,
x =2m.r/A. , and g„and g„are the Riccati-Bessel func-
tions.

First we examine what happens for the special limiting
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For small x, the scattering coefficients given by Eq. (2)
are approximately
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Similarly, the second-order coefficients may be written as in Eq. (6).

Two additional limiting conditions exist for small
spheres. One is the Rayleigh limit valid when ~m ~x && l.
In this case the scattering coefficients further reduce to

2ix m —1
ai ——,b) -0,

m +2
a„-b„-0 for n ) 1 .

The other limiting condition occurs when the sphere s re-
fractive index approaches that of a perfect conductor
m ~i ~. In this case the scattering coefficients reduce to

tional to the sphere volume. As a result, the scattering
efficiencies of such particles are greatly increased com-
pared to particles just off resonance. Figure 3 shows the
first b, resonance (following a previous convention [8];
this is written as b&). For purposes of illustration, we
chose to examine small spheres with an arbitrary but
definite radius r=0.01K. The resulting resonances will
necessarily occur only at large values of refractive index
(m =50% due to the small size of these spheres.

The second interesting result is that the mode of oscil-
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Note that in both these limiting cases the scattering
coefficients are proportional to x ~ Figure 2 shows the
angular scattering-intensity distributions for a Rayleigh
and a Thomson sphere.

RESONANCES
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We now examine the b& mode in more detail. When
the refractive index m is increased along the real axis, the
sine terms in Eq. (5) do not contribute to the scatter when
mx =No. where the index N is an integer. Resonances in
the b

&
coefficients occur at approximately these locations.

Two interesting results occur that are worth pointing out.
The first is that the scattered fields are no longer propor-
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FIG. 2. Angular scattering-intensity distributions for an
r =0.01K, m =2.0 Rayleigh sphere (0), and an r =0.01K, Thom-
son sphere (X).
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FIG. 3. Extinction efficiency for a small (r =0.01K) sphere as
a function of real refractive index near the b& resonance. Also
shown are the scattering intensities for the TE and TM modes
on the b

~
resonance (m =49.98006).
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lation for the resonant sphere (b, ) is completely different
than that for the Rayleigh sphere (a, ). The resulting field

distributions (also shown in Fig. 3) for the b, -resonant
sphere will necessarily be different from the Rayleigh
sphere (shown in Fig. 2). The TE and TM Rayleigh-
sphere intensities are proportional to the TM and TE b, -

resonant sphere intensities, respectively. For the b ]

mode, the incident electromagnetic field induces a dipole
moment perpendicular to the incident electric field.

The b& resonances do not account for all the reso-
nances shown in Fig. 1. Resonances in the a, and b2
modes occur when tan(mx) is approximately equal to mx
[for large mx, this occurs approximately when
mx —(N+ —,')n.]. The a I and b2 resonances are shown in

Fig. 4. These resonances are much narrower [half-width
of the order b, (mx)/(mx) —10 ] than the b I resonances
[half-width of the order A(mx)/(mx)-10 ]. Reso-
nances in the higher-order modes are not as prominent,
since the resonant fields are proportional to x where
k ~3.

Equations (5) and (6) not only can be used to predict
where resonances occur, but can also provide information
on the shapes of the resonances. We will now take a
closer look at the b, resonance. If we express the com-
plex refractive index as m =m„+im;, where m„and m;
are both real quantities, we can expand the sine and
cosine function about the resonance locations,
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FIG. 4. Extinction efficiency for a small (r =0.01K,) sphere as
a function of real refractive index near the a

&
and b~ resonances.

Also shown are the scattering intensities for the TE and TM
modes on the a l (m =71.500 79) and b 2 resonances
(m =71.510 15).
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where m, x-N~, and 6=m, x —Nm .

Near resonance, the scattering coefficient b
&

can be
simplified:

Equation (10) may be simplified if we assume the absorp-
tion is small (m;x (( I ),

x +mm, . (6+x/m )

ix '/m +im, .x

Multiplying Eq. (11) by its complex conjugate yields a
Lorentzian function centered at 6= —x /m, with a half-
width of x /m+m;x. %e note that as the absorption is
increased from zero, the amplitude of b& will decrease,
and the half-width will increase. %hen mm; &&x, the
amplitude will be proportional to 1/m; and the half-
width will be proportional to m;. These dependencies
were reached empirically for larger spheres having
moderate refractive indices [9]. This type of analysis may
also be performed for the a

&
and b2 resonances.

The dependence of the line shapes on the size and re-
fractive index is shown in Fig. S. In Fig. 5(a), the
m =50.0 sphere passes through the b& resonance as its
radius is increased. In Figs. 5(b) and 5(c), we can exam-
ine the b, resonances as the radius of an m =100.0
sphere and an m =50.0 sphere is increased, respectively.
Going to a higher index by increasing the refractive index
[Fig. S(b)] results in a narrower resonance. Going to a
higher index by increasing the size parameter [Fig. 5(c)]
results in a broader resonance. The latter result has been
discussed previously for spheres much larger than the
wavelength [7,10,11]. Figure 5 also shows the shape and
the width of the b ', resonance as the refractive index is
changed from m =50.0+0.001i [Fig. 5(b)] to

-6
(a)

-6
(b)

CO
cn
cn
O

~ cno cnO cn
O

o cnO Cn
OO
CV

(d)

Radius (10 'i)
(e)

-10
0

-6

-10
180 p

TM -6

180

X

0
Ul
O

-10
4aat p

(c)

C -6

O

-10
180 p 180

CO
cn
cn
Q

co Co
cn o cn
cn o cn
O Q

Radius (10 &)

-10
0

-11
180 0

TM 7

FIG. 5. Extinction efBciency near the bI resonances: (a) for
an m =50.0 sphere where N=1; (b) for an m =100.0 sphere
where N=2; (c) for an m =50.0 sphere where N=2; (d) for an
m =50.0+0.01i sphere where N= 1; (e) for an m =50.0+0.01i
sphere where N=1; and (f) for an m =50.0+0.1i sphere N=1.
Radius r =0.01K,.
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FIG. 6. Angular scattering-intensity distributions for a small

(r =0.01K.) sphere having refractive indices: (a) m =43.66610,
(b) m =59.22610, (c) m =71.50844, and (d) m =71.51992.
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m =50 0. +0 O. li [Fig. 5(e)] to m =50.0+0. li [Fig. 5(f)].
These figures verify that increasing the imaginary part of
the refractive index results in a reduction of the height
and an increase in the width of the resonant peak. This
conclusion has also been discussed when examining large
spheres [7—9,13].

The angular intensity distributions for spheres having
refractive indices between resonant values do not neces-
sarily resemble the distributions of either a Rayleigh or a
Thomson sphere. Figure 6 shows that cases exist when
the forward scatter (8-0 ) is down several orders of mag-
nitude [in cases of Figs. 6(b) and 6(c), a, +b, +5b213-0]
and when the backscatter (8-180') is down several or-
ders of magnitude [in cases of Figs. 6(a) and 6(d),
a, b, +—5b2/3-0]. These are important points because
most scattering studies of spheres would lead one to be-
lieve that the intensity in the forward-scattering or back-
scattering directions would not extend several orders of
magnitude below the scattered intensity at other scatter-
ing angles.

For the limiting case when sphere size is much smaller
than the incident wavelength, the equations describing
the scatter are greatly simplified. When two additional
limiting conditions on the refractive index are applied,
these equations are simplified further. When the refrac-
tive index is increased along the real axis, resonance con-
ditions develop that complicate the resulting scatter.
Precisely because these resonances occur, no limiting
condition can be reached as the complex refractive index
is increased along the real axis. Resonances have been
studied extensively for large spheres. Studying the reso-
nances in smaller spheres in which the equations are
greatly simplified gives insight to the resonance behavior
occurring in larger spheres.
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