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In a recent paper one of the present authors [V. V. Konotop, Phys. Rev. A 44, 1352 (1991)] put forth
an analytical approach for the description of one-dimensional scattering by a Weierstrass-like layer. The
method consists of splitting the fractal permittivity into two effective parts, the scales of which are long
and short in comparison with a wavelength. The dependence of a splitting point on an incident wave-
length is given. In the present paper we generalize such an approach, called a two-scale method (TSM)
for a wide class of structures having irregularity, and provide complete analytical and numerical investi-
gations of two particular cases: layers with Weierstrass-type and singular permittivities. A good
correspondence between analytical predictions and numerical solutions of the corresponding Riccati
equation, as well as qualitative agreement with outcomes published elsewhere [D. C. Jaggard and X.
Sun, IEEE Trans. AP-37, 1511 (1989)], is observed. In all cases the scattering data have a strongly pro-
nounced resonant character that is well described by the WKB approximation. Increasing the box di-
mension leads to growth of the internal scattering and, as a consequence, to the inapplicability of the
TSM. To investigate the physical nature of this phenomena we study both the above problems in the
Born approximation as well. The main feature of fractal layers consists of a noninteger-power-law
dependence of scattering data on slab length. Application of the TSM allows one to find a number of
harmonics (in the trigonometric-series expansion), enough to provide adequate numerical analysis of
fractal layers. Validity limits of the theory developed are stated. They turn out to be approximately the
same as those for the WKB approximation for the effective long-scale part of the fractal permittivity.
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I. INTRODUCTION

Scattering by fractal media is an attractive subject for
investigation for a number of reasons. It is stated that
many natural objects (coastlines, clouds, the Earth’s sur-
face, systems of clusters, macromolecules, etc.) have a
fractal structure (see, e.g., Refs. [1,2] for review). Non-
trivial noninteger dimension stipulates an unconventional
spectrum of the radiation scattered by such objects. Usu-
ally, fractals possess a wide range of scales, which makes
traditional mathematical methods inapplicable in the re-
gion of small wavelengths. Namely, it is impossible to
achieve the validity region of the Kirchhoff approxima-
tion for surface scattering and the WKB approximation
for bulk scattering in the generally accepted sense [3].
This situation indicates a need for alternative mathemati-
cal methods. On the other hand, even the mathematical
statement of the scattering problem requires a stipulation
of the description by partial differential equations (say,
Maxwell’s equations) of a field reflected from an object
having nondifferentiable geometry and appearance in
connection with these “fractal” dispersion relations [4].

In spite of a series of recent publications, we do not as
yet have an adequate mathematical theory for all the
above questions. Moreover, some of the methods applied
to such problems require verification of their validity.

To all appearances, the problem of the most popularity
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now is scattering by fractal surfaces. It has been studied
by Berry [3] and Berry and Blackwell [5], in the approxi-
mation of a small “topothesy,” that is really equivalent to
the Kirchhoff approach. Wong and Bray [6] examined
the scattering by a solid-on-solid rough surface in the
Born approximation. Scattering by fractal screens modu-
lating surface fractal scattering has been investigated by
Jakeman [7] and Jaggard and Kim [8]. The reflection of
x-rays by fractal surfaces and porous solids was studied
by Wong [9] and Sinha et al. [10].

A productive approach for fractal scattering has been
reported by Jaggard and Kim [8] and Jaggard and Sun
[11,12]. They developed the concept of band-limited
fractals using the cutoff Weierstrass function as an exam-
ple. Such an approach brings mathematical considera-
tion nearer to natural phenomena, which always have a
finite range of scales [13]. The dependence of diffractals,
i.e., radiation scattered by fractal objects [3], on both
fractal dimension [14] and number of tones was studied in
detail. We note here only two results that will be useful
to compare with our outcomes obtained below. In any
case the increasing of D results in the same qualitative
effects as increasing of roughness (for example, in the
problem of scattering by fractal surfaces it leads to a ris-
ing of intensity of sidelobes [11]). The field scattered by a
band-limited fractal fiber is insensitive to a number N of
tones when b? 2V «<1<<b™12] [here b (b>1) is a
constant that is the same as ¥ in designations accepted in
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the present work and given below by formula (2.3)].

Another approach for diffractals was developed by
Mehaute and Heliodore [4]. They proposed a generaliza-
tion of Maxwell’s equations for electromagnetism in frac-
tal media. This generalization consists of the introduc-
tion of fractal (noninteger) derivatives. Although it al-
lows one to understand some peculiarities of electromag-
netic phenomena in fractal media, use of such an ap-
proach for scattering-data calculation is questionable.

Two one-dimensional diffractal problems were con-
sidered by Konotop, Yordanov, and Yurkevich [15] and
Konotop [16]. In both papers the stationary problem was
solved for the case of the “overbarrier” scattering by reg-
ular fractal slabs. In Ref. [15] wave transmission through
a layer with a multifractal permittivity of the form of a
Cantor-like object has been considered within the frame-
work of a recursive relation for scattering data. This re-
cursive relation was solved analytically in the Born ap-
proximation and numerically for arbitrary parameters.
The main result of this work is that the transmission
coefficient of the fractal slab has a set of transparency
windows, the location points of which constitute a self-
similar set. Also the method of a recursive relation is
useful for comparison of different approaches. However,
it has one essential restriction. The spatial structure of
the permittivity must have a rather high symmetry for a
recursive relation to be obtained.

To describe wave propagation through a slab with a
permittivity described by a fractal function with a given
spectrum, the two-scale method (TSM) has been proposed
[16]. This method makes up the basis of the present work
and allows one to derive an analytical expression for the
scattering data for a number of cases. It is also to be
pointed out that the TSM has a sense very close to the
distorted-wave Born approximation developed by Sinha
et al. [10] for surface scattering.

The organization of this paper is as follows. We start
with the mathematical statement of the problem and
description of different models of a fractal permittivity
(Sec. II). Then in Sec. IIT we discuss peculiarities of the
scattering by a fractal layer of small width (i.e., in the
Born approximation). The principles of the two-scales
approach in the general form are presented in Sec. IV.
The next two sections (V and VI) are devoted to wave
propagation through a Weierstrass-like slab and a layer
having a singular permittivity, respectively. We carry
out both analytical calculations within the framework of
the TSM and numerical investigations of both problems.
All results are summarized in the conclusion.

II. STATEMENT OF THE PROBLEM
In the present paper we consider the stationary one-
dimensional Helmholtz equation

2
A k214 () =0
dx

2.1
in which e(x) is a fractal function restricted to the inter-
val [O,L ]:

€fx) at 0=x =L

€(x)= 0 at x<Oand x>L -
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It is more suitable for our purpose to use dimensionless
variables. However, for convenience of interpretation we
hold the traditional treatment as follows: k is a wave vec-
tor, €5(x) is a permittivity, and L is a layer width.

There are different definitions for fractal structures
[1,2,13]. Each of them stresses some of the most impor-
tant properties of these objects. In what follows we are
interested in the algebraic property. This is a continuous
but almost everywhere nondifferentiable function €y(x)
that is understood as a ‘““fractal.” Historically the Weier-
strass function

el x)=€p(x)=¢e1—y?7?) E:,O_C;_(Sz(%i—) 2.3)

is the most popular specimen of such a class of functions.
In this definition D is in the range 1 <D <2 and plays the
part of the box dimension of €y(x) [17]; v is a scaling pa-
rameter, it must be greater than unity (y > 1); the con-
stant €, has the meaning of an amplitude of permittivity
variations, and factor (l—yD_") is introduced to make
the absolute value of €,(x) be not more than ¢,,.

From the mathematical point of view the Weierstrass
function is an absolutely summable trigonometric set of
an everywhere nondifferentiable function (see, e.g., Ref.
[18]). It satisfies the Lipschits continuity condition with
the exponent 2—D. While considering physical systems
one deals with differentiable functions (that may be rapid-
ly oscillating) rather than with mathematical fractals.
Usually the spectrum decay is considered as the main
characteristic. In this sense some properties of a fractal
medium can be simulated by a function the derivative of
which may exist but which is not homogeneously restrict-
ed. In this context we also investigate another kind of
permittivity given by the trigonometric series

cos(nx)

lx)=€,(x)=¢€ 3, ; (2.4)

with O0<a<1. This function is divergent at x—O0.
Namely, there is an asymptotic [18]

€,(x)~€x® 'T(1—a)sinor at x—0 (2.5)

where I'(x) is a gamma function. That is why for the
sake of definiteness we call €, a “singular permittivity.”
Also, since function €,(x) is periodic it must be con-
sidered for L €[0,27) only.

In what follows we concentrate our attention on the
permittivities of both types: (2.3) and (2.4). The main
subject of our investigation will be the scattering data,
i.e., the reflection (r; ) and transmission (¢, ) coefficients
of a corresponding slab. Since we are interesting in the
layer characteristics it will be suitable to make use of the
following representation (see, e.g., [19]):

TL=|tLI2

_ 4
k2SAL)+S' L)+ CXL)+k~2C'¥L)+2

b

(2.6)
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where S(x) and C(x) are solutions of Eq. (2.1) with the
boundary conditions C(0)=S'(0)=1 and S(0)=C"'(0)
=0; the prime means the derivative with respect to the
argument.

As is well known, the reflection coefficient can be ex-
amined within the framework of the Riccati equation
(rp=r(x=L)]:

dr(x) . ik

—dx—=21kr(x)+760(x)[1+r(x)]2. 2.7)
The initial condition for this equation is

r(x=0)=0. (2.8)

To conclude this section we note that both the above
types of permittivity belong to a wide class of functions,
which are represented in a form of the trigonometric
series

&(x)= ¥ a,coslk,x+¢,),
n=0

(2.9)

where a, is an amplitude of a harmonic with the wave
number k, and phase ¢,. It is believed that
nondifferentiable (fractal) functions can be obtained from
Eq. (2.9), with nonzero phase and particular relations

a,=alk,)~k, ", (2.10)

n n

k,~n, 0<a<l atn—oo .

The presence of phases ¢, in Eq. (2.9) allows one also to
simulate various random functions with the help of such
a representation [8,17].

J
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III. BORN APPROXIMATION

As was pointed out in Ref. [16], even in the Born ap-
proximation one can observe some peculiarities of
scattering by fractal structures. In order to state the
physical nature of such peculiarities we consider now the
solution of the Riccati equation (2.7) under the assump-
tion that the absolute value of the reflection coefficient is
small enough: |r;|<<1. Neglecting r, in comparison
with unity in the right-hand side of Eq. (2.7) we get a sim-
ple linear equation. Its solution is

rL= %ez’“ fOLeo(x)e “2ikxgx (3.1)

Thus, roughly speaking the reflection coefficient is deter-
mined by the area under the fractal curve, i.e., area of a
polygon with a fractal boundary. This value must be
connected with the box dimension of the curve €,(x) (see,
e.g., Ref. [2]). This means, in particular, that the expan-
sion of the reflection coefficient absolute value in terms of
small L may contain fractional powers.
Let us consider two examples.

A. Weierstrass-type permittivity

Inserting the permittivity in the form of the Weier-
strass function (2.3) into Eq. (3.1) and integrating each
term one can easily obtain

__k sy p-2y < 1 _ —2ikL n on, —2ikLei (o on
= "e(1—y )ngo T e X[—2k +2ke  “"“cos(y"L)+iy"e sin(y"L)] . (3.2)
The behavior of the reflection coefficient of a thin slab (i.e., its dependence on the slab width) in the limiting case
€okL <<1 (3.3)
is described by the formula (it is evaluated in Appendix A):
r,,=’kTLeo+po(eokL)3*D. (3.4
Here
i(€pko)? 2 had TPo; 27in
Po= 2D —41nv) vy ,,ZE_OC Pon (P, )cos 5 ~ lexp |— Iny InL
[
and increasing of the fractal dimension (cf. with the results by
din Jaggard and Sun [11] mentioned in the Introduction).
Pon =7 —4+D . The obtained result also means that a wave “feels” really
ny a small-scale structure and, hence, that a diffractal

The item with the noninteger power of L in the Born ex-
pansion (3.4) manifests a diffractal nature. The scattering
now is much stronger than the scattering by usual (non-
fractal) objects having the same length. In the latter case
the second term of the expansion is of (€,kL?) order and
hence, taking inequality (3.3) into account, is much less
than that in Eq. (3.4) (if p, of course is not abnormally
large). The intensity of the backscattering grows with an

possesses the information about the box dimension of the
object irradiated.

B. Singular permittivity

Now we consider an example indicating more strongly
irregular properties. Inserting the asymptotic (2.5) for
€,x) directly into Eq. (3.1) we get the reflection
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coefficient of a slab with the singular permittivity

_ ikm 2kLy a, * .
=, ———— . 3.5
"L €0 osmas2) L%y *(a,2ikL) (3.5
Here
. . _ 2ikm)"* ,
v*(a,2ikL) 71_‘((1) v(a,2ikL) .

v(a,2ikL) is an incomplete gamma function. Using the
expansion of ¥*(a,2ikL) into the power series [20] under
the preliminary assumption (3.3) one can represent r; in
a form

< (2ikL)"
e 4cos(7ra/2 L 2 Fatn+1) 0.6
and consequently in the limit L —0
r. =po€okL®, (3.7

where p,=iw/[4cos(ma/2)(a+1)]. Thus, due to the
singular structure one can observe an anomalous scatter-
ing. It is interesting to note that in the case a=1 the
power dependence of R,=|r, |* on L coincides w1th that
obtained for the reflection coefficient of a thin layer with
a Gaussian 8-function-correlated random permittivity:
R,~L.

Returning to the restriction Ry << 1 with r; defined by
(3.7) we come to the limiting inequality

PafokL®<<1 . (3.8)

Taking into account that the production p,€, now plays
the part of an amplitude the comparison of (3.8) with Eq.
(3.3) (remember a < 1) leads to the conclusion that the
Born approximation in the case of the singular fractal
permittivity may fail at more short distances than in the
case of any well-differentiable function.

IV. TWO-SCALE APPROACH

In the preceding section we have considered the range
of sufficiently large wavelengths. Conventionally, the op-
posite limit is called the quasiclassical or WKB approxi-
mation. The main requirement of such an approach is
the smallness of a wavelength in comparison with the
scale of permittivity variations (see, e.g., Refs. [21,22]).
The estimation of the corresponding relation may be
given with the help of the derivation of €y(x) with respect
to the argument. Since such a derivative does not exist
for the fractal functions under consideration, it is evident
that the quasiclassical approximation in the usual sense is
not applicable for the description of waves in such media.
The physical reason for this feature is the fact that fractal
structures possess all scales, including scales being less
than any wavelength.

At the same time, in the theory of surface scattering
the so-called two-scale method [10,23,24] is applied satis-
factorily for a number of situations. It is based on the
possibility under definite physical conditions to split the
spectrum of the scattering object (say, of a surface form)
into two parts, one of which corresponds to the slow vari-
ations in comparison with the wavelength, and another
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one describing small scale fluctuations. Such splitting al-
lows a use of different approaches for the description of
the different parts.

Recently one of the authors [16] has proposed applica-
tion of an analogous method for the description of
scattering by regular fractal layers. Now we describe this
method in a general form for the permittivity (2.9).

A. Transmission coefficient

Let the spectrum of the fractal permittivity contain
wave numbers being greater than K * (where K * is a con-
stant). Let also an incident wave number k be much
greater than K* (k >>K*), which means that the wave-
length belongs to an internal part of a scale range. Final-
ly, let one find such a number H depending on k for
which the two following requirements will be satisfied.

(i) The set
> a,cos(k,x+¢,) 4.1
n=N

Aey(x)=

in the definite sense is much less than the sum 1+€y(x)

N—1
ey(x)= 3 a,cos(k,x+¢,),

4.2)
n=0
say, for example,
[ Fax|ney(x) << [ dxley(x)+1] “.3)
0 0 N

[the exact requirement can be stated at the end of calcula-
tions and the inequality (4.3) is considered now as the
previous necessary condition].

(ii) The function €,(x) is slowly varying on the scale of
the wavelength:

dGN(X)

<k|14+ey(x)| . 4.4)

Then one can employ the following expansion for the
field ¢:

b=vot¢ +

(ol > |9, >>-+-) where 1, is a solution of the
Helmholtz equation with the permittivity €, (x ):
d*y,

7+k2[1+6N(x)]¢0=0 .

(4.5)

(4.6)

Due to the requirement (4.4) the last equation can be
solved in the WKB approximation. Two independent
solutions are obtained immediately

S, (x)= sin[kS(0,x)]

kq]{/“(O)q e (4.7a)
ck(x)=%ﬂqy“(o> : (4.7b)
where
= fy"q}v/z(z)dz : 4.8)
gy(x)=1+ey(x) . 4.9)
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In accordance with (2.6) the functions (4.7) form the main
value of the transmission coefficient.

The fractal part Aey(x) of the permittivity can be tak-
en into account in the next order. The function ¥, solves
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First replacing ¢y(x) by S, (x) and then by C,(x), one
can obtain to first order two independent normalized
solutions

the equation S(x)=S,(x)+1Ig(x)/q) *(x)gi/*0) , (4.11a)
21!}1 C(x)=Cp(x)+1Ic(x)qg""*0)k /q'*(x) . (4.11b)
+ k[ 14 ey(x) ;= —k?Aey(x), . (4.10)
x Here
J
Aey(x
Ig(x) —‘f dx ’—(—(cos[kS(Ox)]—cos{k[S(O,x’)-i—S(x,x’)]}) , (4.12a)
‘IN
Aen(x’)
cltx)=14 [ dx'—7 ) k(SO 48 0x, )] +sinlkS(0,5))) (4.12b)
Finally, the insertion of Egs. (4.11) into the expression for T (2.6) gives with the accuracy accepted
kT3
T, =Ty— ——F————= X {I4(L)sin[kS(0,L)][1—gqxn(0)gn(L)]+I-(L)cos[kS(O,L) (0)—gy(L)]} . 4.13
L 0 2\/qN(0)qN(L) {1s Il gn\VigN 1+1c [ 1lgwn qnN 1} ( )
Here
4V qy(0)gy(L)
To=Ty(L)= —_— MW - (4.14)
[14+1 gy (0)gy (L) —[1—gx(0)][1—gy(L)]cos’[kS(0,L)]

is an expression for the transmission coefficient in the
WKB approximation.

It should be noted that Eq. (4.13) gives the trivial result
T, =1 if e4(x)=0. In order to provide the transition to
the Born approximation it is necessary to expand the
solution (4.14) and general representation (2.6) up to the
second order in A€y (x).

B. Discussion

Equation (4.13) is fundamental for the TSM. The first
term Ty corresponds to the boundary scattering, since as
known from the WKB theory the scattering by large
scales is exponentially small. That is why T, essentially
depends on the boundary points O and L [see Eq. (4.14)].
It also means that this term describes so-called resonance
effects well known in quantum mechanics [25]. The pecu-
liarity of the case under consideration lies in the fact that
the second boundary “level” depends on the layer width
L. Thus, in addition to the resonance oscillations one can
observe essential variations of their amplitude with the
distance L.

The second term contains integrals over the slab length
and depends on the fractal addendum Aey(x). It de-
scribes the small scale (or fractal) scattering.

At the same time neither formula (4.13) nor (4.14) gives
a final answer, since we do not have yet a relation be-
tween the “dividing” number N and the wave vector k.
Intuitively it is clear that larger H corresponds to larger
k and that N must be determined from the relation
bounding k with a wave number of one of the permittivi-
ty expansion harmonics.

From the mathematical viewpoint the choice of N has

f

to coordinate the requirements (4.3) and (4.4). It gives an
upper bound for N [the derivative of €,(x) with respect
to the argument grows with N]. The requirement (4.3)
provides the lower limit, which, generally speaking, is re-
lated to the slab width. As is clear, increasing the split-
ting point leads to an increase in the largest width for
which the TSM is still valid (since the fractal part of the
scattering data grows with L and decreases with N). Also
the choice must forbid both exceeding the acceptable ac-
curacy and changing the expansion order (the last condi-
tion means that the first term of the direct expansion
must be much greater than the next WKB term, not
represented here). All these reasons allow one to make
the following statement: the dividing number N depends
on the wave number k and must be found from the rela-
tion

ky=k , (4.15)

where k, is a wave number of the Nth harmonic in the
permittivity expansion. It means, in particular, that the
method is applicable when the wavelength is much less
than the largest scale of the permittivity variation. Its
leading order corresponds in that case to the convention-
al WKB approximation.

It is noteworthy that Eq. (4.15) is written with some ac-
curacy, which provides k belonging to the interval deter-
mined by (4.3) and (4.6) (a typical situation in the two-
scale approach [24]).

By formulas (4.13)—(4.15) we have solved the problem
under consideration. The leading term T, of the
transmission coefficient can be represented now in a
“more physical” form:
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4v/4,(0)g, (L)

To(L)=
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(4.16)

[1+Vg,

Here for g, (x) and €,(x) one has to hold only harmonics
having scales greater than the wavelength.

Let us consider the first-order term in more detail. To
this end taking into account the presentation (2.9) we
rewrite functions Ig (L) defined by (4.12) in the follow-
ing way:

IC(L)=%§ mys z(L n)+I }(L;n)+1({lc’](L;n)],
n=N S

ts) {s s
(4.17)

where

L dx sin

I(+>(L =1/ P [_COS ]f+(x,n), (4.18)

(=) —_ 1 fL_dx |[sin

Iig/(Lin) 8 Ry roeee v {COS ]f (x,n), (4.19)

_ si

(“SC)}(L;n = |cor; ][kS(O L) ]f 1/2 cos (k,x+¢,),
(4.20)

and

filx,n)=k,xtkS(0,x)EkS(L,x)+¢, .

Since we are seeking the solution in the region of the
large wave numbers [i.e., when the condition (4.4) is val-
id] the function ¢gy(x') in the integrands in Egs.
(4.18)—(4.20) can be regarded as a slowly varying one.
It allows one to apply the stationary-phase method to
evaluate Ic,5(L). Differentiation of the functions
f+(x,n) yields that only the integral (4.19) has
stationary-phase points x,,(n) (there m =1,2,... M, M
is a number of such points and it is designated that x,,
depends on a harmonic number n) which satisfy the equa-
tion

2
n
EN(xm(n))=B(—2—l,

q"*x,,(n))= (4.21)

Thus, if Eq. (4.21) has a solution, to the leading order
the sum (4.17) can be reduced to

a, |dey(x, )|
I L)=—Vkqs n |ZENVm
g i ENME_I k, | dx,
sin . T
X cos] S Gepin) 48"’
(4.22)
where
dey(x, )
5,, =sgn ¥ (4.23)
dx,,

(0)gx(L)]>— €, (0)e, (L )cos}[kS(0,L)]

;:1 one has to keep in mind that the number of
stationary-phase points depends on n [M =M (n)] so that
generally speaking one cannot change the summation or-
der.

The total dependence of M on the tone number results
only from the condition (4.22). It follows, in particular,
that the number of stationary-phase points decreases with
growth of n, and the external sum in Eq. (4.21) is restrict-
ed by a number N* which is determined by the relation

(k¥)?=4k*(1+€,,,) (4.24)

if €., —~max[e(x)] exists. Then, taking into account gen-

eral relation (2.10) a,~k, * (at n 2N >>1), one can
modify (4.22) to
N* dey(x,) |
I (L )—_‘/’”TZ 2 k711+a) N'Tm7
ESI n=Nm=1 dxm
i ™
<o | |r-xaimr+ 75,

(4.25)

Exact calculation of this expression by analytical
methods only seems to us to be impossible. However, an
estimate of its upper bound is enough for our goals. Cor-
respondingly we write

-1/2

____N* M
Ic(L)|<1*=Vkr 3 k1T 3
{S* dx

n=N m=1

dey(x,,) ‘

(4.26)

Let €' and € be any characteristic values of dey(x)/dx
and €y(x) be on the interval (0,L). Then the number of
stationary-phase points can be estimated as M ~L¢€' /€.
Thus we have

e (4.27)
Taking into account that
N*
> i+a <constXay(l+e€,,,) , (4.28)
n=N "n

which follows from the definition (4.24), and combining
this with (4.4), (4.12), and (4.27), we finally conclude

I* << A(1+e€,,)ayl ,

max
where A is a constant of order unity. Consequently the

fractal part of the transmission coefficient can be neglect-
ed in the leading order if
A(l+e,,JaykL =1 . (4.29)

Inequality (4.29) determines slab widths (or path
lengths in fractal media) for which the quantity T, gives
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a good approximation for the exact transmission
coefficient. It is interesting to compare it with require-
ment (3.3) for the Born approximation to be valid. In
most cases in principle one can put A(l+e€,,,)~1
without loss of generality. Then (4.29) can be rewritten
as kL =<1/ay. Since we are interested in k being large
enough, we have ay <<1. Thus the region (4.26) is much
larger than (3.3). If the wavelength (A~k ~!) coincides
with the scale of the lowest harmonic (i.e., the tone with
number N =0) the regions coincide with each other.

To conclude this section, note that the region of the
TSM applicability is much larger than (4.29) if Eq. (4.21)
cannot be satisfied, i.e., if there are not stationary-phase
points.

V. SCATTERING DATA
OF THE WEIERSTRASS-TYPE PERMITTIVITY

Let us go on to examples and start with the wave tran-
sition through a medium with the permittivity described
by the Weierstrass function (2.3). In accordance with the
discussion we split €(x) in the following way [16]:

N—1 n
ex(x)=€1—y?7?%) 2 % 5.1
n=0 7
and
Aey(x) =1y 72 3 8L x)
n=N 7V
:Y(D —2)N€ (é«) , (5.2)
with £=9"x.

It is not difficult to give the upper bound for Aey(x)
using the formula for the geometrical progression:
€0
?‘)/DTZ . (5.3)
Hence requirement (4.3) can be replaced by

|A6N(x)| < 7/(D —2)N

y2T PN (5.4)

The estimation of the derivative €y(x) with respect to x
as a finite geometrical progression yields

dey(x) 1—yD—2
< N D—=2N__, —N Y 5
dx =yMy Y )}/D‘]_1 . (5.5)

From the comparison of (5.5) with the requirement (4.4)
we get

y' PN <k . (5.6)

At last, in accordance with (4.15), equating k =7" we
find that the TSM is applicable to the Weierstrass func-
tion €y, (x) if

k* P>>1 (5.7)
and the dividing number is defined by
N=Ink /Iny . (5.8
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Resonance scattering

Considering Tj(L), we find that it possesses a number
of characteristic scales. The smallest of them is deter-
mined by the cosine in the denominator and describes the
mentioned resonance effects: the dependence T, versus L
has oscillations with the period I, proportional to the
wavelength:

ly<2m/k . (5.9

In order to understand the nature of another scale let
us consider Fig. 1, where the Weierstrass function is de-
picted. If we cut off this function by any point L, exam-
ine the value €,,(L) averaged over small oscillations and
take into account that €y,(L) plays the part of a “level”
of the second effective boundary in Eq. (4.16), we find
that this level changes as the slab width increases. The
two most evident scales are designated in Fig. 1 by points
A and B. The largest scale is that of the order of the A4-
point ordinate. The interval (4,B) corresponds to
another scale. It is natural to expect that the scattering
data reflect such behavior of the permittivity.

To illustrate this we study numerically R, bounded
with T, by the relation

Ry=1—-T, (5.10)

as a function of L for different parameters y and D.
Keeping in mind the numerical test of the applicability
region of the TSM we present in Figs. 2 and 3 both the
direct numerical solution of the Riccati equation and the
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FIG. 1. The Weierstrass function for D=1.3, N =20, and
different parameters y: (a) y=2.9; (b) y =1.3.
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FIG. 2. The reflection coefficient of the Weierstrass-type fractal slab, having parameters y =2.9 and D =1.3, €,=1, vs slab width
for the incident wave number k =100: plots (a) and (c) are the direct numerical solution of the Riccati equation in the different
scales. Plots (b) and (d) are the graphical representation of R, expressed by (4.15) and (5.10).

calculation of R, with the help of the developed method
[i.e., according to the formulas (5.10) and (4.16)].

As is seen from comparison of Figs. 2(a), 2(b) and 3(a),
3(b) with the corresponding shape of the Weierstrass
function [Figs. 1(a) and 1(b)] there is a good agreement
between pairs of scales designated by points 4 and B.
The oscillations of scale [, [see Eq. (5.9)] are pronounced
on Figs. 2(c), 2(d) and 3(c), 3(d).
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To support our reasoning, we give some details about
the numerical procedure itself. The question of
correspondence between computing results obtained by
(2.7) and (2.8) and those obtained by the TSM is not evi-
dent. The essence of this remark is as follows.

All mismatches between computing and analytical re-
sults arise due to either the unavailability of the TSM in
some region (say, far from the origin) or digital accuracy
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FIG. 3. The same as Fig. 2, but for y =1.3.
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accompanying every numerical method (where an analyt-
ical approach is appropriate).

To integrate the Riccati equation we used the well-
known Runge-Kutta method (see, e.g., [26]) with an au-
tomatically varying step. This method allows one to
avoid the situation when the integration step is equal to
or larger than the characteristic scale of a function under
calculation. The last notification is not in agreement with
the reasoning of Sec. III, where we declared that the frac-
tal structures have all scales. However, this disagreement
arises only at first sight. In order to explain this one has
to answer the question: is there any “effective” number
of harmonics that simultaneously provides (within the
framework of the numerical method) all affects discussed
above and gives sufficient calculation accuracy. The solu-
tion is given by the accuracy test presented in Fig. 4.
Here we study the dependence of R on a harmonic num-
ber of the band-limited Weierstrass function at L =const.
Figure 4 shows that all plots have saturation limits which
are true and are achieved at some numbers N ;. For ex-
ample, for k =100 we have

Noin=5 at y=2.9,
Npin=10 at y=2.0, (5.11)
Nnin=20 at y=1.3.

Thus N_;, grows as y decreases, which is a consequence
of a worse convergence of the Weierstrass set at small y.

All curves in the present paper are calculated with ac-
curacy providing

(5.12)

where AR is the corresponding function increment on
each Runge-Kutta step and a,;, is an amplitude of a tone
of number n =N_;,. The inequality (5.12) yields the rela-

0.04

o.02t

00 10 20 30 W0 50
N

FIG. 4. The dependence of the reflection coefficient R, on
the number N of harmonics of the Weierstrass function has been
taken for calculations for different y values and slab width
L=0.1; solid, dashed, and dot-dashed lines correspond to
y=1.3,y=2.0, and y=2.9. All plots are depicted for D=1.3
and k =100. There are three satiate limits.
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tion between N_;, and a Runge-Kutta step. It should be
noted also that the digital accuracy (i.e., the number of
digital figures) is supported in a maximum value (32
significant figures for our computer).

The point of the principle is that the results of the ac-
curacy test just obtained could be predicted analytically
from the TSM. Indeed, as far as the leading order of the
reflection coefficient is determined by the boundary
scattering, all harmonics with wave numbers greater than
¥ do not give the contribution (they result in the fractal
scattering only). Hence, under the numerical solution of
the Riccati equation we can take into account only tones
with numbers less than

Ink

N :Nmin =
Iny

(5.13)

[see Eq. (5.7)]. Here the brackets stand for the integer
part. Inserting k =100 into this equation one can easily
get for y=1.3,2.0,2.9 the result (5.11) previously found
numerically.

Returning to Figs. 2 and 3 one can see by comparison
of plots (a), (b) and (c), (d) the excellent coincidence of the
TSM results and those found by direct calculations on
distances up to some limits depending on problem param-
eters. By estimations obtained from our numerical calcu-
lations, these limits reach L ~20 at k=100, y=1.3, and
D=1.3 (in order to make the picture observable we re-
strict it by point L =5) (Fig. 2) and L ~3 for the same k
and D but y=2.9 (Fig. 3). Thus in both cases we have
a,kL ~1-10. Hence the TSM is applicable in a larger
region than that obtained from estimates [see Eq. (4.29)].
The explanation of this fact is simple enough. The TSM
fails because of resonant scattering by one of the harmon-
ics from the fractal part of the permittivity Aey(x). Har-
monic amplitudes decrease according to the exponential
law. That is why, if resonant scattering occurs due to a
harmonic with number (N +n'), the estimation (4.29)
may be improved in "’ times.

Finally, we investigated the reflection coefficient R, as
a function of the box dimension D. The results obtained
by the Runge-Kutta method from Egs. (2.7) and (2.8) and
by analytical formulas (4.15) and (5.10) are represented in
Fig. 5. One can see a good correspondence between
methods discussed up to D ~1.6. The mismatch for
D 2>1.6 and evident nonsense R(D=2)=0 can be ex-
plained in the following way. Let us return to require-
ment (4.29). In the case under consideration it is
equivalent to the restriction for the dimension:

InL

. 5.14
Ink ( )

D=1-

Substituting L=0.1 and k=100 we obtain D =1.5.
Hence the TSM fails at D —2. It manifests itself in the
anomalous fractal scattering (cf. the result of the Born
approximation in Sec. III). Moreover, if D —2 the nor-
malizing factor in the definition (2.3) goes to zero while
the numerical calculation is carried out without changing
of the harmonics number. It is a reason for the ‘“non-
physical” decreasing of R near the point D =2.
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FIG. 5. The reflection coefficient R as a function of the box
dimension D for L =1.0, k=100 and the Weierstrass function
with y=1.3. The outcomes calculated by the Runge-Kutta
method and by the TSM are depicted by solid and dashed lines,
respectively.

VI. SCATTERING DATA
OF THE SINGULAR PERMITTIVITY

The TSM is inapplicable for calculation of the
reflection coefficient of the medium with permittivity
(2.4). Indeed, it is impossible to satisfy the requirement
(4.3), which follows from the asymptotic behavior (2.5).
At the same time, this difficulty is connected with the
singular points (x =2/, [=0,1,2, ...) of the expansion
rather than with the irregular structure. It becomes evi-
dent if we study the wave propagation through a slab
having the permittivity

€X(x)=e,(x +L*), 6.1)

with L* being a constant less than 7 (L* <), x varying
inside the interval [0;2(7—L*)] and €,(x) determined by
(2.4). Then according to the TSM we write

Veos[n(x+L*)]

= 6.2
(x ) €p ngl e ( )

and
Aet(x)=e, § EOS["(X—+L)]_ , 6.3)

n®

First, consider the requirement (i) from Sec. IV A. The
set Aex(x) can be evaluated as follows (see Appendix B):

[Ae}(x)] <e (6.4)

NU

sin

The upper estimation for |e%(x)| has the form

et (x| € —2 | 6.5)
*

2

sin

which is a simple consequence of Abel’s theorem [18,27].
Hence the condition for the TSM to be applicable takes
the form

N>1. (6.6)

Taking this into account, for the derivative of €} (x ) with
respect to x one can use the asymptotic formula [29]

dey(x)

<eCN'™ @ at N> (6.7)

where C is a constant.
In accordance with (4.15) one has to put

N=k . (6.8)

Consequently the requirement (6.6) is a sufficient condi-
tion for the smoothness of the truncated permittivity
en(x).

It is necessary to stress that the comparison of Egs.
(6.4) and (6.5) makes sense only if L * is not small enough.
Indeed, under the condition (6.6) the value of Iefv(x)| al-
lows another upper bound €, which can be estimated as

—a

eup~eoiv—_07 . (6.9)
Hence, for the smallness of |Ae}(x)| at L* —0 one has to
require

(1—a)

*

2

k> (6.10)

sin

As can be easily shown by comparison of this condition
with Eq. (3.8) there is no overlapping between the appli-
cability regions of the TSM and the Born approximation
at any L*. This means that for L* —O0 the first one can-
not be used.

The Born scattering discussed in Sec. III does not ex-
haust all peculiarities of the permittivity under considera-
tion. Indeed, there is such a quantity ¢ that the corre-
sponding partial sums €*(x)=ex(—L*), N=1,2,...
have a homogeneous interior limit at a>a, and do not
have it at a <a, [18]. The value a, approximately equals
0.15. This means that we cannot introduce a normaliza-
tion to make 1+€x(x)>0 at any x and given N, i.e., to
exclude the turning points in the Helmholtz equation
with a cutoff potential (4.6). Hence, corresponding out-
comes will have no physical meaning and will not display
any real processes unless the TSM is specially modified
for such a case. Hence in order to present the scattering
data in the form (4.13) one has to assume

a>a, (6.11)

and has to make sure that the interior boundary of e} (x)
is larger than — 1.
The discussed effect is especially important for the nu-
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merical investigation of the problem. Indeed, since any
numerical scheme deals only with a truncated sum, only
the results obtained under condition (6.11) can be satis-
factorily interpreted. This situation seems to be typical
for fractal problems: there are delicate fractal effects
which cannot be observed in a direct numerical experi-
ment because of the importance of spectrum tails (or far
series items) for such phenomena.

We investigate numerically only the case @ > a,. Oth-
erwise, when a < a, all numerical schemes are divergent.

Returning to the TSM we note that in its turn the in-
terval (ay; 1) has to be divided into two subintervals. The
first of them close to aj is that of anomalous scattering.
Here the TSM is unsuitable due to reasons that have been
discussed in Sec. V. It is clearly demonstrated in Fig. 6.
It should be noted that characteristic scales and approxi-
mate positions of the “reflection coefficient flashes” are
similar for data obtained by the TSM and by numerical
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FIG. 6. The reflection coefficient of the singular permittivity
as a function on the slab width obtained from the Riccati equa-
tion (a) and within the framework of the TSM (b) for ¢=0.3
and kK =100; L *=0.1.
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FIG. 7. The same as in Fig. 6, but for a =0.95.

calculations.

The region near a=1 (see Fig. 7) can be described well
by the TSM. To specify this region now we obtain the di-
viding point a*. To this end we insert the estimation
(6.5) and relation a, ~k ~“ into the requirement (4.29).
Then the latter can be represented as follows:

1—In[[sin(L*/2)| /L¢,)
Ink '

The nature of this phenomena is similar to that discussed
in the case of the Weierstrass function [see Eq. (5.14)].
Really this estimation is sufficiently rough so that a* in
the experiment is less than that just obtained. It is
demonstrated by the numerical investigation of the
reflection coefficient of a slab with the permittivity €2(x).
As for the Weierstrass function one can see an excellent
coincidence of the results in both plots 7(a) and 7(b) cal-
culated with the help of the Riccati equation and repre-
sentation (4.16). Such a coincidence we observed up to
L ~3.5, which corresponds to [1+€}(x)]a,kL ~80, i.e.,
to exceeding of the accuracy predicted in (4.29) [or
(6.13)].

a>a*= (6.12)

VII. CONCLUSION

We have considered the scattering data of fractal layers
of restricted widths. Briefly the results can be summa-
rized as follows. The fractal scattering has a “singular”
character. It becomes observable in the Born approxima-
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tion and manifests itself in the anomalous amplifying of
scattering by the small-scale structure: the reflection
coefficient of a fractal slab grows with the slab width, in-
creasing according to a “noninteger” power law.

In spite of the fact that the WKB approximation in the
usual sense is not applicable to diffractal problems, it is
possible to develop the two-scale technique. This tech-
nique allows one to determine a region where the WKB
approximation can be applied to truncated permittivity.
The small scale scattering in this case gives a small con-
tribution to the scattering data in comparison with the
boundary scattering. That is why resonance effects deter-
mine the behavior of diffractals. At the same time in the
problem under consideration the resonance scattering has
some peculiarities in comparison with conventional reso-
nance effects. The most important of them is that the
level of a second effective boundary depends on the wave
number and slab width. It allows one to believe that in-
vestigation of the transmission (reflection) coefficient
versus wave number in the respective region could give
information on an envelope of a fractal-medium permit-
tivity with high accuracy (cf. Figs. 1, 2, and 3). More-
over, a branch of less wavelengths will give an envelope
of less scales. Meantime, a local (to all appearance, box)
dimension of a scattering structure is determined by the
small-scale scattering. The digital consideration of the
corresponding contribution to the scattering data devi-
ates from the theme of the present work.

However, the TSM fails in the case of singular permit-
tivity. In order to study such systems one has to take
into account that any point singularity has a mathemati-
cal character rather than physical one. Thus, to regular-
ize the problem, it is necessary to restrict all functions in
accordance with the physical statement. After this, the
TSM is valid.

In connection with this it should be pointed out that
any real physical medium can be a fractal only in a limit-
ed region of scales. Hence the question of great impor-
tance is that of correspondence between the mathematics
of the TSM and real fractal structures having a finite
range of scales. There is an evident answer. If [ is the
smallest value (as above L is the largest one) and require-
ment (4.26) is satisfied, the TSM has a meaning at
I <<k '<<L. The band limited small-scale structure
will give only corrections for the “fractal” part of the
transmission coefficient, which is small as long as L is not
very large.

In the Introduction we have pointed out the paper by
Jaggard and Sun [12]. They observed that the diffractal
“insensitivity to the number of tones N used in the Weier-
strass corrugation function if N is sufficiently large.” Our
analytical and numerical results show the same behavior.
Moreover, we can state that this is a common property of
a wide class of fractal-scattering problems. The accuracy
of numerical simulations must be of sufficient order to
take into account all tones of scales greater than the
wavelength. Further increasing of the accuracy by means
of including more and more harmonics will give small
corrections if boundary scattering is essential.

The TSM can be easily generalized for the description
of functions given in a form of their spectrum (namely,

6005

for such functions the TSM has been used in the theory
of surface scattering [23,24]). As is evident, truncating
the Fourier series can be provided by the simple averag-
ing over a spatial region of wavelength scale order. Cor-
responding results will be presented elsewhere.
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APPENDIX A

Note that Eq. (3.2) under the condition (2.3) can be
rewritten in the form

_ ke pe fy"LiL)
R———2— )2 y 2 DIn(4p2_2m) (AD
where

fx;L)=2k(cosx —1)+ ——xsinx . (A2)

2L

Following Hughes, Montroll, and Shlesinger [28] we in-
troduce the inverse Mellin transform:

1 C+ioo

L)y=—: x PF(p; .
fxLy=5= [ x PF(p;L)dp (A3)
In the case (A2) we have
F(p;L)=2kT(p)cos ”71’
+LI"(p+1)sm > p+1) (A4)
with —1 <p <O.
Combining (A3) with (Al) one can present the

reflection coefficient in the form

ke C+i
R=——(1—yP~ dp L PF(p;L
47rt( L4 )foi (p;L)
0 (2—D+p)n
x 3 I @A)
n=0 4k Y "

If the wave vector is not very large, i.e.,
k<i,

simple algebra allows one to rewrite the sum in the right-
hand side of Eq. (AS) as

_ i (zk)Zm 1
m =0

1_,),—[p*D+2(m+2)]

and correspondingly
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R=ﬁ(1~y”*2> s 2k [ dp(1—y o= DF AN —pp(p L) (A6)
477'[. C—iow ’ ’

m=0

The advantage of the latter representation consists of the
expansion of the reflection coefficient into the power
series of the wave vector in the evident form. Inserting
(A4) into (A6) we come to the necessity to calculate in-
tegrals

P

2
—[p—D+2(m+2)]

L ~PT(p)cos
C+iowo
JC,m - fC—ioo dp 1—

and

Y

L PI'(p+1)cos P

C+ico
Ssm= fciim dp |—y ~p=D+2m+2)

Let us consider the first integral. It has two series of sim-
ple poles. The first one is produced by the I' function
and consists of all negative integers. The second set is
raised by the denominator and consists of points

_ 2min
Iny

P —2(m+2)+D . (A7)
It is evident that the value J ,, can be considered as the
limiting transition (M — o) of the corresponding in-
tegral between points C —iM and C +iM. Thus, evaluat-
ing the integral around the contour that bounds points
CxtiM and CtiM [where —1<C<0; and
—2(m+3)<C, <—2(m+2)+1] with the help of the
residue theory and making the mentioned limiting transi-
tion we obtain

27 & W m+2 (—1)"L32"
Jem=————"— I'(p, )cos | —— |exp(—p,InL)+27i
© D—2(m +2)ny n:z—m P Pt Pn rzl (2n)(1—y ~2ntD—2mt2)]y
L PI'(p)cos P
Ci+iw
+ C,—iw dpl__,y*[p*D+21m+2)] : (A8)
By analogy, for Jg ,, we have
2i © ﬂpn m+2 (_1)n+1L2n
Jgm=———— I'(p,)cos | — |exp(—p,InL )+ 27i
$m D—2(m+2)ny nzz_ocp" Pr 2 PP n§1 (2n)N(1—y ~[2nFD+2m 421
— 1Tp
L T(p+1 -
¢, +im (p+1)cos 5
+ C,—iw dp 1—y p=DF2m+2)] (A9)

Inserting expressions (A8) and (A9) into (A6) and leaving only the terms of the lowest order with respect to L we get the
result (3.4). Note that the main contribution is given by the first terms in the both series in the right-hand side of Eq.

(A9).

APPENDIX B

It is evident that the series (6.3) can be rewritten in the form

& cos[m(x+L*)]
Ae*(x)= N(x+L*) cosimix T L )l
€*(x)=¢ycos[ N(x ]m2=0 P v

—esin[N(x+L*)] ¥

& sinfm(x+L*)] (B1)

=, (m+N)

Let us consider the first sum in the right-hand side of this presentation. There is the following sequence of inequalities:

1
N(Z

cos(mx )
m=1 (m—+N)*

Sl
N(I

+

(I1+N)®

1 P U P 2

< (B2)
l Na

IA

sin>
2

The relation between the second and third items of this sequence is provided by Abel’s theorem [18,27]. The same esti-
mate is valid for the second integral in the right-hand side of Eq. (B1). Thus trivial algebra gives (6.4).
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