
PHYSICAL REVIEW A VOLUME 45, NUMBER 8 15 APRIL 1992

Cumulative beam breakup in linear accelerators
with periodic beam current
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An analytic formalism of cumulative beam breakup in linear accelerators is developed. This
formalism is applied to both low-velocity ion accelerators and high-energy electron accelerators. It
includes arbitrary velocity, acceleration, focusing, initial conditions, beam-cavity resonances, finite
bunch length, and arbitrary charge distribution within the bunches, and variable cavity geometry
and spacing along the accelerator. For both direct-current beams and beams comprised of b-function
bunches, both the steady-state and transient displacements of the beam are calculated, and scaling
laws are determined for the transient beam breakup. The steady-state transverse displacement of
particles between bunches is also calculated since, if allowed to impinge on the accelerating structures,
these particles could cause activation over long periods of continuous-wave operation. The formalism
is then applied to high-current ion accelerators by studying the effects of finite bunch length and
arbitrary charge distribution within the bunches. The role of focusing in controlling cumulative beam
breakup is quantified in each of these cases. Additionally, the effects of random initial conditions
and a distribution of deflecting-mode frequencies in the cavities are also quantified.

PACS numbers: 29.27.Bd, 41.75.—i, 07.77.+p

I. INTRODUCTION

The cumulative-beam-breakup (BBU) instability in
linear accelerators results when the beam is oA'set trans-
versely and couples to deflecting dipole modes in the
accelerating structures [1, 2]. These modes deflect the
trailing portion of the beam, which subsequently couples
more strongly to the modes in the next cavity, and the
process evolves likewise along the rest of the accelerator.
Consequently, the transverse displacement grows, with
accompanying degradation of beam quality and possible
beam loss to the cavity walls.

Cumulative BBU has been studied principally in con-
junction with the design of electron accelerators [3—9], yet
it is also of interest in connection with linear accelerators
(linacs) for high-current ion beams [10,11].For example,
in superconducting linacs for high-current ion beams, the
constituent cavities will be short and electromagnetically
decoupled, and cumulative BBU is therefore expected to
be the dominant transverse instability [12,13]. Moreover,
superconducting linacs inherently run in the continuous-
wave (cw) mode, and the steady-state properties of their
beams are fundamentally important. This is opposite to
the case of ultrarelativistic electron linacs, such as those
being considered for use in linear colliders, in which rel-
atively few bunches comprise the beam so that only the
transient dynamics are relevant [9]. Pulsed linacs for ac-
celeration of relativistic electrons have received consider-
able attention recently with regard to BBU [9, 14], but
cw linacs for the acceleration of high-current ion beams
have received very little attention.

This paper concerns cumulative BBU in a linac with
smoothly varying parameters which drives a beam of
arbitrary velocity and acceleration. Qur initial objec-

tive was to determine how to control BBU under condi-
tions associated with the long-term cw operation of high-
current ion linacs. To do so required the development of
an alternative formalism to include finite bunch length
and arbitrary charge distribution within the bunches.
However, this formalism could be applied to a much
broader range of BBU problems, and this single formal-
ism could be used to unify previous work on the cumu-
lative BBU of direct-current beams with previous work
on the cumulative BBU of beams comprised of b-function
bunches. Moreover, it could be used to identify and solve
various aspects of the problem which were previously left
unstudied. Therefore we shall present the formalism in
detail, and we shall apply it to problems of interest in

linear accelerators spanning the entire spectrum of ap-
plications, ranging from low-velocity cw ion linacs to ul-

trarelativistic pulsed electron linacs. Consequently, we

shall be concerned with both the steady-state displace-
ment and the transient displacement of the beam. The
steady-state displacement predominates after times long
compared to the decay time of the transverse wake fields
in the cavities. Otherwise, the transient displacement
predominates. In cw linacs, the transient amplitude of
the displacement can be controlled by slowly increasing
the current during turn-on [15, 16], and the steady-state
displacement is therefore of most interest in connection
with cw linacs.

In low-velocity accelerators the bunches have finite
length, and they can occupy a significant fraction of the
radio-frequency (rf) period of the deflecting mode. In
turn, their coupling to the wake fields will diH'er from
that of the nearly 6-function bunches which constitute
the beams of high-velocity accelerators, and the bunches
will deform as they travel down the linac. Therefore the
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dynamics of cumulative BBU in low-velocity ion acceler-
ators will generally differ from that in high-velocity elec-
tron accelerators. We shall calculate the effects of finite
bunch length and arbitrary charge distribution within
each bunch on the steady-state BBU of a coasting beam.
In using a coasting beam to model the problem, we ignore
the effects of the synchrotron oscillations within each
bunch which occur in the presence of acceleration. In
addition, we calculate the effects of random initial con-
ditions and a distribution of deflecting-mode frequencies
in the cavities.

The deflecting wake fields between bunches are poten-
tially important, for they will influence any unbunched
particles traveling between bunches. These particles
may be viewed as constituting a diffuse "longitudinal
halo" which responds to the deflecting wake fields but
contributes negligibly to them. The deflecting fields
may drive the halo into the accelerating structures and
thereby activate them. This is a particularly important
concern in connection with the design of high-current ion
linacs which are envisioned to run cw over long opera-
tional lifetimes. Examples include Iinacs for irradiation
of fusion materials [17], for tritium production [18], and
for transmutation of nuclear wastes [19]. We shall there-
fore calculate the steady-state displacement of the longi-
tudinal halo and determine how to control it.

II. EQUATION OF TRANSVERSE MOTION

A. Integro-difFerential BBU equation

Cumulative beam breakup is analyzed within the
framework of a model which incorporates a number of
approximations. The cavities which comprise the linac
are considered to have negligible length, to be electro-
magnetically decoupled from one another, and to be the
only sources of deflecting fields apart from the focusing el-
ements. These approximations imply that the deflecting
fields are localized, i.e., they propagate neither backward
nor forward along the accelerator. The approximations
may oversimplify the study of beam breakup in certain
low-velocity ion accelerators in which each bunch travels
slower than the fields and interacts in the future with
the deflecting fields it generated in the past. This sce-
nario characterizes regenerative beam breakup [2] and
is beyond the scope of our analysis. The approxima-
tions may also oversimplify the study of beam breakup
in linacs comprised of cavities which are electromagneti-
cally coupled. BBU in the presence of coupling between
cavities has been investigated previously [20] and is also
beyond the scope of our analysis. The approximations
are accurate, however, in a number of practical linacs in-
cluding, for example, superconducting ion linacs which
characteristically are comprised of short, electromagnet-
ically decoupled cavities [11].In addition, a "continuum
approximation" is invoked in which the discrete kicks in
transverse momentum imparted by the cavities are con-
sidered to be smoothed along the linac.

The equation of transverse motion consolidates the
equations governing the excitation of the deflecting fields
by the beam and the force imparted on the beam by

Here, a = s/8 is a dimensionless spatial variable defined
in terms of position along the linac s and total length of
the linac 2; P(o) is the particle velocity in units of the
speed of light c; p(o) is the particle energy in units of the
particle rest-mass energy mcz; ( = u(t —Jds/Pc) is the
time, made dimensionless by use of an angular frequency
~, measured after the arrival of the head of the beam
at s; a(o) is the net transverse focusing wave number
multiplied by L; z(o, () is the transverse displacement of
the beam centroid from the axis; s(o) is a dimensionless
quantity which represents the strength of the BBU inter-
action; F(() = I(()/I is the form factor for the current
defined in terms of the beam current I(() and average
beam current I; and w(() is the wake function. Because
of causality and the assumed localization of the deflecting
fields, m(( & 0) = 0. Implicit in the continuum approx-
imation are the assumptions that the distance between
neighboring cavities I is small compared to the betatron
wavelength associated with focusing, i.e. , KL/L « 1, and
that BBU growth occurs over a length scale which is long
compared to I .

A special case arises if a single deflecting mode is
present whose frequency is the same in every cavity. This
constitutes the worst case for cumulative BBU because
a spread in deflecting-mode frequencies suppresses BBU
(as will be shown in Sec. VI B), but it is nevertheless of
practical interest for the study of BBU control. In this
special case, we can choose u to represent the angular
frequency of the deflecting mode. Then the strength of
the BBU interaction, represented by s(0.), is given by

( IZ. & (I, fr'li
(2Ppmc) ( ~ ( L j (2.2)

a product of quantities determined by beam properties,
cavity properties, and the linac configuration, respec-
tively. Ze is the net charge of the accelerated particle.
The geometry of the cavities determines I'~(o), which is
given by

jv E2(x) dx (2 3)

E and E, refer to the rf electric field of the deflecting
mode. The integrals are over the inside of the accelerat-
ing cavity, and |'p is the permittivity of free space. The
dimensionless "wake function" mi(() for the single de-

flecting mode is given by

the fields. With the approximations enumerated above,
and allowing for arbitrary velocity and acceleration, the
equation of transverse motion is [8, 14]

1 0 ( 0&
~ py ~

+ ~~ z(cr, ()a ( of
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wq(() = u(()e ~/ q sin(, , (2.4)

where u(() is the unit step function, and Q is the quality
factor of the deflecting mode under consideration.

iz)
u)(Z) = mg(Z) =

~

1 —Z + + —
i

. (2.9)4Q' Q&

Upon introducing a "normalized displacement, "

B. Fourier-analyzed BBU equation
&(o C) = V'A z(o &) (2.10)

d'u) — ' I" ' zo, ', 2.5

with

+OO

) F ik(2n/~r)( (2.6)

We now consider cumulative BBU for the case of a pe-
riodic current. The current is composed of an infinite
series of bunches with identical but arbitrary length and
charge distribution. The bunches are separated in time
by period r, which is a multiple of the rf period of the
accelerating mode. For simplicity, we ignore longitudi-
nal synchrotron oscillations within the bunches. A strict
treatment of an accelerated beam would have to include
these oscillations, but they are not present in a coasting
beam, and they become less important in slowly accel-
erated beams and in relativistic beams. The equation of
transverse motion then becomes

1 0 t' 0)
~

P~ ~+~' z(o, q)
/3V o E. a)

Eq. (2.8) takes the form

(
8' .,l - + - 2m'+Ii ~((o Z)=ek(z) ) Fpg o Z —k
o ) ~7)

where

(2.11)

2 d2
( )—= ( )+ (~+2)~

d ~ ~~(

(2.12)

Equation (2.11) is a diff'erence-diff'erential equation for
the Fourier transform of the displacement of periodic
bunches of arbitrary length and current distribution. It
replaces, and is equivalent to, the integro-diA'erential
equation Eq. (2.1), which is more commonly used. We
shall use Eq. (2.11) as the starting point for our investi-
gations of cumulative BBU.

Since the current is assumed to be periodic and turned
on at ( = —oo, the lower limit of the integral in Eq. (2.5)
is —oo and not 0 as it was in Eq. (2.1). This does not
restrict Eq. (2.5) to an analysis of the steady-state BBU
since no assumption has been made about the initial con-
ditions at o. = 0, the entrance of the accelerator. For
example, a beam which is turned on at ( = 0 can be
treated by taking z(0, ((0) = 0 and Bz(0, ((0)/t9o = 0
because the beam will not, generate a deflecting field as
long as the current travels on axis.

As shown in Appendix A, upon introducing the Fourier
transforms of z(a, () and w((),

III. DIRECT-CURRENT BEAM

A. Ceneral solution

For the case of a dc beam, the Fourier components
of the form factor of the beam current are I"o ——1 and
F&go ——0, with which Eq. (2.11) becomes

+I& i((o, z) = e6(z)$(o, z) .
( 0'

)
Equation (3.1) can be solved in closed form using the
WKB3 approximation. This solution, expressed in terms
of the functionals

+oo

z(o, Z) = e '~(z(o, ()d(,

e ' ~~(() d(,

Eq. (2.5) becomes

(2 7)

C[f(a, Z)] f(0, Z) cos
S[f(o, Z)] f(o Z) sin

and the quantity

A (o., Z) = Ii. (o.) —e(o)u)(z),

(3.2)

1 ~) /' c) )
~ Py ~

+~' z(o., Z)Pe~a & &a)

( 2m 1= em(Z) ) Fg z~ a, Z —k
~

. (2.8)~&)

1
((o C) =-

27r
dZe' ~ A(Z)C[A(o, Z)]

S[A(o., Z)]
A(0, Z)

and written in (o, () space, is

(3 4)

For the special case of the single deflecting mode, A(Z) and B(Z) are determined from the initial condi-
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tions at 0 = 0:

z{z) f='"

z(z) = f

e ' ~((0, ),")d(,

—az(0((0 ()
(3.5)

Letting (' = 8(/Oa, the'general solution for the trans-
verse displacement of a dc beam can also be written in
the form

((~,o = f c(& p)&(0 &
—I ) "p

s(~, V)('(0, ( —I ) d~ (3.6)

with
+oo

c(o, ),') = — e'~ C[A(o, Z)]dZ,2x

( )
1 +;(z8[A(o, Z)]

2z A(0, Z)

(3.7)

The functions c(a, ),") and s(0, () are the inverse Fourier
transforms of C[A(0, Z)] and l&&~p z1), resPectively, which

satisfy c(0,((0) = s(o, ((0) = 0 because of causality.

B. Steady-state solution

We consider the steady-state displacement induced by
a "misaligned beam" for which ((0, () = (p and ('(0, ),') =
(p. According to Eq. (3.5), these initial conditions yield

A(Z) = 27rgpb(Z),

B(Z) = 27rgI)b(Z) .
(3.8)

Upon performing the integration over Z in Eq.(3.4), the
steady-state displacement is found to be

((o, ).) = (pC[A(o, o)] + (t, s[A(~, o)]
1

(3.9)

Here and throughout the paper, we shall be concerned
about the stability of the beam. If a misaligned beam
experiences a net transverse force at position o which is
directed toward the axis, the beam is said to be locally
"stable. " Otherwise, it is said to be locally "unstable. "
According to Eq. (3.9), the beam is locally stable at o'

with respect to steady-state BBU if A(a, o) is real. The
beam is locally unstable at o if A(0, 0) is imaginary.

In the special case of a coasting beam, I&(cr) = )); and
A(o, Z) = A(Z) are independent of o, and the transverse
displacement along the linac is

If we assume a single deflecting mode, then from
Eq. (2.9),

2

A', (0) = rz —s
4 '+1 (3.12)

C. Transient solution

A beam turned on at ),
' = 0 can be modeled by assum-

ing ((((0) = ('(((0) = 0, and Eq. (3.6) becomes
+oo

((g, ) ) = — dp dZe'
2Ã p

((0, )" —P)C[A(o, Z)]

8[A(o, Z)] ~"'('' "'
A(0, 'Z)

(3.14)

It is convenient to define a different integration variable
0 which aids in comparing our results with those of pre-
vious authors:

8=i
/

+iZ i,. t' I
E2

for which

(3.15)

Since generally Q» 1, it follows that the coasting dc
beam is stable with respect to steady-state BBU if the
focusing strength z2 is larger than the BBU coupling
constant s. Otherwise, it is unstable. Stability is a global
property in the case of a coasting beam because A has the
same value at all points along the linac.

In the case of a sinusoidal time dependence of the offset
I

at the accelerator entrance, $(0, ),") = (p cos —( and

f'(0, () = 0, the transverse displacement is given by

((o, ),') = (pRe(e'l )' 1~C[A(o', u'/u)]) . (3.13)

The local stability of the beam is now determined by
A(o, u'/u) rather than by A(o, 0), which characterizes the
misaligned beam. This is the signature of the different
boundary conditions.

In the case of a beam whose offset at u = 0 includes
many frequencies, stability is not as easily defined in
terms of the sign of the transverse force. However, as
indicated by Eqs. (3.4) and (3.6), the various Fourier
components of the initial offset evolve independently of
each other along the linac, and the beam will be stable
if each Fourier component is stable. Thus, because of
the linearity of Eqs. (3.4) and (3.6), the stability of the
beam will be determined by A(o, Z) for all the values of
Z where A(Z) and B(Z) defined in Eq. (3.5) are difFerent
from O.

x(o', () = xp cos [A (0)o] + zI)
, sin[A(0)o]

A 0

where, from Eq. (3.3),

A (0) = K —su)(0) .

(3.10)

(3.11)

A (o, 0) = Ii (0.) —s(o))D(0) . (3.16)

Q is chosen so that all the poles of w(0) lie on or below the
line Im(0) = 0. As shown in Appendix B, the displace-
ment ('(o, ),') given in Eq. (3.14) can now be expressed in
the form
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+-,f, $&~8 l
4(~, C) = — d/ 8 '"/'q' d88 *"' 4(0, C —V)C[&(~, 8)]+&'(0 & —/)

A(0, 8) )
(3.17)

We shall consider two classes of solutions for the transient displacement corresponding to two distinctly different
initial conditions. The first class of solutions (I) corresponds to an impulse excitation of the wake field, and the
second class of solutions (II) corresponds to the misaligned beam. "Impulse excitation" refers to a b-function impulse
in which only the head of the beam is displaced at the entrance to the linac, i.e. , $(0, () = fob(() and (0(0, t,') = (Ob(().
The misaligned beam has initial conditions ((0,() = gou(() and ('(0, () = (Olu((). From Eq. (3.17), the steady-state
displacements for the two classes of solutions are

' 0, class I

4(~ oo) = & i d8
( (OC[p(g, 8)]+(OI ' ' ' ), class II.

+ 1 / , $[A(o 8

;8+ i q' ' ' A(0, 8) t'
(3.18)

(3.19)

d8e '~'
~ (DC[A(o, 8)]+(0 ' ~, class I, S[A(a, 8)]) (3.20)

In the latter case, the integrand has a simple pole at 8 = i/2Q, so contour integration around the upper half plane
yields directly the steady-state solution Eq. (3.9). The transient displacements for the two classes of solutions are

-(/PQ +oo

4(~ 4) =

8-'/'~ +" e-*~' /', S[A(0, 8)]i
6(&, () —((0', oo) = — d8

1 ~
(OC[A(0', 8)] + (' ' I, class II.

2

(3.21)

To provide examples of the applications of Eqs. (3.20)
and (3.21), we shall calculate the transient growth of a
coasting beam in the presence of a single deflecting mode.
In this case, &i(8) is given by

1
ioi(8) = (3.22)

and Ai(8) is given by

Ai(8) = z —noi(8) . (3.23)

Our goal is to determine the dependence of z(o, () on
the various physical parameters once BBU has signifi-
cantly amplified the beam displacement. For this pur-
pose, asymptotic solutions suftice, and these solutions
can be generated using the method of steepest descent
[1]. When BBU is pronounced, Eqs. (3.20) and (3.21)
bot, h take the form

G' E'0g—= 8, , 8i —= —
) 82= —.

K K
(3.29)

the amplitude. The amplitude will be referred to as the
"beam envelope, " and the approach to steady state will
be designated as ~z(0, () —z(a, oo)~. Because the ex-
ponential factor f(0, 8) is the same for both classes of
solutions, the transient BBU growth rates of the beam
envelopes will likewise be identical. However, the am-
plitude function g(8) differs for the two classes, and the
magnitudes of the beam envelopes will likewise differ.

As shown in Appendix C, the saddle points 8, are de-
termined approximately from the following quartic equa-
tion:

(~ —1)'+ i(&-1)'- 2~=0, (3.28)

where

z(a, () —z(o, oo) = 2Re
l

d8 g(8)e/&

(3.24)

The evaluation of f(o, 8) at the sa'ddle points results in

exponential growth e"&, where the transient BBU growth
rate I' is

where
8 8

(3.30)

RIl d

f(0, 8)—: i[$8+ Ai—(8)a),

~ e
—i'/2Q

4 ~(zo +
~ (8) ~ ) class I

(3.25)

(3.26)

&(8)—:&
C/2Q ( zz'

~
zp+, class II.

4~ ~0+ —,
'

The integral of Eq. (3.24) results in a function exhibiting
rapid oscillations in t,

' with a slowly varying amplitude.
The amplitude is of principal interest to the accelerator
designer. Therefore, in what follows, we shall express
our results for the approach to steady state in terms of

in which Q is the root of the quartic equation generating
the largest growth rate.

This expression for the transient growth rate of a dc
beam is identical to that found by Lau [8], yet it was
calculated using an entirely different approach. Lau cal-
culated the cumulative BBU growth rate of a direct-
current, coasting beam in the presence of a single de-

flecting mode by evaluating the Green's function of the
integro-differential equation of motion. By contrast,
our calculation of the growth rate is based on solving
the Fourier-transformed equation of transverse motion.
Lau's formulation is restricted to the study of the class
of solutions I corresponding to an impulse excitation of
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the wake Geld in which only the head of the pulse is
displaced at the entrance to the linac. Our formulation
allows the incorporation of arbitrary initial conditions. It
is restricted neither to special initial conditions, nor to a
coasting beam, nor to a special choice of wake function.

Following Lau, we categorize the transient dc BBU
into four domains, each corresponding to diA'erent rel-
ative strengths of the dimensionless parameters sy and
s2. The first two domains, A and B, are characterized
by sufficiently small values of s2, and the saddle points @
are given by the following approximate form of Eq. (3.28):

lgl » 1, Q + sip —sag 0 for large s2. (3.32)

The saddle points, growth rates, and beam envelopes are
calculated using the asymptotic methods of Appendix C.
For each domain and for classes I and II of solutions, they
are as follows:

Domain A: s2 « si and s2 « si (ioeak focusing,
ioeak BBU coupling, tong pulse length) In term. s of the
dimensionless parameter

s21 '
2

I ( 2/3(1/3 (3.33)

1+4, lb, l « 1, 4 +sic —s2 0 for small s2.

(3.31)

The last two domains, C and D, are characterized by
sufficiently large values of s2, and the saddle points g are
given by the following approximate form of Eq. (3.28):

with the operation of the Stanford Linear Accelerator
Center (SLAC) two-mile electron accelerator. Later, in
what appears to be the only publication explicitly con-
cerning BBU in nonrelativistic beams, Neil and Cooper
[10] extended the analysis of Panofsky and Bander and
recovered their results in the limit of a coasting dc beam.
Neil and Cooper also considered an unfocused, acceler-
ated dc beam within the framework of the WKBJ approx-
imation, and they applied the corresponding results to
estimate BBU in a low-velocity electron injector. Their
growth rates are also easily recovered with our formal-
ism, but they correspond to only a subset of the possible
solutions implied by Eqs. (3.20) and (3.21).

Domain B: si « s2 « 1 (strong focusing, moderate
BBU couphng, moderate pulse length). In terms of the
dimensionless parameter

~l/2(1/2

the dominant saddle point and growth rate are, respec-
tively,

(3.37)

(3.38)

and the beam envelopes are given by (for classes I and
II, respectively)

l~(~, C)l= *3+ I

—'
I

(., i2 '"
gE~

2( 21r & 2 jexp
I

E&

(3.39)

the dominant saddle point and growth rate are, respec-
tively,

(3.34)

l*(~ &)I =
2 1/2

~3
*o +

2 E *o + I *o
I

A )
„GAEA (3V 3

(3.35)

EA 2;/3 3~3E

and the beam envelopes (for classes I and II, respectively)
are given by

Z (7) —Z P) OO

/'~', l',/'Et) 4g2

2(~2~ 4Q2 + 1

x exp
I
Et)—

) (3.40)

Neil, Hall, and Cooper [3] were the first to study this do-
main and account for the eA'ect of strong focusing on the
exponential growth of dc beams in the beam transport
system of induction linacs.

Domain C: s2 » 1 and s2 » si (strong focusing,
strong BBU coupling, short pulse length) In terms . of
the dimensionless parameter

—Z H)OO E -=s"q ~ ~'/3(2/3 (3.41)

2
- 1/2

~a o
o)l

4g2 (3~~
q46~ 4Q2+ 1 4 "

2q)
(3.36)

the dominant saddle point and growth rate are, respec-
tively,

2
2xi/3 1

I 3~3 Ec
(3 42)

& ) 3
' 4

and the beam envelopes are given by (for classes I and
II, respectively)

Panofsky and Bander [1] were the first to study this do-
main and derive the growth rate presented here. They
treated extremely relativistic dc beams with the purpose
of explaining the pulse shortening observed in connection

t'z', ' QEc (3+3
I&(o &)I= ~o+I —' exp Ec—

4

(3.43)
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2

I 2
&C

(3.46)

and the beam envelopes are given by (for classes I and
II, respectively)

2- S/2

iz(o., () —z(o., oo) i
= zo + ZOI 1

v/6u. E~

x exp E~ — . (3.44)
(3~8
(4 2)

This domain is of interest for the study of the head-tail
instability, i.e., single-bunch BBU, in a linear collider.
Chao, Richter, and Yao [14] were the first to consider
this domain, and they did so to quantify BBU-induced
emittance growth of a single bunch traveling along a next-
generation, single-pass linear collider. Neri and Gluck-
stern [21] later reworked the problem by decomposing the
single bunch into a series of closely spaced macroparticles
and calculating the displacement of each macroparticle.

Domain D: s& )) sq )) s& (u)eak focusing, strong3/2 X/2

BBV coupling, short pulse length). In terms of the di-
mensionless parameter

s2 1/4
/qi (3.45)

(s) )
the dominant saddle point and growth rate are, respec-
tively,

Lau [8] apparently was the first to establish the existence
of this domain.

IV. 6-FUNCTION BEAM

This section concerns the evolution of BBU in a beam
consisting of b-function bunches separated by period r.
Beam bunching introduces a new degree of freedom rep-
resented by the parameter ~r which quantifies the inter-
action of the beam with the wake field oscillating with a
representative angular frequency ~.

A. General solution

For the case of a beam composed of b-function bunches,
the Fourier components of the form factor are Fy ——1 for
all k, and Eq. (2.11) becomes

/ c)' .,& - +. -/' 2s.
2+I~ i((o, Z) =su)(Z) ) (i o, Z —k

)
(4.1)

As shown in Appendix D, Eq. (4.1) can be solved in
closed form using the WKB3 approximation. This solu-
tion, expressed in terms of the functionals C[f(o, Z)] and

S[f(o, Z)] given in Eq. (3.2), and the auxiliary quantities

I&(&, o) —(&0+ & *o
I

&
~xp

I
~@&

(3.47)

+00
/ 2

+co

W(Z) = ) ~~ Z —k = ~r ) ~(k~r)e-'""",
ark= —oo k=O

o, ') 1
iz(o, () —z(o., oo)i =

i zs+ z() iED ) 2 7rED

x exp 2FD— (3.48)
A (o, Z) = Ii (o) —e(cr)W(z),

and written in (o, () space, is

(4.2)

(4 3)

(4 4)

&(o, () = ((0, ()CV'(~)] + &'(0 &) I, 0
SV'(o)]

dze"~ A(z)(c[A(~, z)l - C[I"(~)l)+B(z) ~

A 0
'z — I. 0

.zt ~(z) /'S [A(cr, Z)] S[I&(a)].
W(Z)

A(Z) and B(Z) are determined from the initial conditions at o = 0:

A(Z) = ~r ) ((0, k~r)e

+oo

B(Z) =~r ) ('(O, knur)e '" '
(4.5)

The beam displacement is defined for all values of (, which includes, but is not limited to, ( = ~r representing

bunch m. In particular, Eq. (4.4) can be used to calculate the transverse displacement of unbunched particles located

outside the bunches. These unbunched particles comprise the "longitudinal halo. " They do not contribute to the

beam breakup, but they experience the de6ecting fields generated by the bunches.

It is convenient for some calculations to decompose the integral over Z into a sum of integrals over intervals of length

2x/~r centered on the bunches. Upon changing the integration variable in the manner indicated in Appendix D, the

result is
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g(o', () = $(0, ()C[I& (o )] + g'(0, ()S[I4(o)]

X/4) T

+
—1l /Cd T

dZ""X(Z, ~) A(Z)(C[A(, Z)l- CP~( )))+B(Z) i

(S[A(o, Z)] S[E&(o.)) l (4.6)

where

+OO ( 2s
(Z () ) - ~&(~~/~T)( -i Z+k

W(Z),

(4.7)
This function is periodic in Z with period 2n./~r and in

( with period ur, and it satisfies y(Z, ~T) = 1. The
remainder of this section is directed toward applications
of Eq. (4.6).

, sin~o.
z(o, t,') = zpcos~o + zp

+g(0, () zp(cos[A(0)o'] —cos Ico')

(sin[A(0)o] sin eo l
A(0)

(4.11)

B. Steady-state solution and longitudinal halo

Steady-state BBU is of greater concern than transient
BBU in connection with the design of linacs for long-term
cw operation. We therefore consider, as an example, the
steady-state displacement induced by a misaligned beam
for which ((0,() = (p and ('(0, () = (p. According to
Eq. (4.5), these initial conditions yield

, sin[A(0)o]
z(o, 0) = zp cos[A(0)o']+ zp (4.12)

Thus the steady-state BBU of a coasting beam comprised
of b-function bunches is globally stable if A(0) is real.

In the presence of a single deflecting mode with the
wake function mq((), W(Z) is given by

The steady-state displacement of the bunches themselves
is given by

+oo (
A(Z) =2s(p ) bi Z —k ~ri

(4 8)

Wl(Z) = sin ~r
(1

cosh ~r
~

+ iZ
~

—cos~r
)

+oo

B(Z) =2xgp ) bi Z —k
cur j

Upon integrating over Z in Eq. (4.6), the steady-state
transverse displacement is found to be

(4.13)

The functions g(0, () and A(0) found from mq(() can be
expressed in terms of functions p and q which contain
the resonances between the frequencies 1/r of the beam
bunches and u/2n of the deflecting mode:

((~,() = (pc[I&(o)]+((
S[I&(o')]

W

+X(0, q) gp(C[A(~, 0)] —C[I'(o)])

+oo

p(~r, g) =) e-"( '~'q) sinter
k=1
1 sin 4)r
4 . s 4)r . 2 4JT

sinh + sin
(4.14)

, (S[A(o, 0)]+ '( A(0, 0)
SV'(~)) l

I&(0) )
(4.9)

It is periodic in ( with period ar. The "amplitude func-
tion" y(0, () represents the relative displacement of par-
ticles in and between the bunches. To find the displace-
ment of the bunches themselves, we set ( = 0. The result
1s

+oo

q(~T, q) = ) e "~" ~'q& cos k~r
k=1

cos ~r —e ~TI&Q

4 . g4jr . 2CJT
sinh + sin

The results are, for 0 ( (/~r ( 1,

(4.15)

((., () =(,C[A(., 0))+(,'['( ") .
A(0, 0)

(4.10) yg(0, () = e ~~ q
~

sin(+ cost,"
I

l(1+q

r
(4.16)

In the special case of a coasting beam, I~ (o.) = z and
A(o, Z) = A(Z) are independent of o', and the steady-
state displacement along the linac is

and

Aq(0) = ge —ZcuTP . (4.17)
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The stability of steady-state BBU with a single deflect-
ing mode is largely determined by the resonance func-
tion p. This function is nearly independent of Q (be-
ing approximated by 2

cot —') except in the vicinity of
the zero crossings at ~v. = 2nx. It reaches its peak
values at w7 = 2nx 1+ & where it reaches the ex-

trema +2„,respectively. At the zero crossings where
ur = (2n+ 1)s', it is zero. These limiting values of p are
due to the fact that the contributions to the excitation of
the wake fields by the bunches have the same signs at the
even-integral zero crossings and alternating signs at the
odd-integral zero crossings. Thus the cumulative wake
field is strongest at the even-integral zero crossings.

Equations (4.9) and (4.11)give the steady-state trans-
verse displacement in the general case and for the coast-
ing beam, respectively, for all values of the dimensionless
time (, while Eqs. (4.10) and (4.12) give the displace-
ments of the bunches themselves. The relative displace-
ment of the particles located between the bunches and
of the bunches themselves is determined by y(0, () de-
fined in Eq. (4.7). Unbunched particles located outside
the bunches may be displaced substantially more than
the bunches themselves. This is implied in Fig. 1, which
provides example plots of the amplitude function yi(0, ()
with Q = 1000. As specific examples of this occurrence,
we list three special cases derived from Eq. (4.11) where
we assume a coasting beam with zQ ——0 for simplicity
and ~r/2Q && 1.

Case I: tor = 2na (1 + sq) (resonance):

z cr, () = cos Ko + (sin ( + cos ()
ZQ

x cosh o gsQ —z~ —cos vcr

(4.18)

z(o, () sQ= cos zo + o sin ao sin( .
ZQ K

(4»)

Case 8: cur = (2n + 1)7r (odd-integral zero crossing of
wake function):

Case 8: err = 2nvr (even integral zero -crossing of wake
function):

0.2 0.4 Oa6
('/~ ~

0.8

FIG. 1. Plot of amplitude function yi vs (/~r for b-

function bunches with q = 1000 and for various values of
ur. The bunches are located at ('/mr = 0, l.

C. Transverse displacement of bunches

We now calculate the displacement (iis(o)
((iT, M~r) of bunch M in response to the wake field gen-
erated by the bunches which precede bunch M. The
longitudinal halo is of no practical interest in connection
with transient BBU, and we therefore ignore it in this
context. Upon setting ( = M~r in Eq. (4.6) and per-
forming a series of straightforward reductions, we have

z(cr, () c (2n y 1)n.= COSKO +- o sin ma'sin( .
ZQ K 4

(4.20)

These cases illustrate clearly the role of focusing in con-
trolling the transverse displacement of the longitudinal
halo. For example, case 2 requires very strong focusing,

)& sQ, to confine the halo. Considerations of halo
control are potentially important in connection with the
suppression of activation of the cavity walls due to par-
ticle impingement during the long-term cw operation of
a high-current linac. It can be noted that in cases 2 and
3 the bunches (( = 0) are not defiected by the transverse
fields of the deflecting mode, but the halo is. Moreover,
with Q being large, the halo is much more strongly dis-
placed in the vicinity of the even-integral zero crossings of
the wake function than in the vicinity of the odd-integral
zero crossings.

MT )2' dZ. '-'
~ g (0)CP (~, Z)]+&' (0) A, 'Z
(, 8[A(a., Z)] 5

AO, Z
(4.21)

It may seem, at first, that the displacement of bunch
M, (M(a'), depends on the initial displacements of future
bunches ('M &M(0). This is not so. The integrals with
m & 0 vanish because the Z dependence of the integrands
comes from W(Z), a function containing only negative
powers of e'"' as seen in Eq. (4.2). The lower bound of
the summation can therefore be set to m = 0 rather than
m = —oo. Since the current is assumed to be periodic

and turned on at ( = —oo, the upper limit of the sum

Eq (4 21) is +oo and not M. This does not restrict
Eq. (4.21) to an analysis of the steady-state BBU since no

assumption has been made about the initial conditions
at o = 0. For example, a beam which is turned on at

( = 0 can be treated by taking (t(0) = (&(0) = 0 for
k ( 0 because the beam will not generate a deflecting
field as long as the current travels on axis.
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(4.22)

for which

It is convenient to introduce a diHerent integration
variable 0 which aids in comparing our results with those
of previous authors:

r
8=i~x~ +iZ ~,

Az(a, 8) = I&z(o) —s(a) W(8) . (4.23)

Q is chosen so that all the poles of W(8) lie on or below

the line Im(8) = 0. The beam is assumed to be turned

on at ( = 0. As shown in Appendix E, the displacement

(M(a) can now be expressed in the following form:

KM(a) = —).e ' " ' d« ' '
I &M- (0)C[A(a, 8)]+&M (0)

A 0 8
- --(-»q) -*-s /' ~[A(a 8)1& (4.24)

This result is analogous to the dc BBU result given in
Eq (3.17). It is also analogous to, and has the same
form as, the results of previous authors who have investi-
gated BBU in relativistic beams comprised of b'-function
bunches for which P = 1 [4, 6, 7]. The key distinction is
that Eq. (4.24) has been derived as a special case of the
Fourier-analyzed BBU equation, Eq. (2.11), which obvi-
ously is not restricted at the outset to b-function bunches.
Moreover, smooth variation of the parameters, including
arbitrary velocity P(a), is included within the framework
of the continuum and WKBJ approximations.

In parallel with the treatment of dc BBU, we shall con-
sider two classes of solutions for the transient displace-
ment. The first (I) corresponds to an impulse excitation
of the wake field, and the associated boundary conditions
are $M (0) = (Obo M and (M (0) = (0ho M. The second (II)
corresponds to a misaligned beam, and the associated
boundary conditions are (M(0) = (o and (M(0) = $o f«

M ) 0, and $M(0) = (M(0) = 0 for M ( 0. From

Eq. (4.24), the steady-state displacements for the two

classes of solutions are found to be

0, class I (4.25)
1 1

d8
2z 1 —e-I(s-a~r/2Q)

x
~

(OC[A(a, 8)]+(0, S[A(a, 8)]&

l

�A
0, 8

class II. (4.26)

In the latter case, the integral can be evaluated with the

contour used in Appendix E modified such that the top
of the contour is at y = ioo. The integrand has a simple

pole at 0 = i—' lying inside this contour, so contour
2Q

integration yields directly the steady-state solution given

by Eq. (4.10). The transient displacements for the two

classes of solutions are

e M(~r/2Q) -& ( g[A( 8)])
(M(a) = d8e ' (oC[A(a, 8)]+(0 class I

2K A0, 8 )
(4.27)

e (M+1)(~r-/2Q) ~ e-iM8 / g[A( 8)])s,/2q (DC[A(a 8)] +(o, class II.
27r ~re ~

—ur/2q
(4.28)

To provide examples of the application of Eqs. (4.27)
»d (4.28), we shall calculate the transient growth of a
coasting beam in the presence of a single deflecting mode,
for which

zM(a) —z~(a) = 2Re
~

d8g(8)e/( s) ~,

where

(4.31)

Wi(8) = (4.29)

and

f(a, 8)—: i[M8+ A—i(8)o], (4.32)

A, (8) = ~ —cWi(8) . (4.30)
e M(&u r/2Q)-

g(8) =
~

~0+ ~, class I
4x i, Ai 8 j (4.33)

Our goal is to determine the dependence of zM(a) on
the various physical parameters once BBU has signifi-
cantly amplified the beam displacement. For this pur-
pose, asymptotic solutions sufIice, and these solutions
can be generated using the method of steepest descent
[1]. When BBU is pronounced, Eqs. (4.27) and (4.28)
both take the form

(M+i)(~r/2q)-

4~ (e*'s —e--/'q) &
'

Ai(8)

class II. (4.34)

The integral of Eq. (4.31) results in a function exhibiting
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rapid oscillations in M with a slowly varying amplitude.
As we did previously for the dc beam, we shall express
our results for the approach to steady state in terms of
the amplitude, referred to as the "beam envelope" and
designated ss lzM(o) —z (o) l. Because the exponential
factor f(o, 0) is the same for both classes of solutions, the
transient BBU growth rates of the beam envelopes will
likewise be identical. However, the amplitude function
g(8) differs for the two classes, and the amplitudes of the
beam envelopes will likewise differ.

As shown in Appendix F, the saddle points 0, are de-
termined approximately from the following quartic equa-
tion:

b + sib —s2 1+ (~r cot ~r)b — b 0,
2

(4.35)

where

ings are the counterparts of domains A and B of the dc
beam, and their associated BBU dynamics are identical
in the dc limit. The domains near the zero crossings are
the counterparts of domains C and D of the dc beam,
and their associated BBU dynamics are identical in the
dc limit (as is expected because ur ~ 0 corresponds to a
zero of sin ur) Th.e domains with large values of s2 away
from the zero crossings have no counterparts with the dc
beam; these domains are labeled F and I". The saddle
points, growth rates, and beam envelopes are calculated
using the asymptotic methods of Appendix F. For each
domain and for classes I and II of solutions, they are as
follows.

Domain A: s2 « s&, s2 « s&,
'

( 2') ~ +
Z/3

urlcoturl ~ && 1 (aroay from zero crossing, weak

focusing, roeak BBf/coupling, long pulse train). In terms
of the dimensionless parameter

2 [cosur —cos(ar~g)]
~r sin ~r (4.36)

1/3

EA =
l

—
l

Mwr oc o' / (Mur)
&si)

(4.39)

and

ie) e eo.
s, —:—„s,=(~rp ' a2' KM~r (4.37)

The evaluation of f(o, g) at the saddle points results
in exponential growth e~M ', where the transient BBU
growth rate I' is

s sI+ 1+ (ur

cotter)b

- 1/2

(4.38)

jn which g is the root of the quartic equation generating
the largest growth rate.

The quartic equation and growth rate calculated here
for the beam of 6-function bunches are analogous to their
counterparts calculated in Sec. III for the dc beam. Upon
replacing 0, and Mar by ur0, and (, respectively, in

Eqs. (4.35) and (4.38), and then taking the limit err ~ 0,
the dc results given by Eqs. (3.28) and (3.30) are re-
covered. However, the presence of the parameter ur in
Eq. (4.35) enriches the solution space of the beam com-
prised of 6-function bunches relative to that of the dc
beam. There are now six domains rather than four, and
these domains are paired. Each pair is associated with
one of the terms multiplying s2 in the saddle-point equa-
tion, Eq. (4.35), and each of these terms can dominate
the others depending on the values of s2 and ~r. Near
the zero crossings of the wake function where sin ~r 0,
the second term will dominate because

l
cot url is large.

Away from these zero crossings the first term will domi-
nate for su%ciently small values of s2, and the third term
will dominate for suKciently large values of s2. The do-
mains comprising each pair are then distinguished from
each other by the relative values of s& and s2. The do-
mains with small values of s2 away from the zero cross-

the dominant saddle point and growth rate are, respec-
tively,

g= 1+6, 2~|/3'-M..' '-
4 M.,

(4.40)

and the beam envelopes are given by (for classes I and
II, respectively)

- X/2

o
+l )I*M(o)l= &o+

2 E )
gE„(3~3

x exp EA ™2M 6~ E4 2) (4.41)

I~M(~) —~ (~)l

2
- i/2Ao, l /' o.

~o +
2 E *o + I ~o I

V'EA
X

2M@ 6n.
(4.42)

3~3
4 2Q

2 lair . 2 tur
sinh + sin

4 2

These are the results quoted by Gluckstern, Cooper, and
Channell [4], who were the first to study this domain in
connection with relativistic beams of b-function bunches.
Their work also marked the first attempt to include the
rf structure of the beam in a BBU calculation. Gluck-
stern, Cooper, and Channell derived their results with-
out the aid of the continuum approximation and applied
them to calculate BBU in the linac used for Los Alamos'
free-electron laser. Decker and Wang [6] revisited the
problem using the continuum approximation to calculate
BBU for an ultrarelativistic, uniformly accelerated beam.
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. E~ 11+6, b i ——si,Mar F

(4.44)
and the beam envelopes are given by (for classes I and
II, respectively)

la 2- 1/2

I~M(o)l= *o+
I

—
I

/'~() ) ~/'Ea

Eic j 2M 2ir

Though we have chosen to present explicit results only
for a coasting beam, arbitrary velocities and acceleration
are also included in our formalism by way of the WKBJ
approximation.

Domain B: si « s~ && 1; ( 2') s2+urI cot urI~sq &&

1 (away from zero crossing, strong focusing, moderate
BBU coupling, moderate pulse train). In terms of the
dimensionless parameter

Egg = i/sqM~r oc o' (M~r) (4.43)

the dominant saddle point and growth rate are, respec-
tively,

bunches. His calculations were based on a discrete
Laplace transform of the equation of transverse motion,
and he included acceleration by way of the WKBJ ap-
proximation. Yokoya found that his analytic results,
which are analogous to those presented here, agreed well
with a numerical solution of the equation of transverse
motion. Decker and Wang [6] derived these results for
a strongly focused ultrarelativistic beam with uniform
acceleration. They revisited the problem in a later pa-
per [7], treating BBU in a linac with a periodic lattice
of cavities and focusing elements. Gluckstern, Neri, and
Cooper [16] also investigated this domain and found close
agreement between the analytic results and simulations.

Domain C: n22= ss2urI coturI; n2 )) 1, nz )) si
csc ur )& urI cotcorIn2 )& I1 —[(cor/2)nP ]~I (near
zero crossing, strong focusing, strong BBU coupling,
short pulse train). In terms of the dimensionless param-
eter

q
1/3

Ec = s
I

Msgr oc o'/ (M~r) /
ur

xexp
I

En —M
J

l»~(~) —~ (~)l

(4.45)
(4.47)

the dominant saddle point and growth rate are, respec-
tively,

sinwr cosur
2- i/2

v'EB

4M' 2n.

/' ~r)
exp

I En —M
X

2
(4.46)

sinh + sin

Yokoya [5] was the first to study this domain in connec-
tion with ultrarelativistic beams comprised of 6-function

I

b
I I

(ur cot ar)e ' —-si,/'Ec l 2 /3
~ri (4.48)

I IcoscorI+ —
I

v~( 11 Ec
2) M~r '

and the beam envelopes are given by (for classes I and
II, respectively)

(z() t QEc +3 ( 11 cor
I~M(~)l = ~o+

I

—'
I exp

I
l«s~rl+ —IEc —M

%~i M 6~
(4.49)

2- S/2

I~M(~) —~ (&)I = &o+ I

—
I

V'Ec
M 6ir

cor
exp

I I
cosmr

I + —
I
Ec —(M + 1)2) 2

v~ Ec & (I Ec
I

cosur —e
I
cosurI + I

— coscor
I

2 M 2 M

(4.50)

Thompson and Ruth [9] discussed the suppression of
BBU in next-generation e+e linear colliders by plac-
ing the bunches near zero crossings of the wake func-
tion. Using a formal series solution of the equation of
transverse motion, they considered cases involving very
short bunch trains where BBU is small. Weri and Gluck-
stern [21] approached the problem of single-bunch BBU
by decomposing the bunch into a train of closely spaced
macroparticles. The results presented above pass to the

results of Neri and Gluckstern in the dc limit. As is
discussed in Appendix F, the criteria for validity of the
saddle-point calculation are easier to fulfill near the zero
crossings where ~r is near an odd-integral multiple of m

than near the zero crossings where cur is near an even-
integral multiple of x.

Domain D: n2 = s2~rI cot~rI; si && n2 ))2 = 2 3/2

si, csc err &) u)rI cot~rI(n2/~si) &) I1
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[(cor/2)(nq/~sq ] I (near zero crossing, weak focusing,
strong BBU coupling, short pulse train). In terms of the
dimensionless parameter

where

sz~ (I tan~rib Msgr oc o i (Mur)
spy ( 4Jr

(4.51)

1 for tan&sr & 0
+2/2 for tanur ( 0,

(4.52)

the dominant saddle point and growth rate are, respec-
tively,

sinter cosur
7

EF. 1+
Msgr

(4.58)

2- 1/2

I~M(~) I
= ~o +

z', ) 1

2~M

( (rl
xexp

I
EF+M —M

)
(4.59)

I~M(~) —~ (~)l

2- X/2
&~o&'

( IC

and the beam envelopes are given by (for classes I and
II, respectively)

( E 2

b —
I

ur cot u7, (4.53)
1 ( 1

x exp
I

1 —
I
EE+M

2+M ( 2M)

I'
(I coscorI + 1)

Mu) r
—(M+ 1) (4.60)

and the beam envelopes are given by (for classes I and
II, respectively)

lz:M(o') I
=

I &o + E &o I 2M

x exp
I (I cosurl+ 1)ED —M

I ~ (4 54)
2

I~M(~) —~ (~)l

Domain F: (cor/2) szlsin~rl && s), sg )) (vr/2)sz',
[(cor/2)s(spaz/sq)]z &) 1+ [(~r)s/4](sz/sq)l cot cJrI (away
from zero crossing, weak focusing, very s&rong BBU cou-

pling, sho& pulse train). The dominant saddle point is

2 2
82

ln( curb —sin mr), b
427 2 8y

(4.61)

Zp+ Zp
)

cos cor —e 'l~q —
I
cos cor

IM

(4.55)

exp
I (I cos~rl+ 1)ED —(M + I)

2 )
2M '

In terms of the dimensionless parameter

4)7 3 82EF —=Mln 2
2

—
I
sin co r

I
oc M,

the growth rate is

EF 2+
M(dr 4)r

(4.62)

(4.63)

Again, as is discussed in Appendix F, the criteria for va-
lidity of the saddle-point calculation are easier to fuHill
near zero crossings where ~r is near an odd-integral mul-
tiple of x than near zero crossings where u r is near an
even-integral multiple of 7t.

Domain E: ( z') ssl sin~rl && 1, (cor/2)sq )& sq,

[(cor/2) sz]~ )& 1+ [(err)z/2]sql cot urI (away from zero
crossing, strong focusing, very strong BBU coupling,
short pulse train). The dominant saddle point is

.~r 1
ln( —curb sin ~7.), b i sq ——sy .

&r 2 2

(4.56)

In terms of the dimensionless parameter

I*M(~)l = (*c+ ~M ~o)

~r)
xexp

I
EF+2M —M

l 2Q)
(4.64)

I~M(~) —~ (~)l

Zp + Sp

x exp 11 — IEF+2M

and the beam envelopes are given by (for classes I and
II, respectively)

(dr
E~ = Mln 2 sglsin~rl oc M,

2

the growth rate is

(4.57)
—(M+ 1) (4.65)
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D. Transient BBU simulations TABLE I. Parameters for simulations of transient BBU
with b-function bunches.

To check the scaling laws for each domain, we compare
the analytic results with numerical simulations. The sim-
ulations are developed by way of Runge-Kutta integra-
tion of the equation of transverse motion of the bunches
themselves. According to Eq. (2.1), for a coasting beam
comprised of b-function bunches in the presence of a sin-

gle deflecting mode, the equation of motion of bunch M
1s

( d&

+ IC
~

zM(0') = Gd7 ) tUM z (0'),

Domain

A
B

0.5
5.0
300

300

3000
20000

0
30
30

60
0

10
10

1
37K + 3pp

13x + 3pp

10
10

where

(4.66)

mk 8 k(.,/2Q) sink (4.67)

This equation was integrated using the boundary condi-
tions of a misaligned beam, z (0) = zs and z' (0) = 0
for all m, with Q -+ oo. The input parameters used for
each domain are listed in Table I. These parameters have
no special significance beyond their intended purpose of
providing examples with which to check the analytic scal-
ing laws.

Results of the simulations are shown in Fig. 2 for do-
mains A, B, and C, and in Fig. 3 for domains D, F,

and F. The simulations are seen to follow the time (M)
dependence predicted with the analytic scaling laws cal-
culated for the envelopes. Plots of the spatial (tr) depen-
dence (not shown) for these examples likewise conform
to the analytic scaling laws with accuracies comparable
to those of Figs. '2 and 3.

A comparison of the results for domains C and D,
which are calculated using the same coupling constant
c and frequency ratio ~r, reveals that focusing can be
a powerful cure of transient BBU when the bunches are
placed near the zero crossings of the wake function. In
these examples, increasing the focusing strength from
z = 0 to 30 reduces BBU by a factor greater than 104

at M 50. Domains E and F are characterized by very
large BBU coupling and are therefore probably of lim-
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30- 10
5

X

Xp
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—60-

40-

20-
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I
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I I, I
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—25

—75
2 4 6 8 10

M

FIG. 2. Transient displacement of b-function bunches at
the exit of the linac vs bunch number M for domains A, B,
and C. Transverse displacement, plotted as the ordinate, is
normalized with respect to the initial displacernent. The dots
are the bunch displacements calculated from numerical simu-
lations using the parameters of Table I. The solid curves are
the beam envelopes calculated analytically.

FIG. 3. Transient displacement of b-function bunches at
the exit of the linac vs bunch number M for domains D, E,
and E. Transverse displacement, plotted as the ordinate on a
logarithmic scale, is normalized with respect to the initial dis-

placement. The dots are the bunch displacements calculated
from numerical simulations using the parameters of Table I.
The solid curves are the beam envelopes calculated analyti-
cally.
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ited practical interest. These domains are distinguished
by enormous and rapid BBU growth even with very short
bunch trains.

With bunch trains which are sufficiently long to ex-
perience an exponential decrease in a make field mith fi-
nite Q, methods which lower the effective Q of the wake
field will also be useful in suppressing BBU. This con-
sideration is most applicable to domains A and 8, and
also to steady-state BBU. For example, the results of do-
mains A and 8 and of the steady state have been applied
elsewhere to estimate the maximum effective Q of the
dominant deflecting mode which can be sustained with-
out significant BBU in two superconducting cw linacs for
deuteron beams [22]. The first is a five-cavity section be-
ing designed for tests with a deuteron beam of energy
7.5 MeV and current 80 mA, which was modeled assum-
ing no focusing (domain A followed by steady state), and
the second is a notional linac for accelerating a 100-mA
deuteron beam from 5 to 200 MeV with strong focusing
(domain B followed by steady state). For both linacs, it
was found that a maximum Q of order 5 x lps for the
deflecting modes in the constituent resonators should suf-
ficiently suppress BBU under worst-case conditions. In
actual operation, the external Q of the accelerating mode
in these linacs is expected to be of order 105 due to the rf
coupling required to drive the high-current beams. The
rf coupling would probably also generate Q ( 10 for
the deflecting modes and thereby control the transverse
displacement of the bunches.

V. FINITE BUNCH LENCTH
AND ARBITRARY CHARGE DISTRIBUTION

With the above assumptions, integrating Eq. (2.11) from
~~ —0 to ~ + 0 yields the following system of diKer-

ential equations:
+

, +K'
I
z (o) =sw ) Fiz g(o),

where
(5.3)

iD =u)Im
mrj

d( ~(() im(2—r/err)(

(5.4)
In the case of a single defiecting mode we have

1 / 2+i . /' 2s 1'i
1+ —Im I +elm4Q~ q ~r) ~r )

(5.5)

As expected, the system of Eq. (5.3) can be solved ex-
actly in the case of the dc beam where the only nonzero
coefficient is Fo —1, and in the case of the beam of
b-function bunches where FI, ——1 for all k.

For a dc beam the system of Eq. (5.3) reduces to an
infinite system of uncoupled linear dift'erential equations:

z (o) =(su) —~ )z (o)

= —A2 z (o), (5.6)
where A2 = A~(m~ ) represents the growth of the mth
Fourier component of the bunch displacement. If the mis-
alignment onset and angle of incidence at the accelerator
entrance are expanded in Fourier series:

A. Steady-state solution

z(o q) ) ( )
'rn(2 / (5.1)

The Fourier coefficients z (o) are related to the Fourier
transform z(o, Z) by

(2~m/~~)+o
z-(o) = z(o, Z) dZ .

(a~m/~~) —o
(5.2)

The behavior of BBU for an arbitrary but periodic
beam is described by Eq. (2.11). This equation was
solved in closed form for the special cases of a dc beam
and of a beam comprised of 6-function bunches. In this
section we investigate BBU for the case of a periodic cur-
rent comprised of an infinite series of bunches of finite
length and arbitrary but identical charge distribution.

Equation (2.11) cannot be solved in closed form for
arbitrary F&. We shall therefore make a simplifying as-
sumption. In particular, we shall restrict our investi-
gation to the steady-state behavior of a coasting beam
whose misalignment at the entrance of the linac has the
same time periodicity as the beam current. With this
assumption the problem is completely periodic in time,
and the transverse displacement can be expanded in a
Fourier series:

z(o, () = ) I zo cos A

sill A~o)
+so e (5.8)

This solution is a generalization of the one given in

Eq. (3.10) since we have now assumed that the initial
onset is periodic and not simply constant as it is in

Eq. (3.10).
For a beam composed of b-function bunches the system

of Eq. (5.3) reduces to
/' d' +~'

I
z (o) =~~ ) z„(o), (5.9)

i, do~ )
mhich is an infinite system of coupled linear differential
equations; nevertheless, it can still be solved in closed
form. If we assume the same Fourier expansion of the
initial conditions as before, the solution is

+OO

Z(p () ) im(2r/(ur)(

(5.7)
+OO

I(p () ) I irn(2r/~rlt

then the transverse displacement along the accelerator is
given by
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z (o, () = z(0, () cos ~o + z'(0, ()

+ ), ( / )(,~, ,(A, )
+, ip ( ), t'sin(Apa. )

Wp 4 )
sin Lo)

r )
(5.10)

where

+OO

Wp —— ) A.p = K —cWo ) (5.11)

+OO

s )
(5.17)

and
The transverse displacement of the center of the bunch

(( = 0) is given by

+OO +Oo

&p — +p, & ) &o = g ~o, a (5.12)
2

z(a, o) = zp 1+—(cQ' —~') (5.18)

are the initial offset and angle of incidence of the bunches
themselves. This solution is a generalization of the one

given by Eq. (4.11) since we have now allowed for a peri-
odic longitudinal halo between the bunches at the linac

entrance. The initial periodic misalignment of the halo
is unaffected by the BBU and proceeds along the acceler-
ator under the infiuence of the focusing fields only. The
BBU of the halo depends only on the initial misalign-
ment of the bunches themselves, as would be expected
since the bunches alone drive the deflecting wake fields.

where

+OO +OO

0 = ) u) F
m= —oo 0

~(&)F(-&)4 (5»)

It is readily apparent that, for the dc beam and the beam
of b-function bunches, Eq. (5.18) gives the first terms in
the series expansion of the solutions given by Eqs. (3.10)
and (4.12) with zp ——0.

It is useful at this point to introduce a "growth factor"
G2(o', (; Ic) to describe the local tendency of the beam to
experience BBU. This growth factor is defined as

B. Recurrence solution and growth factor
1 d2

Gz(rr, g; ~)—: z(rr, t,') . (5.20)

For a dc beam or a beam of b-function bunches the
infinite system of Eq. (5.3) could be diagonalized and its
eigenvalues and eigenfunctions determined. Kith arbi-
trary Fourier coefficients I"I, of the beam current, how-

ever, this is not the case, and a closed-form solution can-
not be found. Nevertheless, a recurrence solution of the
system of Eq. (5.3) can be obtained. If we assume

A positive growth factor indicates the beam is deflected

away from the axis and is therefore locally unstable, while

a negative growth factor indicates the beam is deflected
toward the axis and is therefore locally stable. Close

to the entrance of the accelerator (o « 1), and for the
center of each bunch (( = 0), the growth factor is

+j
+m ~

~

o

(5.13)
1 d' K

G'(O, O; ~)=,z(O, O) = n'
Gzp dO

(5.21)

then

+OO
2

+m, j+2 = ~m g . ~I &m-k, j —& &m,j
k= —Oo

If we also assume the beam is misaligned with

(5.14)

z(o 0 = zp z'(o &) = o (5.15)

then the first terms in the series expansion are

ZP 2 = 6'tOPFPZP —K ZP )
2

&m, 2 —E~mFm&p )

(5.16)

and, for small o, the transverse displacement of the beam
is given by

The role of focusing is clear: zz ) sQz generates a nega-
tive growth factor at the accelerator entrance which tends
to stabilize the beam with respect to steady-state BBU.

Although the growth factor calculated from Eq. (5.18)
is strictly valid only as long as the beam has not deviated
significantly from its original misalignment, the value of
the growth factor obtained this way has a much wider
range of applicability. In particular, for the dc beam and
the beam of b-function bunches, the value of G2(0, 0; m)

obtained above is exact anywhere along the linac and for
arbitrary BBU coupling and focusing strength. For an
arbitrary periodic beam propagating down a linac with
parameters which are independent of 0., the growth factor
is expected to be almost constant provided the distortion
of the beam bunches is small compared to the bunch dis-

placement. This expectation holds because the o. depen-
dence of the growth factor originates from the harmonic
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content of the beam and vanishes for both the dc beam
and the beam of b-function bunches. Accordingly, the
growth factor can be calculated close to the linac entrance
where the o dependence of the transverse displacement is
given by Eq. (5.18), and the result of this calculation will
be approximately valid over the entire length of the linac.
In the numerical simulations described in Sec. V D below,
this was found to be true except near the resonances
where the deflecting-mode frequency is an even-integer
multiple of the bunch frequency. In this circumstance,
the bunch distortion could be very large, comparable in
magnitude to the bunch displacement, and the growth

~ ur A'
for fC/ (—

2

0' Mr
0 for —(~Q(

2
'

(5.22)

from which the growth factor of the bunch centroids close
to the entrance of the linac is found to be

factor could likewise vary strongly with o.
As an example, we consider a beam composed of uni-

form bunches of finite length in the presence of a single
deflecting mode. The form factor for the beam current is

ur 4Q~ ( p cr rr ( q )
G (0, 0;a) = ——+

~
2q+ — cos —sinh +

~
2p ——

~

sin —cosh
s n 4Q~+1 q Q 2 4Q q Q) 2 4Q

~14n+1 — cos —+ sin — e
2 2Q 2

(5.23)

where p and q are the resonance functions defined in
Eqs. (4.14) and (4.15), respectively. Figure 4 shows how
Gs(0, 0; ic = 0) varies with the 'filling factor" f—:rr/~7,
a quantity which parametrizes the bunch length. For a
given value of ~r, the growth factor may change sign
as the filling factor is increased, which in turn changes
the local stability of the bunch centroids with respect to
BBU. This circumstance appears again in Fig. 5 where
the growth factor is plotted for various values of f in

the vicinity of the resonance at ~r = 4x 1+ z . As

the filling factor increases, the stability of the bunch cen-
troids qualitatively reverses.

In the limit of finite but short bunches (n 0), we find

(5.24)

Thus we find that a slight lengthening of b-function
bunches to make short uniform bunches always exacer-

bates BBU, independent of the focusing strength z. As
we now show, this is also true both for arbitrary charge
distributions as long as they are nearly b-function distri-
butions, and for arbitrary wake field ui((). The difference
in growth factor between two otherwise identical beams,
one composed of bunches of finite extent (n g 0) and one
composed of b-function bunches (n = 0) is

(5.25)

If the finite bunches deviate only slightly from b-function
bunches, their associated Fourier components will de-

crease significantly from unity only for large ~m~. Thus
only large values of ~m~ will contribute to hG . As can be
seen from Eq (5.5), f.or large values of ~m~, toi is nega-
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G
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0.4
I I

0.6
I I

0.8

—1000
1 2.40

I I I I
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FIG. 4. Growth factor G (0, 0; r = 0) vs filling factor f =
rr/err for uniform bunches of finite length in the presence of a
single deflecting mode. Plots are shown for several values of
ur assuming Q = 1000. b-function bunches have f = 0, and
the dc beam has f = 1.

FIG. 5. Growth factor G (0, 0; z = 0) vs ur in the vicin-

ity of the resonance of p occurring at ur = 4x (1+ z&) for

uniform bunches of finite length in the presence of a single

deflecting mode. Plots are shown for several values of filling

factor f assuming Q = 1000.
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tive. Equation (5.5) pertains to a single deflecting mode,
but an arbitrary wake function is composed of single-
mode wake functions, and m will therefore also be neg-
ative for large )rn). Thus h, G2 will generally be positive
with short bunches, and a slight lengthening of b-function
bunches will always lead to an increase of BBU. However,
as the bunches are lengthened further, the growth fac-
tor may or may not continue to increase, a circumstance
which we saw in the examples of Figs. 4 and 5.

C. Bunch distortion and transverse beam size

Throughout this paper we have been concerned wit, h

beams which are energetically monochromatic, having
no transverse size, and therefore having zero emittance.
With these model beams, although BBU will distort the
bunches, the emittance will remain zero. For real beams
with finite emittance, however, bunch distortion will lead
to emittance growth which will be in some sense commen-
surate to the distortion. Consequently, this BBU-induced
emittance growth is quantitatively related to the amount
of bunch distortion and the corresponding increase in
transverse beam size, and therefore it is of interest to
calculate the transverse beam size.

As was done previously, we consider a misaligned beam
which enters the accelerator parallel to the axis with a
constant offset. After steady state has been reached, the
time dependence of the beam displacement at posit, ion 0
1s

+oo

z(~ () ) z (~) i a(2m /(ur)g (5.26)

with

zo(0) = zo, zambo(0) = 0 . (5.27)

A mean offset z(0) can be calculated by averaging the
offset weighted by the charge distribution over an rf pe-
riod in the manner

cue'/2

z(~) =
(dT

+oo

) za(a)F a .

z(0, ()F(()d(

(5.28)

From the mean offset, a mean-square transverse beam
size d2(0) can be defined:

d'(~r)—:[z(~, () —z(~)]'
ur r/2

[z(~, () —z(&)1'F(&) d&
&T -~7

+oo +oo

) . ) . za(~) zi(~) [(F (a+i) —F-a F-i] .
k= —oo l=—oo

(5.29)

Close to the accelerator entrance (0 « 1), where the time
dependence of the displacement is given by Eq. (5.17),
the mean-square beam size is

D. Steady-state BBU simulations

Steady-state BBU of a coasting beam comprised of
bunches of finite length and arbitrary charge distribu-
tion may be calculated numerically with the aid of the
recurrence relation, Eq. (5.14). To provide an example,
we again consider a misaligned beam of uniform bunches.
The recurrence relation is then init;ialized with the aid of
Eq. (5.16). The Fourier coefficients of the form factor
for the beam current are calculated from Eq. (5.22), and
they are

4J'T . Dl1l A
(5.31)

We set Q = 1000 and s = 0.2, and we choose ~r = 10
for two reasons. First, it is far away from the resonances
of p and therefore represents a typical case of practical
interest to the designer of a cw accelerator. Second, ac-
cording to Figure 4, the growth factor Gz(0, 0; z = 0) in
this case changes sign when the filling factor f 0.1.
The centroids of shorter bunches are stable with respect
to BBU and are deflected toward the linac axis, and the
centroids of longer bunches are unstable and are deflected
away from the linac axis. This choice of ~r therefore
leads to a qualitative change in the transverse dynamics
with only modest bunch lengthening and is accordingly
an interesting case to study.

Steady-state BBU in the absence of focusing (z = 0)
is depicted in Fig. 6. The bunch centroids are deflected
in the expected manner, yet the bunches become increas-
ingly distorted as they propagate down the accelerator.
As we discussed earlier, the distortion results in nonzero
transverse beam size and degraded beam quality. More-
over, portions of each bunch can be de8ected to displace-
ments exceeding the initial displacement even when the
bunch centroids are deflected toward the axis. The qual-
itative shape of the deformed bunch, i.e. , whether it is
concave or convex with respect to the accelerator axis at
a given location is also a function of the bunch length. In
addition, the displacement of the longitudinal halo can
change markedly with bunch length. Figure 6 shows the
halo extending beyond the bunches themselves when the
bunches are short, but as the bunches are lengthened, the
halo extends to transverse displacements which are less
than the bunch displacement.

The effect of focusing in suppressing steady-state BBU
of both the bunches and the halo is quantified in Fig. 7.

2 42Z 0." ( ) = zo ) . ~a~iFaFi F (a+i) —F aF i .
4

k, 1+0

(5.30)
The focusing strength does not appear in this expression,
and t,he bunch distortion and transverse beam size are
therefore initially independent of the amount of focusing.
This will be discussed further in Sec. VD below. We
note that d2(~r) = 0 for a beam of b-function bunches,
as expected, and that a time-independent offset at the
accelerator entrance results in dz(0) = 0 for the dc beam
as well. Bunches of finite length will, of course, result in
a nonzero mean-square beam size.
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Here, the bunch length is fixed such that f =0.2. AVhen

a small amount of focusing is applied, the bunches and
the halo are shifted closer to the accelerator axis with
very little change of shape. As the focusing strength is
increased, the bunch deformation remains relatively un-
affected at small values of o, which is consistent with the
result of Eq. (5.30). However, the effect of increased fo-
cusing is pronounced at large values of ~; the bunches can
be constrained to transverse displacements lying within
their initial offset, and the bunch distortion can likewise
be suppressed. This holds true for the halo as well, i.e. ,

for sufliciently strong focusing, ~z(a, j) ~

( zo.

VI. BBU WITH RANDQM PARAMETERS

A. Steady-state solution with random initial
conditions

1. Direct-current beam
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The general solution for the transverse displacement
((o, () of a dc beam at location o and time ( as a function
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FIG. 6. (a) Steady-state transverse displacement, of
bunches vs position ir along the linac and (b) longitudinal halo
at o = 1 vs i,'/cur for filling factors f = 0.1, 0.2, and 0.4, and
with a = 0, ur = 10, Q = 1000, and e = 0.2. Transverse dis-
placement, plotted as the ordinate, is normalized with respect
to the initial displacement. The linac entrance corresponds to
o = 0, and the linac exit corresponds to o = 1. In (a), the
bunch shape at selected values of o is plotted on a scale such
that a bunch with f = 1 would span two divisions of the ab-
scissa. In (b), the thick lines depict the bunches themselves,
and the dashed lines represent the halo. The bunch centroids
are located at (/err = 0, 1.
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t/UT
FIG. 7. (a) Steady-state transverse displacement of

bunches vs position o along the linac and (b) longitudinal
halo at o = 1 vs (/ur for r = 0, 0.5, 2, and 4.5 and with
f = 0.2, ur = 10, Q = 1000, and e = 0.2. Transverse dis-
placement, plotted as the ordinate, is normalized with respect
to the initial displacement. The linac entrance corresponds to
o = 0, and the linac exit corresponds ta o = 1. In (a), the
bunch shape at selected values of o is plotted on a scale such
that a bunch with f = 1 would span two divisions of the ab-
scissa. In (b), the thick lines depict the bunches themselves,
and the dashed lines represent the halo. The bunch centroids
are located at i', /err = 0, 1. Note that there is a change of
scale of the ordinate in the lower two subplots relative to the
upper two subplots in bath (a) and (b).
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of the offset ((0,() and angle ('(0, () at the accelerator
entrance was given in Eq. (3.6) as

((~, () = c(~,s)((0,( —v) dv
0

s(0., p)g'(0, ( —&) d& .
0

(6.1)

The displacement ((a, () can be interpreted as the sum
of the outputs of two linear systems of impulse response
functions c(o', () and s(0', () driven by the inputs ((0,()
and ('(0, (). We assume that ((0,() and ('(0, () are sta-

tionary random processes with means ((0, () = ('(0, () =
p, and with autocorrelation functions ((0, ()((0,(+ g) =
R&(p, iI) and [('(0, ()[('(0,(+ iI) = R~c(o, g). We also as-
sume that ((Q, rl) and g'(0, g) are not cross correlated,
although the analysis can easily be extended to include

nonzero cross correlation.
In terms of the spectral densities of ((0, g) and ('(0, g),

+OO

St(O, Z) = — R((o, iI)e '" dg,2x

+OO

St (O, Z) = — R((p, iI)e '') dg,2'

(62)

the spectral density of ((o, () is given by

st(~, z) = s, (o, z) Ic[x(~,z)]l
S[A(o, Z))

~(o, z) (6.3)

The mean-square transverse displacement along the ac-
celerator is then given by

p(o 0 = «(o o) =f dZ St.(o, Z)

dz s((o, z) l~[&(, z)ll +sc(0 z) S[A(o, Z)]
AO, Z )

(6 4)

For the remainder of this section, and without loss of generality, we will assume a coasting beam entering the accelerator
parallel to the axis. The mean-square displacement is then

o'(o) = f dZ S,(0, Z) [coo[A(Z)rr]]'

Analogous to our earlier definition, we introduce a growth factor

G2(0", a):— 1 d2[z~(o)]

2fZ2(0) 0

The extra factor of 1/2 has been included since the growth factor is defined in terms of the mean-square displacement
and not the rms value. Since the initial conditions now include many frequencies each having different growth rates,
the growth factor will vary along the accelerator, and its value calculated close to the origin may not accurately
characterize the BBU further along the accelerator. Nevertheless, the growth factor near the origin, where it can be
calculated easily, still gives an indication of the stability of the beam.

Close to the accelerator entrance the growth factor is

+OO +OO

G2(P.„)— dZS (O, Z) A2(z) yA' (Z) = —
2 dZS (O, z)[2~' —su)(z) —su)'(Z)]

2E'z 0
2E'Z 0

+OO

dZ S (0, Z) [u)(Z) + u)'(Z)]
E' 2z0

2 1 +OO

+ —
2 d( u)(()R (0, (),

Zp p
(6.7)

where

*' =- *'(0) = R-(o, o)

If we assume a single deflecting mode

(6.8)
I

R (0, (, ) =z e I(l/ q cosl —(,
'

I&~)' (6.10)

and a correlation function for the displacement of the
beam at the entrance of the accelerator

u)i((,') = u(()e ~~ ~sin( (6.9) then the growth factor is
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4J1+—
G (0;K)=-—

' )'""=')'
l1 ——

+ 4)

(1 1)' ( ~') j
Iq2q +

2q I +

(6.11)

As can be seen, a resonance will occur if the characteristic
frequency u' of the correlation function is close to the
frequency a of the deflecting mode, and, in the absence
of sufficiently strong focusing, the beam will experience
strong deflecting forces away from or toward the axis if
~' & ~ or w' & ~, respectively.

2. 6-function bunches

the spectral density at cr is related to the spectral density
ato =Oby

St(o, z) = C(o, z ')St(0, z)C(o, z)

+S(o, z ')St. (0, z)S(o., z), (6.15)

C(o, z) = ) ct. (o)z

S(o, z) = ) st. (o)z "
k=- oo

(6.16)

are the transfer functions associated wit, h the linear
transformations of Eq. (6.12). Using the inverse of the
z transform, the correlation function at o can be found
from the spectral density by

The general solution for the transverse displacement

(M(o) of bunch M at location o as a function of the
offsets ( (0) and angles (' (0) of the previous bunches
at the accelerator entrance was given in Eq. (4.21). This
equation can be rewritten as

&M(~) = ). &M- (o)c (~)+ ). 6s- (o)s (&)

R((o., k) = . St.(o, z)z" z dz,
27ri

(6.17)

where the path of integration is a circle centered at the
origin which encloses all of the singularities of the inte-
grand. The mean-square displacement is then

where

7l'/4J T

c (a) = dZe' ' C[A(o, Z)],
—ll /4) T

~r ~"'„,,~ S[A(o, Z)]
2n i„, A(0, Z)

(6.12)

(6.13)

(M2(o) = R((o, 0)

1
S,(0,.)C(,.)

+S(o, z ')St. (O, z)S(o, z)] .

(6.18)

The functions c (o) and s~(o') are the Fourier com-

ponents of C[A(o, Z)] and
&&0 &&

which, because of
causality, satisfy c &e(o) = s &o(o') = 0. We as-
sume that (q(0) and (&(0) are stationary random se-

quences with means (~(0) = 0 and (&(0) = 0, with

autocorrelation functions (t.(0)Q+„(0)= Rq(0, n) and

(&(0)(&+„(0)= Rt. ~ (0, n), and with cross-correlation

function Q(0)(&+„(0)= 0. Equation (6.12) represents a
a-dependent family of linear transformations which gen-
erate new stationary random sequences (M(o) from the
initial sequences ( (0) and (' (0).

In terms of the spectral densities of the sequences (q(o)
and (&(o), defined as the z transforms of the correlation
functions

St. (o., z) = ) Rt(o, k)z
(6.14)

St-. (o, z) = ) R( (o., k)z

C(o, Z) = ) cg(o)e '" ' = cos[A(Z)o], (6.19)

and the mean-square displacement is

7l /CaJT

~M~(o) = dZ )cos[A(Z)o])
2x

+OO

x ) R (Ok)e

(6.20)

Using the same definition of the growth factor as in
the previous section, we have

For the remainder of this section, and without loss of
generality, we will assume a coasting beam entering the
accelerator parallel to the axis. If we make the change of
variable z = e', then
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Tf /tel T +oo
G (0 ~) = —, dZ A'(Z)+A"(Z)] ) R.(o, k).-*'"

~

.
2szp 27I. (6.21)

Upon substituting

2z-k i
A (Z) = ~ —sW(Z) = ~ —s ) u) Z+

~

= ~ —s~r ) w(k~r)e
cur jk= —oo k=0

the growth factor becomes

(6.22)

1 x/A&7.

G (0;a) =-
2czo02m — /

+oo +oo
dZ 2z —s~r) io(k~r)(e ' ' +e+'" ) ) R (0, 1)e

l k=0 l=-oo
+oo

z ) u)(k(ur)R (0, k) .
S0 k=o

(6.23)

If the bunches are uncorrelated, the only nonzero value of the correlation function is for k = 0. However, since
to(0) = 0, the growth factor for a beam of uncorrelated 6-function bunches is r2/s, a—nd the steady-state behavior of
the beam is unaffected by BBU. Such a beam will nevertheless exhibit nonzero transient BBU [23,24]. If, on the other
hand, we assume a single deflecting mode and a correlation function for the bunch displacement at the accelerator
entrance of the form

R~(0, k) = z2oexp ~

—[k), ~
cos k~'r,') (6.24)

then the growth factor is

~r I I sin[(~+ ~')r] 1 sin[(u —u)') r]
2 l4 . z ar (I 11 . 2 ((u+u')r)t 4 . 2 err (1 11 . 2 t'(u —a')r)~ '

sinh
~

—+ —,
~

+ sin
. 4 &Q Q'r. & 2 r . 4 &Q Q'r. & 2 r

sinh —+ —
~

+ sin

(6.25)

This growth factor exhibits the same resonance proper-
ties as the function p of Eq. (4.14). At the resonances

~uk''~r = 2nz' 1 + 2 q + q, , the terms in brackets

reach their extrema +& , . In the absence of suK-
ciently strong focusing the beam will experience strong
deflecting forces away from or toward the axis according
to whether Gz is positive or negative, respectively.

B. Distribution of deflecting-mode frequencies

In the preceding sections we investigated BBU as-
suming the deflecting-mode frequency and wake function
were precisely known and constant along the linac. We
found that BBU was strongly dependent on the parame-
ter ~r where u/2z is the deflecting-mode frequency and
1/r is the bunch frequency. For example, the steady-
state BBU of a beam of b-function bunches depends on
the function p(ur, Q) defined in Eq. (4.14) which exhibits
sharp, narrow resonances.

In a linac, the frequency of the accelerating mode of all
the cavities will need to be tuned to precisely the same
value; however, it is unrealistic to expect the frequen-
cies of the deflecting modes to be identical. Thus it is
meaningful to ask about the probable BBU of a beam
in a linac where the deflecting-mode frequency follows a
probability distribution.

(6.26)

Once again we characterize BBU at any point along the
accelerator by a growth factor which is most easily cal-
culated close to the accelerator entrance where the beam
has not been deflected substantially from its original off-
set. With these assumptions we have zp(o. ) zo and
z (o) (( zp for I g 0, and the solutions are

K CT

*o(o) = ~o

+~+0
0

do.g ioo(o2, u)), (6.27)

0' &1

(o) = zpsF~ do.i dog u) (oz, ~) .
0 0

We shall treat in detail the case of steady-state BBU,
making the same assumptions as in Sec. V A, and
Eq. (5.3) will be our point of departure for this inves-
tigation. Because the deflecting-mode frequency now de-
pends on ~, 6~ depends on both a and ~, and BBU is
governed by the system of differential equations

( d2 ) +co
+ ~

~

z (o) = su) (o, ~) ) Fl, z p(o) .
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The displacement of the center of the bunch is
(~~'(-)) = ): ( -(-))F-= w(a C)F(—&) d&

z(a. , 0) = ) z (a)

K 0
zp 1

2

+e) F da2 w (a2, ~)

and the growth factor of the bunch centroid is

(6.28)

(6.34)

If we compare this result with Eq. (5.19), we see that
all the results obtained previously for steady-state BBU
with arbitrary wake functions and charge distributions
within the bunches are retained in the case of a dist, ribu-
tion of deflecting-mode frequencies through the use of an
effective wake function w(cr, ().

To provide an example, we calculate the effective wake
function for the case of a single deflecting mode and a
Lorentzian distribution of frequencies. For simplicity we
omit the o dependence in the calculation. The wake func-
tion and the frequency distribution are

G (a, 0;~,~) = z(a, 0) = 0 (a., ~) ——,
Exp da E'

(6.29)

where

(~ ( ~ 11 . t'~
w

~

—(
~

= u(() exp
~

——( ~

sin
~

—(
&~o ) uo 2Q) q~o

1
f(~) =-

+ (~ —ceo)2+ &~2 (6.35)

0'(o, ~) = ) F w„,(o, ~) . (6.30)

We now assume that we have an ensemble of acceler-
ators and that, at a, the deflecting-mode frequency has
a probability density f(a, u). Since 0 (a', u) is a linear
function of the quantities w (a., ~), its expectation value
is given by

(fI'(a)) = ) . + (w (a))

(a, ~)f(a, ~) d~ . (6.31)

Previously we used ~, the frequency of the deflecting
mode, as a normalizing parameter in defining the dimen-
sionless time t,'. Since ur is now a random variable, it is
not suitable anymore as a normalizing variable, and we
will use instead a frequency up which can be, for example,
the mean of the distribution of u. The wake functions
will then be explicit functions of ~ and will be of the form
w(a. ,

—"().
The expectation values of the coefficients w~(a', u) are

Since the frequency distribution will always be narrowly
peaked around wp (because Eu « cup), we can replace
the exponential decay in the wake function by e
The effective wake function is then+, . (~
w(j) =u(() e ~i-'~sin

~

—j,-. )
of(d

X
(u) —~p)' + A~'

(1= u(() exp —( ~ + sin(.
q2

(6.36)

Thus we see that in the case of a single deflecting mode,
the effective wake function is identical to the original
wake function but with a shorter decay time. The ef-
fect, of a frequency distribution is to broaden the real
bandwidth of the deflecting mode by the width of the
Lorentzian distribution.

The modification to the wake function of a single de-

flecting mode caused by a frequency spread can be gen-
eralized to other probability densities for the deflecting-
mode frequency. The effective wake function for a single
deflecting mode is

I & . (~
exp —— sin — u du .

~o 2Q) &~o )
(6.37)

(w-(a)) =

+oo
d(e

(o, ~)f(o, ur) Cku

+OO (
w

~
a, —( f(o, cu)W.

OO

(6.32)

ssn — u du (6.38)

Since the probability density is narrowly peaked around
~p, we can take the exponential out of the integral, and

If we define an "effective" wake function w(a, () as

+ I'
w(a. , ():— w

~
a, —( i f(a, ~)d(u,

(do j (6.33)
w(&) = u(C)e "'~ sin KZ y I)(]g(Z) dZ .

By introducing a new variable Z:—(u jeep) —1 and the

probability density in Z space g(Z) = up f(up(Z + 1)),
the effective wake function becomes

we see that (w (a)) is simply the value of the Fourier
transform of w(a, () at m27r/upr Thus. (6.39)
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If the probability density f(u) is symmetric around uo,
then g(Z) is an even function of Z, and

+oo
io(() = u(()e ~~ ~sin( e' & g(Z) dZ. (6.40)

Written in terms of g((), the function whose Fourier
transform is g(Z), the effective wake function is

~(4) = 2~ g(4) ~(&) . (6.41)

Thus, in the case of a symmetric probability density, the
effective wake function is simply the original wake func-
tion multiplied by the inverse Fourier transform of the
probability density of the deflecting-mode frequency.

We now list the modifying factors to the wake function
for three common probability densities.

(i) trnifo~:

1 4P
for!~ —~o! (

(~) b.io 2

0 for!~ —~p! )
2 '

for!Z! (
(Z) = q

A~ 2~a

0 for!Z! )
24)p

(6.42)

sin!
2ng(() = (2uro )

E2~o )

(ii) Lorenfzian:

1
(~) =-

n (id —urp)2+ 6~2 '

1 b.u 1

& ~o fbu)
Zz + ( (dp

(6.43)

2ng(() = exp!—( b.~
ldp )

iii aussian:

f(~) = 1
2

1 (~ —~pl
!exp 2( a~)

(6.44)

1 t'bid&',
2sg(() = exp 2i, uoj

In the case of deflecting modes with infinite Q, the de-
cay of the effective wake function will be governed by the
modifying function g(() and thus will depend strongly on

the assumed probability density of the deflecting-mode
frequency. For example, for large (, the effective wake
function will decay as I/( for a uniform density, as e

2
for a Lorentzian density, and as e '~ for a Gaussian
density.

Although we have defined an effective wake func-

tion in the context of steady-state BBU, it can also be
used to study transient BBU provided that the trans-
verse displacement does not change significantly over
distances comparable to the correlation length of the
deflecting-mode frequency. For example, if the fre-
quencies of the deflecting modes in successive cavi-
ties are uncorrelated, this is equivalent to the assump-
tion that the continuum approximation is valid. Un-
der these conditions, one might expect that, for de-
flecting modes with infinite Q, transient BBU for large

would be related to the decay rate of the func-
tion g((). Thus the rate of approach to the steady
state would depend on the assumed probability density
of the deflecting-mode frequency. Colombant and Lau
[25,26] find an algebraic decay of the form I/( for large (;
however, this result is a consequence of their assumption
of a uniform probability density where g(() also decays
as I/( as seen in Eq. (6.42). Under different assump-
tions, the decay would be different. For example, if the
probability density is assumed to be Lorentzian, one finds
an exponential decay similar to the one obeyed by g((),
which is like that produced by a finite Q. Gluckstern,
Neri, and Cooper [16,24, 27] have also investigated tran-
sient BBU for a beam of b-function bunches in terms of
the rms frequency spread. Introducing a distribution of
deflecting-mode frequencies into a linac has been consid-
ered as an additional cure of BBU in the next-generation
linear collider [28] and in free-electron lasers [29].

VII. CONCLUSIONS

Both the transient and steady-state dynamics of cumu-
lative beam breakup in linear accelerators with periodic
beam current have been characterized using a formalism
based on Fourier analysis of the equation of transverse
motion. This formalism is universally applicable, being
useful for BBU investigations over the entire spectrum
of linac applications. In particular, it includes arbitrary
velocity and acceleration of the beam, and thus is not
restricted to relativistic beams.

Prior to this work, it was already known that transient
BBU of a direct-current beam could be classified in terms
of two dimensionless parameters involving the BBU cou-
pling strength and the focusing strength. For a beam
of b-function bunches, a third dimensionless parameter
needs to be included which is the ratio of the deflecting-
mode frequency and the bunch frequency. This third
parameter enriches the solution space for transient BBU,
and we have calculated and classified the BBU both near
to and far from the zero crossings of the wake function
where the deflecting-mode frequency is an integer mul-
tiple of the bunch frequency. We also showed how the
solution space of the beam of b-function bunches maps
onto the solution space of the dc beam in the appropriate
limit.

Methods for suppressing transient BBU include damp-
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ing the deflecting wake fields, tuning the wake fields so
that the bunches are located near their zero crossings,
applying strong transverse focusing, and introducing a
distribution of deflecting-mode frequencies. The rela-
tive eA'ectiveness of these methods depends on the three
dimensionless parameters characterizing the linac under
consideration. The decay of transient BBU in the pres-
ence of a distribution of deflecting-mode frequencies can
depend strongly on the assumed distribution function,
particularly if the wake fields in the constituent cavities
decay slowly.

Steady-state BBU, which is of principal concern in
cw linacs, was characterized in terms of the BBV cou-
pling strength, the transverse focusing strength, the ra-
tio of deflecting-mode and bunch frequencies, the bunch
length, and the charge distribution within each bunch.
The latter two parameters are of special importance in
low-velocity beams. For a misaligned beam of b-function
bunches, steady-state BBU is nearly independent of the
effective Q of the wake fields except near the zero cross-
ings of the wake function where the deflecting-mode fre-
quency is an even-integer multiple of the bunch fre-
quency. Strongly peaked resonances occur in these re-
gions which can be suppressed by lowering the effective Q
of the wake fields, and they are generally less pronounced
with bunches of finite length, the exception correspond-
ing to extremely short, but still finite, bunches. The
deflecting fields tend to distort bunches of finite length,
leading to emittance growth and degraded beam qual-
ity. Unbunched particles comprising a diH'use longitudi-
nal halo between the bunches respond to the deflecting
fields but do not excite them. These particles can be

deflected more than the bunches themselves. If allowed
to impinge on the accelerating structures, they will con-
tribute to activation over the long-term operation of the
linac. Bunch distortion and halo displacement are both
accentuated near the resonances. Steady-state BBU can
also be considerable in the presence of random initial con-
ditions of the bunches at the linac entrance. For example,
with a beam of 6-function bunches, a resonance occurs if
a harmonic of the characteristic frequency of the correla-
tion function for the bunch displacement at the linac en-
trance is close to the characteristic frequency of the wake
function, and strong deflecting fields may then be gener-
ated. Sufficiently strong transverse focusing will suppress
all of these potential problems associated with steady-
state BBU. Analytic formulas were derived for each case
to use in estimating the required focusing strength.
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APPENDIX A: FOURIER- TRANSFORMED
EQUATION OF TRANSVERSE MOTION

To derive the Fourier-analyzed BBU equation with pe-
riodic current, we first use Eq. (2.6) to write Eq. (2.5) in
the form (with the o dependence suppressed)

'D z(j)=s )
+oo +oo

(( (I) 'k(2 / )(' ((I) s ) F d( ro(( )e'"( / )(( ( )z(( (i)
0

(A1)

where the second equality follows after the change of variables (i ——( —(', and D2 is the differential operator in
Eq. (2.5). Upon applying the Fourier transform to Eq. (Al), it becomes

'D z(Z)=s ) FI, -az(
dq (q )

ak(2x/ter)(( —(, ) (q q )
0

(A2)

The right-hand side is a sum of Fourier transforms of the
convolutions of io(() and e'"(~ / ')~z((), and Eq. (2.8)
therefore follows by inspection. oo+i/2Q

+ +'/2Q
((o, () = — dye

0
d&e '" X„[A(o,0)]

(B1)

APPENDIX B:TRANSVERSE DISPLACEMENT
OF THE de BEAM

The transverse displacement of the dc beam is cal-
culated from Eq. (3.14). Upon changing the integra-
tion variable in Eq. (3.14) from Z to 0 as indicated in
Eq. (3.15), ((o., 8) is given by

where

+pP(o ~)]:&(O & / )~[~( 0)]+&'(O ~ &) p O
'0

8[A(o., 8)]

(B2)

and A(o, 0) is given by Eq. (3.16). The poles of A(o, 0)
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d8e '" P„[A((r,8)] = 0. (B3)

are identical to the poles of ta(8) which, by causality, all
lie on or below the real axis.

We now show with the aid of the closed contour of
Fig. 8 that the integral over 8 in Eq. (Bl) is equivalent
to an integral along a line displaced infinitesimally above
the uppermost poles of t()(8). This line is taken to be
the real axis. The contour of Fig. 8 contains no poles;
therefore

mode is calculated here. The method of steepest descent
is used, and it is expected to be valid when BBU is sub-
stantial. The calculations of this appendix are restricted
to the "misaligned beam, " i.e., solution class II ~ If the
beam induces an "impulse excitation" of the wake field,
solution class I is needed. The corresponding results are
generated in the same manner and can be inferred by
inspection of the results developed here.

If BBU is large, then Eq. (3.21) can be written approx-
imately in the form

Since A(~8~ —p oo) = I&(o), the line integral along leg A
1s

$(e, O —((e, oo) 2Re] f dgg(g)egi i
[ (C1)

~+~/sq
Z~ ——Z„[K]lim d8 e ')", -

and the line integral along leg B is

Zgg
—F„[I~]lim d8e '"' .

s coo + '/pq

(B4)

(B5)

where g(8) is a slowly varying function of 8, and f(8) has
saddle points at which Bf/[98—:f'(8) = 0. Choosing the
saddle point 8, for which the real part of f(8) is largest,
and anticipating that Re[f(8, )] » 1, we deform the con-
tour of Fig. 8 so that the line integral passes through 8,
along the trajectory of steepest descent. This procedure
results in the following approximate closed-form solution:

Adding the contributions from these two line integrals
gives

Ze + re = 2ge[lx] (e" o —i iim
] I

. (iig)
oo [, /)

Upon inserting this result into Eq. (Bl), using the iden-
tity

(B7)

= g(g, )e~i'i f dg exp[-,' f"(g.)(g —g ) [

(C2)

Considering now the case of the dc beam in the pres-
ence of a single deflecting mode, we write Eq. (3.21) in

the form

~A+~B = 0 (B8)

and integrating over p, we see that the contributions from
legs A and B cancel: (/gQ +oo

z(o, ()—z(o, oo) =-
4+

1 F(a,e)1'
ie+

Therefore, in view of Eq. (B3), the integral along the line

[—oo + 2q, +oo + z&] is equal to the integral along the
real axis excluding the poles lying on the real axis. This
is the result expressed in Eq. (3.17).

where

( iz', ]
F((r, 8) —= —i[(8+ &i(8)(r]+» l

zp+

(C3)

(C4)

APPENDIX C: TRANSIENT BBU
OF THE dc BEAM

The asymptotic behavior of the transient displacement
of a coasting dc beam in the presence of a single deflecting

To find the saddle points, we set F'(8) = 0:

BF . s8u)', (8)o. .

I

0 Ai (8) zpA i (8) + iz() j
(C5)

Defining the parameters @, si, and s2 according to
Eq. (3.29), we have

Xmin Xmax +~

1 g ) 2

q (@) q (@)
. , l

= o ( )

FIG. g. Contour for calculating the displacernent [g(dg, t)
of the dc beam.

If the term involving Aq is small, i.e. ,

l~ (@)I»1 (Ci)
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f(rr @) = ' CV 0 + &i(@)o (C8)

then the transient displacement is found from Eq. (3.24)
with f(0) and g(0) defined in Eqs. (3.25) and (3.27), re-
spectively. We shall assume the inequality is satisfied,
and check our assumption after evaluating the saddle
points.

Returning to Eq. (3.24), we now have

:-(o Z)= ) ( o Z —k

and using I'i, = 1 for all k, Eq. (2.11) becomes

+ I~
~
((cr, Z) = s io(Z):-(o, Z) .

cIo2 )

(Dl)

(D2)

where @ is governed by the quartic equation, Eq. (3.28),
and

We note that =(o, Z) is periodic with period 2'/u7, as

are W(Z) and A(o, Z) given in Eqs. (4.'2) and (4.3), re-
spectively, i.e. ,

~ (~)
(~g
o si (g —l)~ (C9) - f 2ir:-(o., Z) =:-i o, Z —n (D3)

Upon evaluating t'. ~~ &~, we find exponential growth e ~

in which I' is given by Eq. (3.30) using the root of
Eq. (3.28) corresponding to the largest growth rate. We
also find, letting f"(Q) = 02f(0, = i/it)/08~,

where n is an integer. Accordingly, we have

(
.,) -( 2irl+K i(i o, Z —n

cr2 i, u7 )
i(

1
g f (@—1) lJ'"(&,@) =

~~
1 —

~ 1
I
3+

and

(C10)
= su)

~

Z —n ~:-(o,Z), (D4)
( 2ir'i-

~7.)

g(4) =— ( .o si (g —1)'
*o

4 ~t',.~@»~ E (s2 vV )
2Q

and upon summing over all integers n, the result is a
homogeneous differential equation for =(o, Z):

(Cl 1)

The transverse displacement is calculated from Eq. (C2)
using the results of Eqs. (C8), (C10), and (Cl 1) in the
manner

z(o, ()—z(o, oo) = 2 Re „g(g)e,(.~)&

r

(C12)

Upon substituting the result of Eq. (C9) into Eq. (C7),
we find the inequality of Eq. (C7) is valid provided the
following inequalities hold in their respective domains (cf.
Sec. III C):

EA » 1, domain A

«)) 1, domains B and C (C13)
FD » 1. , domain D.

The inequalities associated with domains A and D are
generally true when the transient BBU is pronounced, as
is also required for the validity of the method of steepest
descent. The inequality associated with domains B and
C is consistent with the assumption of strong focusing
which characterizes these domains. These considerations
justify using the inequality of Eq. (C7).

+A'(o, Z) i:-(o,Z) = 0.( 0'
(cIo2 ' )

(D5)

In the WKBJ approximation, the solution of Eq. (D5) is

:-(o,Z) = A(Z)C[A(o, Z)]+ B(Z) S[A(o, Z)]
(D6)

where

A(Z) =:-(O,Z), B(Z) = (D7)

The solution of Eq. (D2) is a superposition of the gen-
eral solution of the corresponding homogeneous equation
and the particular solution of the inhomogeneous equa-
tion found on substituting the result of Eq. (D6) into
Eq. (D2). In the WKBJ approximation, the solution is

The last term is the particular solution of Eq. (D2) as
can be verified by direct substitution. From Eqs. (D6)—
(D8), we find

((o, Z) = n(Z)C[I~(o)]+p(Z) . + =(o, Z) .S[I~(o)] u)(Z)-
W(Z)

(D8)

APPENDIX D: TRANSVERSE MOTION
WITH 6-FUNCTION BUNCHES

o(Z) = ((0, Z) — A(Z),
W(Z)

(D9)
This appendix concerns the solution of the equation

of transverse motion Eq. (4.1) and develops the result of
Eq. (4.6).

With the definition all d

p( )
&( ) ( )

W(Z)
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g(o, Z) = ((0, Z)C[It (o.)] + cl((0, Z) 8[I~ (o)]

A(0, Z) I~ (0)+ A(Z)
~

C[A(o, Z)] —C[E~ (o)] ~
+ B(Z)

~

(D10)

+oo +oo). e'"( / '1&=~r ) bg' —a~r), (D11)

we find from Eqs. (D7) and (Dl) that

+co

A(Z) =:-(O, Z) = ) (i O, Z —k ~rJ

+oo

) -i[z—k(2x/w7')](g(0 q) dq

k= —oo

+oo
= ~r ) ((0, k~r)e (D12)

A similar calculation gives

Equation (4.4) is simply Eq. (D10) after Fourier trans-
forming back from Z to t,'.

It remains to determine the functions A(Z) and B(Z)
from the initial conditions. Using the identity

where

1
(&) ) —tnwr/2Q

2x
m =0

x+iur r/2Q
x d8e ' F [A(o, 8)],

—&+cur 7 /2Q

(E1)

& [A(~, 8)]
—= CM- (0)C[A(~ 8)l+ &M (o)

A 0
'8

8[A(o, 8)]

(E2)

and A(o, 8) is given by Eq. (4.23). The poles of A(o, 8)
are identical to the poles of W(8) which, by causality, all

lie on or below the real axis.
We now show with the aid of the closed contour of

Fig. 9 that the integral in Eq. (El) is equivalent to an
integral along a line displaced infinitesimally above the
uppermost poles of W(8). This line is taken to be the real
axis. The contour of Fig. 9 contains no poles; therefore

B(Z) = ' ' = ~r ) ('(0, k~r)e
0:-(0,Z d8e ' F [A(o, 8)] = 0. (E3)

(D13)

These are the results presented in Eq. (4.5).
The integral over Z in Eq. (4.4) can be decomposed

into a sum of integrals over the interval ~r/2x centered
on the bunches. Denoting the integrand by f(Z), we

have

The integral along the line [n, ++i &&] cancels the integral

along the line [—x+ i z&,
—n] because, as can be inferred

from Eq. (4.2), the integrand is periodic in 8 with period
2x. Therefore, in view of Eq. (E3), the integral along the
line [ n+ i 2q, x+ i 2q]

—is equal to the integral along the

line [—x, n] excluding the poles lying on this line. This
is the result expressed in Eq. (4.24).

+oo n /ur r

—X/4/T

dZ f(Z + k2n'/ur)

(D14)

APPENDIX F: TRANSIENT BBU
OF THE 6-FUNCTION BEAM

The asymptotic behavior of the transient displacement
of a coasting beam comprised of b-function bunches in the
presence of a single deflecting mode is calculated here us-

Ly

Because A(Z), B(Z), W(Z), and A(o, Z) all have period
2x/~r, Eq. (4.6) follows at once.

APPENDIX E: TRANSVERSE DISPLACEMENT
OF 6-FUNCTION BUNCHES

The transverse displacement of a beam of b-function
bunches is calculated from Eq. (4.21) by taking gt. (0) =
(&(0) = 0 for k ( 0. Upon changing the integration vari-
able in Eq. (4.21) from Z to 8 as indicated in Eq. (4.22),
(M(o') is given by

IL IL

FIG. 9. Contour for calculating the displacement t~(o)
of the beam of b-function bunches.
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ing the method of steepest descent. The calculations of
this appendix are restricted to the misaligned beam, i.e.,
solution class II. If the beam induces an "impulse exci-
tation" of the wake field, solution class I is needed. The
corresponding results are generated in the same manner
and can be inferred by inspection of the results developed
here. The introductory remarks of Appendix C through
Eq. (C2) also apply here with respect to Eq. (4.28) and
the contour of Fig. 9.

In parallel with the calculations of Appendix C, we
write Eq. (4.28) in the form

f(0., Q) = i[M—~r~@+Ai(i/)o. ], (F9)

where g is governed by the quartic equation, Eq. (4.35),
through b(g) given in Eq. (4.36), and

~IAi(W)l » 1.
Vfe shall assume that these inequalities are satisfied, and
then check our assumption after evaluating the saddle
points.

Returning to Eq. (4.31), we now have

zM(&) —z (~) =—e-Mu7 /2Q
d8e ( )

4x (F1)
.(-W~

Ai @
0 b2 sin ~r (F10)

F(o, 8)—:—i[M8+ Ai(8)a]
iz', ) 2e "'/'q

+ln
l
z, + ' l,, /, . (F2)

A, 8 ) e" —e-" /&q

Accordingly,

08 ( M(e's —e-~'/~q) )
. soWi(8)sin8 r 1+i . 1+~rAi(8)sin~r & oAi(8) zoAi(8)+iz')

(F3)

Upon evaluating e~( '~~, we find exponential growth
e"M~' in which I' is given by Eq. (4.38) using the root of
Eq. (4.35) corresponding to the largest growth rate. We
also find, letting f"(y) = O~f(8, = mr~@)/88~,

f (o;, Q) ='iM( cot (~r~il)

I sin (~r~g
b ~r sin ~r

2( sin mr ~ b4
x 3+

sin ~T s2

ZGJ T ~TP
b +Slb 1+

M(eiur~g e ~7/2Q) )

2

To find the saddle points, we set I" '(8) = 0. Defining the
function b and the parameters g, si, and s2 according to
Eqs. (4.36) and (4.37), respectively, we have

and

(F11)

e
—(M+1)(ur 7 /2Q)

4& (cia r~iP e &ur/2Q)—
0' sl sin 4)T

x zo+i —, . b z, . (F12)
( vV)

where

2
Sln 4)T

sin ~r

x 1+ 1 z', = 0, (F4)
oAi(g) zpAi(g)+izo)

The transverse displacement is calculated from Eq. (C2)
using the results of Eqs. (F9), (Fll), and (F12) in the
manner

zM(cr) —z (0) 2 Re „g(i/)e,(.,)&

(F13)
4JT

cos ~r = cos~r — b sinur,
2

If the terms involving M and AI are both small, then the
transient displacement is found from Eq. (4.31) with f(8)
and g(8) defined in Eqs. (4.3'2) and (4.34), respectively.
The term involving M is small when

e'ttd T ~Q e —4d x /2Q
(F7)

The term involving A~ is small when

- I/24)T
sin ur = sin~r 1+ ur cot ur b—

2
6

(F6)

i/3 ZcM ))
l

cosmr —e cos 4)r
l 2 M )

r I E~+
l

— cos~r
l domain C, (F15)

The inequalities of Eqs. (F7) and (F8) must be checked
before applying these results. We shall consider each do-
main of Sec. IV C separately. For @ 1 (domains A and

B), the inequality of Eq. (F7) reduces to

M )) e ' qgp + q domains A and B (F14)

where p and q are the resonance functions defined in
Eqs. (4.14) and (4.15), respectively. For cos (err~@
cos~r and sin (ur~g) cur~g (( 1 (domains C and
D), the inequality of Eq. (F7) reduces to
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M » 1, domains E and I". (F17)

This condition generally holds when the transient BBU
is pronounced, as is also required for the validity of the
method of steepest descent. Upon substituting the re-

—1

M » cos~r —e l q —
~
cosior~, domain D .

M

(F16)

Because generally ur/2Q (( 1, these conditions are hard-
est to satisfy in the vicinity of the zero crossings of the
wake function where ur = 2nx and cosmr 1, but they
are comparatively easy to satisfy in the vicinity of the
zero crossings where ur = (2n + 1)z. and costs —1.
For [e' ~@[ && 1 (domains E and F), the inequality re-
duces to

&A )) 1, domain A

vcr » 1, domains B, C, and E
F'D » 1, domain D

M » 1, domain F.
(F18)

The inequalities associated with domains A, D, and I" are
generally true when the transient BBU is pronounced, as
is also required for the validity of the method of steep-
est descent. The inequality associated with domains B,
C, and E is consistent with the assumption of strong
focusing which characterizes these domains. These con-
siderations justify using the inequality of Eq. (F8).

suit of Eq. (F10) into Eq. (F8), we find the inequality of
Eq. (F8) is valid provided the following inequalities hold
in their respective domains:
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