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Response functions for multicomponent plasmas. II. Velocity-average approximation
and dynamical mean-field theory for strong coupling
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We establish the multispecies generalization of the velocity-average formalism for the calculation of
plasma response functions at arbitrary values of the coupling. We use a set of pseudopotentials rather
than the bare Coulomb potential to represent the interaction between the particles in order to describe
quantum effects due to the formation of bound states, diffraction, inner-shell-electron exchange, etc. The
result is a self-consistent integral equation for the partial response functions. In the weak-coupling limit
the calculation can be carried out and the outcome compared with the result of the exact perturbation-
theoretical calculations: in the long-wavelength k =0 limit they are in total agreement.

PACS number(s): 52.25.Dg, 51.10.+y, 52.25.Mq, 05.20.Dd

I. INTRODUCTION

The determination of the frequency and wave-number-
dependent dielectric-response function e(kco) has been
one of the central problems of the physics of correlated
Coulomb systems. The strength of the correlations can
be characterized by the coupling parameter which for
one-component plasma is I =PZ e /a or y=a/4n. n, wh. ere P= (ktt T) ', d is the interparticle
distance (4m. /3)a n = 1, tt is Debye wave number,
tc=(4trZ e nP)'; the former is appropriate for strong,
the latter for weak coupling; for a multicomponent plas-
ma there is no unique definition, but a similar definition
can be adopted with appropriate average Z, n values.
For weak coupling (y (1) perturbation theory is applic-
able and the preceding paper [1] (to be referred to as pa-
per I) discusses the result of the systematic expansion of
the Bogoliubov-Born-Green-Kirkwood- Yvon (BBGKY)
hierarchy to obtain the 0 (y) contribution to e(kco). This
paper concerns itself with the strong-coupling (I ) 1) sit-
uation. In approaching this problem, where perturbation
theory obviously does not apply, one has to observe the
guiding principle that the correct treatment of the
dynamical, frequency-dependent character of the correla-
tions is crucially important in generating an e(kco) that
can provide reasonably reliable information on collective
mode dispersion, damping, mode-mode interaction, etc.
A dynamical mean-field theory (DMFT) for the calcula-
tion of e(kco) for a binary value of the coupling was pro-
posed by Golden, Kalman, and Silevitch [2] and worked
out in detail by Golden and Kalman [2] for the one-
component plasma (OCP). More recent developments of
the theory are due to Tao and Kalman [3] and Kalman
and Tao [4]. The major ingredients of the approach are
the velocity-average approximation (VAA) and the appli-
cation of the nonlinear (or quadratic) fiuctuation-
dissipation theoretn (NLFDT) [5]. The role of the VAA
is to reduce the dielectric function to become a functional
of the quadratic response function. This result can be re-
garded either as a convenient jumping board for pertur-
bation calculation when the coupling is weak, or as an in-

termediate stage, when the coupling is strong. This latter
case requires a further approximation in order to obtain
the quadratic response function as a functional of E(kco),
generating in this way a self-consistency requirement,
applicable without the use of perturbation technique.
The original work of Golden and Kalman [2] and the
more recent work of Tao and Kalman [3] deviate from
each other in the way this second stage of the calculation
is structured.

The DMFT based on the VAA scheme has a number
of attractive features: it is exact in the static limit, it
satisfies the high-frequency sum rule, and it is amenable
to the application of a number of additional approxima-
tion techniques. In the cases of the OCP [6,7], successful
work has been done in applying this theory for the
analysis of the dielectric function and of the plasmon
dispersion relation. The calculated dispersion relation is
in good agreement with the exact result in the weak-
coupling limit and for intermediate and strong coupling it
reproduces the numerical simulation results of Hansen,
McDonald, and Pollock [8]. The VAA formalism has
been generalized for the case of two-component systems,
the binary ionic mixture (BIM) (two ion species immersed
in an inert neutralizing background) in particular, in the
important and impressive work of Golden, Green, and
Neilsen (GGN) [9]. GGN have derived a general formal-
ism (about which more will be said below) and worked
out applications to the plasmon dispersion both in the
weak- and the strong-coupling limits.

The primary purpose of the present paper is to further
generalize and develop the VAA formalism to mul-
tispecies plasmas and to reconsider its application to two
component both electron-ion and ion-ion BIM systems
[10]. The generalization and development of the theory
incorporates four different elements. The first is the
adoption of a set of generalized pseudopotentials [11—13],
rather than the bare Coulomb potential, to represent the
interaction between the particles. Pseudopotentials, in
general, are introduced either to phenomenologically de-
scribe short-range quantum-mechanical effects within the
classical formalism, or because the interacting "particles"
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have a structure [13]that causes the short-range potential
to deviate from its Coulomb form. A detailed discussion
on the choice of pseudopotentials is given in paper I.
However, the adoption of pseudopotentials gains more
importance in the strong-coupling situation. This is due
to the fact that a classical electron-ion plasma does not
constitute a thermodynamically stable system. This lack
of stability manifests itself, as is well known, in the diver-
gence of the partition function and of the correlation
functions, and in the possible unstable softening of the
collective modes. Even though these problems do not
show up either in the random-phase approximation
(RPA), or in the 0(y) perturbation calculation, they are
expected to fatally affect calculations for strong coupling.
Thus it is essential that a strong-coupling approximation
be equipped with the correctly formulated pseudopoten-
tial formalism. The second line of development in the
present paper consists of the adoption of the partial
response function formalism as developed by Kalman and
Golden [14]. This formalism has also been introduced in

paper I, where its development is presented. The special
importance of the partial response formalism [14,15] in
the context of the VAA is that with its help the analysis
of the multispecies problem can be brought into a one-
to-one correspondence with that of a simple OCP. This
is not a trivial simplification. Indeed, in the work of
GGN [9), where this method was not followed, the com-
plexity of the formalism becomes a major obstacle and a
deterrent in any attempt to translate the formal results
into a useful calculational algorithm. It is also a serious
impediment to transparency and to the visualization of
the physical implications of the formal steps. We believe
that by espousing the method described we have success-
fully circumvented these problems. An additional benefit
of the formalism is that the results are not restricted to
binary systems, but hold for systems of an arbitrary num-
ber of components.

The third new element in our development is based
upon the new results obtained in the analysis of the
NLFDT [3,4]. By introducing the "response function of
the second kind" [3,4, 16—18], which relates perturbed
two-point density correlations to the perturbing field, the
derivation of the DMFT can be presented in a much
more compact and physically meaningful way than be-
fore.

Finally, in this paper in deriving the self-consistency
requirement from the VAA result we follow the recently
formulated method of Tao and Kalman [3,6, 17], rather
than the dynamical superposition approximation em-
ployed in the earlier approaches both to the OCP [2,6]
and to the BIM [9] problems. The method, briefiy, con-
sists of representing the quadratic response function in a
universal mean-field-theory (UMFT) -like structure,
where the screening function is postulated to be the prod-
uct of the linear screening functions. We have discussed
elsewhere [4] why we believe that this method is in many
ways superior to the dynamical superposition approxima-
tion. Although the arguments of Ref. [4] have been
directed at the OCP problem, they hold a fortiori for the
multicomponent case. Indeed, as demonstrated by the
work of GGN [9), the implementation of the dynamical

superposition approximation for the BIM becomes a task
much more involved, with outcomes more diScult to in-
terpret, than the same procedure in the case of the OCP.
Thus, the simplification brought about by the new ap-
proximation method is an additional major advantage in
the multicomponent situation. A word of caution, how-
ever, is in order: a conclusive verdict on the relative mer-
its (or demerits) of the new approach can be reached only
on the basis of concrete calculations based on, but going
beyond, the formal results; such calculations have to be
contemplated as a major new undertaking and are not
available at the present time.

The development of the ideas discussed so far is the
subject of the first three sections of this paper. Section II
contains the development of the VAA: the NLFDT
enters as a relationship between the "response function of
the second kind" [3,4, 16—18] and the quadratic response
function. As a result, the (linear) dielectric-response
function appears as a functional of the quadratic
response: this is the main result of the VAA and it con-
stitutes the first stage of the derivation. Section III is de-
voted to the establishment of the self-consistency require-
ment by expressing the quadratic response function in
terms of the linear one: the final product is a coupled set
of integral equations that determines the dielectric-
response function. The derivation is, of course, indepen-
dent of the value of the coupling parameter, and there-
fore the result is valid for arbitrary coupling; in particu-
lar, it is expected to provide a good calculational algo-
rithm for e(kco) in the case of strong coupling. The result
at this point is formal in the sense that even though it
provides a complete formalism, more work is needed to
develop it into concrete numerical values for given physi-
cal systems.

The remainder of the paper is not concerned with ei-
ther the results or the limitations of Sec. III. We return
to the VAA formula of Sec. II and use it as a calculation-
al tool to determine e(ken) for the weakly coupled
(y((1) situation. In contrast to the strong-coupling
problem, this can be done without any additional approx-
imation. We establish a general formula for the partial
response functions and e(kco), valid to first order in the
coupling and for arbitrary k and co values. Specializing
to the two-component situation [electron-ion or ion-ion
(BIM) plasmas], we can compare the result with the prod-
uct of exact perturbation calculation to first order in the
coupling of paper I (for earlier work see the work of
Coste [19]). The comparison, whose details are given in
the Appendices, shows both the structural difference be-
tween the VAA and the exact expressions and the relative
sixnplicity of the former.

Further specializing to the important long-wavelength
(k =0) properties of e(ken) that determine the dc conduc-
tivity and the plasmon frequency shift, we derive a com-
pact formula that upon comparison with the correspond-
ing k =0 exact perturbation expression of paper I exhib-
its a complete identity with the latter. Thus, with some
hindsight, we can argue that in the uniform (k =0) sys-
tem velocity correlations vanish and the VAA is exact, at
least in the weak-coupling limit.

In view of the identity of the two results, we do not
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pursue any further the analysis of e(k=Ocu): this is done
in detail in the Refs. [10] and [20], which address the
technique and results of the perturbation approach.

II. VAA APPROXIMATION

The theory of the partial response functions [14] is a
central tool in the formalism of this paper. Section I in
paper I summarizes it and the related definitions.

The velocity-average approximation is the major as-
sumption in the dynamical mean-field theory of Golden
and Kalman [2]. Under this approximation, the velocity
correlations in the nonequilibrium two-body function are
averaged out and replaced by the product of the one-
particle velocity distributions. Since this approximation
still preserves the dominant dynamic properties of the
pair correlations, it is in several respects superior to the
earlier static mean-field approximations [21,22]. The ap-
proximation satisfies the tu (third frequency moment)
sum-rule requirement [2,9,23] and in the static (co=0)
limit, where the correlations between particles in velocity
space vanish, the VAA is formally exact [2,19,24].

Our derivation starts from the first kinetic equation in
the BBGKY hierarchy, which is given as

a a 1 ~@'~ a—+v — F„(x,v;t)
Bt Bx nl g ax Bv

1 a, ,

t)lac�(

I
x —x'I )

v d x
my c)v Bx

XGc„(x',v';x, v;t), (1)

X f d u'd uG c~( x', v'; x, v;t), (2)

where

f„(xv;t)=F„( xv;t)I(n„( xt)) . (3)

( ) stands for the ensemble average appropriate for the
perturbed systems.

In Eq. (2) the velocity dependence in the two-body
function is averaged over the velocity space and then
compensated by the insertion of the one-body function.
The approximation decouples the two-particle correla-
tions in the velocity space, while it still preserves the
correlation in the coordinate space.

The velocity-averaged two-particle distribution func-
tion is expressible in terms of the two-point density-
density correlation function,

fd u'd uGc„(x', v', x, v;t)= (nc(x')n„(x))(t)
—5„c5(x— x)(n„( tx)) .

Substituting Eq. (4) into Eq. (1), one obtains

where 1(„c(~x —x'~ ) is the effective pair interaction po-
tential between the particles of species A and C, F~ is the
one-particle distribution function, 6&~ is the two-particle
distribution function, and N„ is the perturbing external
field (for notational convention, see paper I).

The VAA is introduced by setting

Gc„(x',v';x, v;t) fc(x', v;t)f„(x,v;t)

a a—+v.
Bt Bx

F„(x,v;t)
my Bx Bv a, ~f~c(~x —x'~)f dx' f„(x,v;t)[(nc(x')n„(x))(t) —5„c5(x—x')(n„( xt))] . (5)

my BU Bx

(co —k v)F„'"(kro;v)+ 4„(ken)k. F„' '(v)
m, A

OF~ "(v)
4~c(&)

dv
—gq.1 1

X (n„(k—q)nc(q) )"'(tu) . (6)

Here, the superscripts stand for the order in the external
perturbation. The two-point density-density function can
be separated into its irreducible (or proper) and singular
parts:

The last term in the equation represents the self-
interaction of particles, and does not contribute to the in-
tegral.

%'e are interested in calculating the linear response of
the system. Thus, linearizing Eq. (5) and taking Fourier
transforms, we obtain

( n A (k q)nc(q) ~i (tu) = ( n ~(k q)nc(q) ~I,.(tu)

+5k qn„(nc(q) ) "(ru)

+5qnc ( n „(k) ) ' "(co),

and the singular-density term absorbed in a density
response function. The irreducible part, on the other
hand, can be formally expressed in terms of a "response
function of the second kind" [16,18] (or "double-density
function" [3,17]) = „cD(p,q;cu):

:"-„cD(p,q;tu)4D(k~) = (n „(p)nc(q) ),",,'(~) .

This latter, in turn, can be related [10] to the quadratic
response function through the quadratic Auctuation-
dissipation theorem [5,25]:
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—AcD(p~q ~)

f—dP 5 (I-)[XDAc(PI 'q»+XDAc(p»'e }1

k=p+q, co=p+v . (9)

The 5 function is interpreted, as usual, through

5 (p) = lim =
—,'5([Lt}— P

—i 1, i 1

o~O 27T p lo 2' p

The OCP equivalent of the theorem was first derived by
Golden and Kalman [2] in a different notation: the
present formulation follows the works of Gu [16], Tao
[17],and Tao and Kalman [3].

Substituting (7) and (8) into (6) and calculating the per-
turbed density, one finds

(n A(k} ~ (~}=nA(k~) XA (k) 5AC+ PAB(k )XBC(k~}+ y g 2 ABC(P q ~)CAB(e) @c«~»
nqV

k=p+q, a~=p+v, (10)

X'A"(kai) = — f d'u1

77k g

aF'„"(u)
k ~

co k'v

Comparing Eq. (10) with the relation for the density

where y'~' is the linear density response function of the
noninteracting gas; it is diagonal in species space:

X[AB](k~) XA ( ~)[5AB+uAB(k~}] (12)

The coupling function u AB(kco) that embodies the corre-
lational eFects is now given by the expression

response function, Eq. (1), of paper I, one can derive,
with some algebra, the relationship

2 qk
uAB( +}

V g PAc( l} dP 5 —(P}[XBEF(PI 'qv} /EA(PP } /Fc(qv)+XBEF(Pv ql }PEA(pv)9Fc(ql }]
nAV k

p=k —q, v=co —p . (13)

The bracket notation X[„B]in the indices in (12) refers to
the lack of manifest symmetry in the species indices A

and B. Such a symmetry is required in view of the FDT
than y~z must satisfy. Even though all the expressions
obtained in concrete calculations performed for y„~ on
the basis of Eqs. (12) and (13) do obey the requisite sym-
metry, we have not been able to demonstrate that the
structure of (13), in general, leads to a symmetric X„B. It
is possible that the VAA may have a symmetry-breaking
property. In order to maintain the symmetry of g~z
even if this is the case, following GGN [9] we replace

g~ zz~ by its symmetric projection:

XAB 2 (X[AB]+X[BA]) (14)

Equation (13) is one of the central results of this paper. It
generalizes the one-component result of Golden and Kal-
man [2] to multicomponent systems and recasts the mul-
ticomponent derivation of GGN [9] in the much more
transparent and versatile language of the partial response
functions. Our Eq. (13) can be shown to be equivalent to
Eq. (41) of GGN, but GGN provide no calculational al-
gorithm for the partial density response function y„~.
Some further differences between Eq. (13) above and Eq.
(41) of GGN are due to the slightly different definition of

X„B(kQ)=X'„'(kQ)5„B+5X„B(kQ),

2 1
5XAB(kQ}=

2 g k'W'Ac(e)XBEF(PQ'qQ)V,
GAEA(pQ)nFC(qQ) .

(lsa)

(15b)

In contrast to its co&0 counterpart, (15) is exact: this fol-
lows from the general theorem that in the static limit the
VAA is exact [2,19,24]. In Appendix B we explicitly
show that (15) is indeed identical to a relationship deriv-
able from the BGY hierarchy.

The other limit of interest is the one where co~~.
The coefticients of co and co in the high-frequency ex-
pansion of XAB(kai), A'„B(k) and A'„B(k),

k
A'„B(k)= 5„B,

P?l g
(16a}

Uzz used by GGN: our definition is consistent with em-

ploying the matrix representation in species space.
Two particular limits of Eqs. (12)—(14) are of special

interest. The first is the co=0 static limit. In this situa-
tion the result derived from (12) and (13) gives
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3k4n,
A'„s(k) — 5„~

Pm„

g ('q k) [ ns0gs(q)gpss(p)
my mg q

fi ABnc PAc(q)gc~ (q) ]

(16b)

are again exact, since the VAA respects the co (third
moment) sum rule [2,26].

The partial response functions y~~ can be converted
into the external response Xzz via Eq. (8) of paper I,
which, in turn, though also artificial constructs, can be
directly applied via the fluctuation-dissipation theorem to
yield the partial dynamical structure functions S„s(ken),
which are of direct physical interest. The centrally im-

portant dielectric-response function can be obtained from
the partial response function through the relationship
displayed in Eq. (10), paper I.

The linear partial density response functions are now
expressed in terms of the quadratic partial response func-
tions. In order to achieve self-consistency, the reduction
of X„~c(pp;qv) to combinations of X(pp) and X(qv) is to
be established. Two approaches to achieve such a decom-
position have been proposed and to some extent tested
for the OCP: the dynamical superposition method of
Golden and Kalman [2,6,9], and the UMFT representa-
tion of X(p)M;qv) of Tao and Kalman [3,4, 17]. We have
recently argued [4] that the latter is superior to the form-
er in many respects, and rests on a more solid physical
foundation. Thus here we follow the multispecies gen-
eralization of the method of Ref. [3]; this will be done in
the next section.

One further observes that Eq. (23) possesses the order-
raising property; i.e., the quadratic response function in a
certain order of the coupling is linked to a linear response
function that is one order higher in the coupling than the
quadratic one. Consequently, if the quadratic response
function is replaced by its RPA value (zeroth order in
coupling), one obtains the linear partial response function
to first order in coupling. This method works well in the
weak-coupling limit and will be pursued in Sec. IV.

III. SELF-CONSISTENCY CONDITION
FOR STRONG COUPLING

In order to derive the self-consistency condition for
u(kco), we first generalize the customary mean-field ex-
pression

x"'
I+qGX"' '

formulated in terms of the dynamical mean field G(kcu).
The quantity K =gG is more appropriate for the purpose
of generalization to the multispecies situation. We can
define IC„&(ken) now through

~
=—&chanc (17)

where 6N ~ is the "local-field correction" to 4 z induced
by correlations. We can then write

X=X' '0

and obtain for 8
8= 1+Ky'",

or for K

(18)

(19)

which demonstrates that K, if properly constructed, also
has to be symmetric.

There is an obvious relationship between the screening
function 0 and the coupling function v introduced ear-
lier:

i+v=e (20a)

or

K&[0]=—.O (20b)

In view of (18), e can be expressed as

e=h, O (21)

with

b, = 1 —PX' '+ KX' = 1 —g( 1 —G )X' (22)

The principal approximation now consists of assuming
the existence of a universal mean field (UMF) [27], acting
on the quadratic response function as well and leading to
the introduction of the ansatz for the quadratic response
function

The analogous OCP relationship was used by Tao and
Kalman [3]. Nevertheless, it should be realized that, in
contrast to Eq. (18), where a properly chosen K(kco) can
reproduce any X(kco), Eq. (23) represents an approxima-
tion for X„sc(pp;qv), irrespective of the structure of K.

We can now inject the ansatz (23) into (13) and (20b),
which then immediately results in the desired self-
consistency condition:

X„sc(PP;qv) =Spy (kco)Xp (PP;qv)O&z'(PP)Opc(q~»

k=p+q, co=p, +v . (23)

&~c«~)Xc'(k~)= g, JdV ~ (V)[Xc'(Pv e )~c~(Pv)~ca(e )+Xc'(PV;qv)~c~(PC )~ca(qv)]%~a(q»
PnA V,

k=p+q, co=p+v . (24)
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Equation (24) in conjunction with (22) determines K.
However, the results made earlier concerning the symme-

try problem with respect to the species indices of y~~
still hold; thus we determine X„~ by (14) with

X(AB}(k~) XA OAB(k~) (25)

F(0)(v)
Xc'(qv; W) =

2 J d'v
2m& (co —k v)

Equation (24) represents a rather formidable set of in-

tegral equations. In order to appreciate, however, the
relative simplicity one has acquired by the use of the par-
tial response formalism and the application of the novel
decomPosition technique for X„~c(P)M;qv), one should
compare it with the combined relationships (43),
(49a) —(49c), and (50a)—(50c) in GGN [9],which represent
the corresponding formulas arrived at in the dynamical
superposition approximation. Moreover, it should be
noted that X'c'(q)Lc;pv) in (24), the noninteracting gas
value of the quadratic response function, is a well-known
and simple function [5]:

out in Sec. II, the co=0 and co~~ limit results. These
facts and our experience with the VAA as applied to the
OCP in the weak-coupling case reinforce our belief that
the results Eqs. (28) and (32) below represent a good ap-
proximation and can be usefully applied to replace the
cumbersome rigorous perturbation-theoretical derivation.

Now, starting with Eq. (12), the first-order correction
to the partial density response function is given as

X"'(kco) =X' '(kco)v"'(kco) (27)

x [XB (Pv~W) qBA (Pv)ABC(q)

+Xa'(P) qv)ma~(PV)

X 9&c(qv) ]pc& (q), (28)

where the superscript designates the order in the cou-
pling. The coupling function, to the first order in the
coupling, as inferred from Eq. (13), is given as

v„"~(kco)=— g f dp 5 ()M)n„V k

k.pq v k qp. v

v —q.v JM
—p v

(26)

eq~(kco)=5q~ —pq~(k)X~'(kco) . (29)

where g and e are understood to be the respective RPA
values of the dielectric matrix and its inverse,

With some additional assumptions, consisting of ignoring
plasmon pole contributions and exploiting the analytic
properties of (26), the frequency integral in (24) becomes
doable, thereby reducing the dimensionality and consid-
erably simplifying the structure of the integral equation
[3,4]. We do not pursue this line of thought here, since it
belongs more properly to the general problem of solving
the integral equation (24), which is not the concern of the
present paper. As to the good features of the VAA, as
exhibited in the intermediate state Eq. (13), the satisfac-
tion of the co high-frequency sum rule is preserved by
Eq. (24). The exactness of the formalism in the static lim-
it is, however, violated, although (24) still represents a
reasonable approximation [3] in the co =0 limit.

IV. WEAK-COUPLING LIMIT

In this section we employ the general formula to derive
the first-order perturbational correction to the partial
response function for weak coupling. The resulting ex-
pression is valid for arbitrary k and co values, but it is still
approximate, insofar as it is based on the VAA. The im-
portant k =0 limit is, however, as discussed below, in
complete agreement with the corresponding rigorous
perturbation-theoretical calculation. So are, as pointed

(q) =q q~(q) =ZqZ~cp(q),

and, in addition to (30), we have

X)~ '(kco)
qAB(k~) ~AB+q AB 6 kco

and

(30)

(31)

qBcl CA (32)

Then, using (29) with some straightforward algebra, one
obtains

y'~~c, the quadratic density response function of the
noninteracting system similarly to its linear counterpart,
is diagonal in species space and is given above in Eq. (26).
Equation (26) substituted into Eq. (28) now provides an
explicit expression for the partial density response func-
tions with an arbitrary pseudopotential to the first order
in the coupling. It should be noted that no approxima-
tion in addition to the VAA is needed to do this calcula-
tion: the considerations of Sec. III do not apply here.

In the case of a pure Coulomb potential as the interac-
tion potential g„~(q) becomes factorizable,

VAB(k&)
2 ~ y d

q.k~ ( ) ~
X P WX 'P)M'q

e(qv)

X~"(pv e )X'~"(pv) Xa'(p) qv)X'~"(p) )
+qa~(q)q~~(p) +

e(pv)E(q)M ) e(p)M )e'(qv)

v=co —p, p=k —
q . (33)
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This formula combined with Eq. (28) reduces the compu-
tation of the partial response function and thus of the
dielectric function for arbitrary wave-vector and frequen-
cy values to relatively simple quadratures.

Equation (33) can be compared with the corresponding
exact first-order perturbation result calculated in paper I.
This comparison is done in Appendix A. Also relegated
to Appendix A is the comparison of the evaluation of (33)
and of the exact expression in the so-called "static screen-
ing approximation" [by letting e(pp) ~e(pO),
e(pc@—p, )~e(pO) in the denominators of integrand]. It
is especially in this approximation that the relative sim-
plicity of the VAA expression emerges.

We now concentrate on the especially important long-
wavelength (k =0) limit of the dielectric-response func-
tion, which provides information on the dc conductivity
and on the plasmon frequency shift. To obtain this,
y„~(ken) has to be calculated to order 0 (k ). To this or-
der, y„'(ken) and pe�(pp, ;qv) have the simple limits

and

k n~
lim y'„'(ken) =
k~0 67 Ply

(34)

kq»m X'"(W qv)=,[X"'(qv) —X"'(pp)] .
k 0 pyz~~

(35)

Hence, using (34) and (35) in (28) and (29), the first-order
correction to the partial density response function in this
limit is given by

y'„'~(k Oco) = g(q k) f dp5 (p)
CO m„m~PV q

X ( /BA )BC /BA )BC )

X(Xa' —Xa )4c~(e»

where y' '=y' '(qp, ), g=g(qp), f' '=y' I(qco —p), and
~=a(q~ —v).

The above expression is given with a general pseudopo-
tential. The symmetry of g~~ now can be demonstrated,
and thus no symmetrization is required. One can also see
by inspection that this expression exactly coincides with
the rigorous perturbation calculational result, which has
been derived in paper I. Indeed, it is quite remarkable
that after making the VAA approximation, the result at
k =0 in the first order of coupling is still exact. It can
also be shown that in the case of a pure Coulomb poten-
tial the dielectric function derived from Eq. (46) is
equivalent to the result given in GGN [9], Eqs.
(53a) —(53c).

Since, as we have pointed out, the results of this section
in the k =0 limit coincide with the exact perturbation
formula derived in paper I (see also Ref. [10]),the reader
is referred to that paper and to the references therein for
the discussion of the physical implications of the results
obtained, and for results of the concrete computations
concerning electron-ion plasmas and the binary ionic
mixture. Finally, we note that in the OCP limit the ex-

pression (46) becomes identically zero, as it should, for
there is no deviation from the RPA behavior at k =0 for
a one-component system.

V. CONCLUSIONS

In this paper we have calculated the dielectric-response
function and the partial density response functions
(which are related to the dynamical structure functions
through fiuctuation dissipation relations) for a multicom-
ponent plasma in the velocity average approximation.
The electron-ion plasma and the binary ionic mixture are
the physical systems that are prime candidates for the ap-
plication of these results. Our model incorporates a gen-
eralized pseudopotential as the interaction between the
particles: the role of a non-Coulombic pseudopotential is
crucial for the electron-ion plasma and is of importance
for various ionic plasmas. Our derivation is based on the
velocity average approximation. As a result of the con-
sistent application of the partial response function for-
malism in its matrix form, a compact expression is ob-
tained that determines the linear response functions in
terms of the quadratic response [Eqs. (12), (13), and (14)].
This result is, then, used in two different ways: for arbi-
trary or strong coupling (I ~ 1) we establish a dynamical
mean-field theory formula that provides a self-consistency
criterion for the calculation of the partial response func-
tions and the dielectric-response function [Eqs. (19), (24),
and (25)]. For weak coupling (y «1), we calculate the
partial response functions and the dielectric-response
function to O(y) and compare them with the rigorous
perturbation calculational results. For finite k, we show
how a convenient static screening approximation can be
set up (cf. Appendix A).

The DMFT based on the velocity average approxima-
tion combined with the application of the quadratic
fluctuation-dissipation theorem has proven to be a power-
ful approach to the calculation of the dynamical proper-
ties of Coulomb systems [6,7]. The versatility of the
method as applied to binary systems is well demonstrated
by the present paper. The mean-field expression Eq. (24),
valid for arbitrary coupling, has a number of remarkable
properties. First, it has the correct weak-coupling limit,
as demonstrated by the structural equivalence of (24) and
(28). (Note that for y «1, b —=g. ) This is not a trivial
matter, since in the derivation of Eq. (24) an additional
approximation, the UMF assumption, has been used.
The low-I expression, Eq. (28), in turn, is very satisfacto-
ry, in view of its exactness both in the co=0 and k =0
limits. Second, the high-I expression itself, although not
exact any more in the static co =0 limit (because the UMF
approximation breaks the original exactness property of
the VAA) still yields a very good static expression, as in-
dicated in Refs. [3] and [4]. Third, the high-frequency
co sum rule is always satisfied.

Further commenting on the strong-coupling static be-
havior, we note that it is well known that the
hypernetted-chain (HNC) approximation provides ex-
tremely good results, as verified by comparison with
Monte Carlo simulation data [11]. The present approxi-
mation, even though it yields a satisfactory static limit (in
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the one-component case one recovers the results of Tot-
suji and Ichimaru [28]), is still inferior to the HNC
method. However, the principal merit of the DMFT ap-
proach is its ability to correctly handle dynamical pro-
cesses.

No concrete computations are performed in this paper,
but our experience with the one-component system [7]
shows that such calculation, even though not simple, is
feasible. Our goal has been to establish a tractable for-
malism for future work and to show that, the substantial
intrinsic complexity of the multispecies formalism not-
withstanding, the calculations can be kept within
manageable bounds. We expect that the formalism we
have derived will be usefully applied to the calculation of
the dynamical response and collective-mode behavior of
correlated electron-ion and ion-ion systems.
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APPENDIX A

In this appendix we display both the VAA result in the
weak-coupling limit [Eq. (33)] and the result obtained
from the exact perturbation calculation, borrowed from
paper I (to facilitate comparison, we consider bare
Coulomb interaction only, but generalization to the case
of a general pseudopotential is feasible):

X[ AB](k~ )
2XA (k~) q'k 2 2 XB (pv Qp)XA '(pv) XB '(pe qv)XA (Qp)'

dP~ (P) ZA—ZBm(e)t(P) +

and

XAB( ~) p(X[AB](k~)+X[BA](k~))

e(qp) e(qv)
(VAA), (Al)

(A2)

X[A'B'(k~)= — y fd» (I ) Z', ZD
' X'"(pe;qv)X'B'(W qv)

4 2 z V(e)m(p) [0]
PV "

e(qv)e(p]u)

DAB f3 nAZ„g2 TA(kco;p ) vT (Akco;pp, ) T (Acket;p 0)

k qy(q) + 2
24 m A g~~ e'(qp ) e(qv) e(qO)

(exact), (A3)

with

TB(k~;qv) =—
k pq FB '(v)(00)

nB(PmB) (co—k v) (v —q v)

(A4)

We note that there is some structural similarity between
the two expressions. Both consist of a "collective" and a
"scattering" contribution (cf. the discussion in paper I):
the former is characterized by a proportionality with e
and by a double e denominator; the latter is proportional
to 6„~e and has a single e denominator. The differences
manifest themselves as a decomposition of X'A[(p]M;qv)
into linear g'~' in the first term of the VAA expression,
and as the approximation of BT/Bco by an algebraic ex-
pression in the second term. We also observe the evident

I

2X'„'(ken) qkXI'A'B](ken)= —
2 g f dp 5 (p)k'n

A pV ~(q)~ p)

symmetry in (A3), lacking in the VAA expression. Thus,
it is quite remarkable to witness that they become identi-
cal in the k~O, co=0, and co~ ~ limits.

A popular approximation scheme [29,30] for the evalu-
ation of integrals of the type (Al) and (A3) is the "static-
screening approximation" (SSA), which consists of ignor-
ing contributions from the poles of denominator and re-
placing e(pp) and e(pv) by the static e(pO)—:e(p). The
approximation, however, is not unambiguous: there is no
unique prescription as to at what particular stage the ap-
proximation is to be implemented. Considerable care has
to be exercised to ensure that obvious physical require-
ments are not violated by the approximation [10]. In par-
ticular, E'"(k=O, co) has to vanish in the OCP or sym-
metric (Z&/m& =Z2/m2) limit. One can convince one-
self that this is accomplished if the SSA is formulated as
follows:

X [ ~BA ZA q (q) [XB '(pv;qp)~(pv)+XB '(pp;qv)~(p]M ) ]

+ZAZBV(e)V(p)[XB'(pv q] )X'A"(pv)+X'B'(p] qv)X'A"(pV))] (VAA). (A5)
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For the VAA expression, the SSA is performed after combining terms in (Al) over two common denominators
e(qp)e(pv) and e(qv)e(pp). For the exact perturbation expression it is difficult to find a SSA exhibiting the right limit-
ing behavior. However, by subtracting the k =0 term that leads to a nonvanishing contribution to e"'(k=Oco) in the
OCP or symmetric limits, the consistency can be restored [31]:

X'A'B(k~)= — ZAZB g Jd/ 6-(/ )X'A"(qv p/ )Xa"(qv I/ )

Z2 .k'
+6„B 4 2 g lp(q) 2 fdp5 (p)[y'B'(q/2)e(qv)+y'B'(qv)e(qp) —ya'(qp)e(qp)] (exact) . (A6)

e3 m„PV q e (q)

The analytic evaluation of (A5) [but not (A6)] seems to be
possible, but is not within the scope of the present paper.
We note, however, one interesting aspect concerning the
structure of the VAA yAB(kcu). It is known [18] that the
VAA, when applied to the OCP, exhibits one important
defect: Ime(kco) to O(k ) fails to reproduce the well-
known "dominant" ylny coeScient. On the other hand,
we can observe that the VAA does generate for Ime(kco)
of the two-component system a piny dominant term, at
least for k =0. It is interesting now to speculate about
the behavior of Ime(ken) for finite k: does the dominant
term survive to O(k ) (as one would expect from the
analyticity of the k behavior of e(ken), or do, for finite k,

l

the OCP and the two-component systems share the prob-
lematic missing of the dominant terms

AppENDIx B

In this appendix we show that the static Bogoliubov-
Green-Yvon (BGY) hierarchy leads to the same relation-
ship for yAB(kO) as the VAA. Since, as we have em-

phasized, in the static limit the VAA is exact, this is ex-
pected. However, the explicit demonstration is probably
still useful.

We focus on the second BGY equation, which links the
static two-particle distribution G„a(x„v,;x2, v2) to the
static three-particle distribution H„ac(x, , v, ;x2 v2 x3 v3):

c} a
1 g 2 Pl Bx BvPly Xj Vi

a a
PAB(xl X2) GAB(X1)Vl)X2)V2)

m~ X2 BV2

a a l a a
d x3 d U3 1/ Ac(x, —x3) + 4c(x2 3) Aac(x»»x»V2)x3) 3)

pl g (3x) Bv 1 Ala BX2 BV2

Exploiting now that in equilibrium the distribution func-
tions factorize into space-dependent and Max wellian
velocity-dependent parts

/3 k.pk (v, —v2) G„a(k)+—g 2 1/jAB(p)GAB(k —p)k'

/3 kp= —k vl —g 2 SAC(p)HABC(k p, —k)—
G„a(xl,vl., x2v2) =G(xl)x2)F(ul )F(u2),

HABC ( Xl, V 1)X2V2) X3, V3 ) = HABC ( Xl X3) X2 X3)

XF(u, )F(u2)F(u, ),

etc. , and introducing the Fourier transforms

1
G„a(x,, x2) =—g eik. (x, —x2)G„B(k),

V

1 ip-(x& —x3) iq. (x2 —x3)—
HABc(xl X2 X3) y. X e HABc p

pq

one obtains the equation

(B2)

(B3)

P kp+k v2
& g 2 /ac(p)HBAC(k p, —k) . (B—4)V,

Since G~z is necessarily symmetric in the species in-

dices, (84) can be combined with its A~B counterpart.
Furthermore, it is useful to introduce the cumulant ex-
pansion

&~&a
GAB(k)=

V
6k+ ~gAB(k)

(B5)
awe 1

HAa(p q)= 6 5 +—[g„c(p)5 +gac(q)5,p q V

+gAB(P»k]

1+ "Aac(» q)
V2

The resulting expression is
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P kp Pnc
g AB(k)+W'AB(k)+ g 2 JAB(p)gAB(k p—)+ [/AC(k)g Ac(k)+/BC(k)gBC(k)]V, 2

~"c 1 kp
2 V 2 [t)'jAC(p)hABC(k P k—)+ABC(P)hBAC(k P k)] . (B6)

Equation (B6) is the final product of the BOY derivation,
expressing two-particle correlations in terms of three-
particle correlations. To cast the result in the language
of response functions, we introduce the (conventional)
two- and three-point structure functions

In addition, S~~ and S~~z satisfy the linear and the
quadratic static fluctuation dissipation theorems

PSAB(k) = yAB(kO),

S„B(k)=—(n„(k)nB( —k) ),1

V

=1
ScAB(p q)= —(n A(p)n B( q)nc ( p q) ~ .

(B7) CAB(P 'q) SCAB(Po qo)

(B9)

AB(k) ~AB A +nA BgAB(k)

SCAB(p, q)= 5ABCnA +5ABnBncgBC(k)
(B8)

~BC C AgCA(P +~CA A BgAB q)

+rt A rtBnch ABc(p q) .

Here n„(k), etc. are the Fourier components of the static
density fluctuations (i.e., their deviations from their aver-
age n„, etc. values).

S„B and S„BC can be decomposed (note that the nor-
malizations used here are different from those used in
Ref. [25]) as

The combination of (B7), (B8), and (B9) now leads to

—X'„B(kO) +—,
' [acA' (kO)ycB (kO) +y „c(kO) e'cB (kO) ]

1 1cp=
& X 2 [&Ac(P)&BCA(PO'qO)
Vp k'

+WBc(p)X AcB ( pO' qO) ]

which is equivalent to the combined Eqs. (14) and (15) in
the main text.
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