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Response functions for multicomponent plasmas. I. Perturbation calculation for weak coupling
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We calculate the rigorous perturbation-theoretic result to first order in the plasma parameter y
( =a /4~n, ~ being the Debye wave number and n the density) for the partial density response functions
and for the dielectric functions of a multicomponent plasma. The model used allows for the
modification of the bare Coulomb potential due to short-range quantum effects into a general set of pseu-
dopotentials. The derivation is based on applying the Vlasov-Dupree operator formalism in the first two
equations of Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy. The result is given in terms of a com-
pact expression which is valid for arbitrary k and co values.

PACS number(s): 52.25.Dg, 51.10.+y, 52.25.Mq, 05.20.Dd

I. INTRODUCTION

The purpose of this and the following paper II is to an-
alyze the dielectric and related response functions of a
correlated classical multicomponent plasma. [The
strength of the correlations can be characterized by the
coupling parameter which for one-component plasma is
I =PZ e la or y=tc I4trn, where P=(kttT) ', a is the
interparticle distance, (4m. /3)a n =1, a. is the Debye
wave number and tc=(4trZ e n/3)'; the former is ap-
propriate for strong, the latter for weak coupling; for a
multicomponent plasma there is no unique definition, but
a similar definition can be adopted with appropriate aver-
age Z, n values. ] The present paper concerns itself with
the weak-coupling (y (1) situation, where the perturba-
tion approach is legitimate. This problem has a long-
standing history, going back to the 1960's. It was Perel
and Eliashberg [1] who first went beyond the Vlasov
random-phase approximation (RPA) O(y ) calculation of
the wave-number- and frequency-dependent dielectric
function e(kco) for an electron-ion plasma and pointed
out that for long wavelengths the O(y) contribution
dominates, even for y &&1. Subsequently, following the
work of Dawson and Oberman [2], Oberman, Ron, and
Dawson [3] applied a systematic expansion procedure to
the first two equations of the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy and calculated the
high-frequency conductivity in the k —+0 limit. Based on
Guernsey's [4] y expansion of the BBGKY hierarchy,
Coste [5] presented the most accurate solution of the
problem, valid, albeit only formally, over the entire range
of co and k values. Kivelson and DuBois [6] and Tzoar
and collaborators [7] approached the problem with the
aid of the quantum many-body Green's-function formal-
ism. More recent approaches based on the Green's-
function method are due to Kraeft et al. [g] who mostly
calculate self-energy corrections to one- and two-particle
Green functions. The application of the equilibrium no-
dal expansion to equilibrium two-component plasmas is
discussed by Deutsch, Furutani, and Gombert [9].

The renewed interest in the problem of the calculation
of the correlational dielectric function stems from a num-

ber of sources. Foremost among them is the progress
made in the understanding of the properties of strongly
coupled (y) 1) Coulomb systems [10]. Such an under-
standing is not complete as long as it does not provide a
link to the weakly coupled domain and a comprehensive
description of the effect of the increasing correlations.
From a formal point of view the rigorous perturbation
calculational results contribute a paradigm against which
the limits of the various strongly coupled approximations
can be tested.

As to the physical systems studied, early works focused
exclusively on the electron-ion plasma; since then, the im-
portance of the binary ionic mixture (BIM)—two ion
species in a neutralizing background —and its distinct
characteristics have been identified. There is also increas-
ing interest in three-component electron-ion plasmas and
in the semiclassical description of three-component
electron-hole systems. Another aspect of the weak-
coupling calculation is the analysis of the correlation
effects on collective modes. While the early works con-
centrated on the high-frequency conductivity and on the
collisional damping of the plasmon mode, more recent in-
terest focuses on the correlational shift of the plasmon
frequency [ll] and on the ion-acoustic [12] and other
possible low-frequency modes.

In this paper we develop a systematic perturbation ex-
pansion and a comprehensive expression for the partial
density response and for the dielectric-response function
of a multicomponent plasma [13]. The perturbation ex-
pansion is carried out in y, the plasma parameter of cou-
pling, in the first and the second equations of the
BBGKY hierarchy. This expansion technique implies
that the formal expansion parameter is the "uncompen-
sated" e; i.e. "compensated" terms of O((e n) ) (n is
the density) are retained to arbitrary order but others
only to O(e ).

There are three distinctive elements in our approach.
The first is the adoption of a set of generalized pseudopo-
tentials [14—20], rather than the bare Coulomb potential,
to represent the interaction between the particles. Pseu-
dopotentials, in general, are introduced either to phenom-
enologically describe short-range quantum-mechanical
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effects within the classical formalism [14—16], or because
the interacting "particles" have a structure that causes
the short-range potential to deviate from its Coulomb
form [16—20]. Thus, this method allows one to treat a
great variety of physical systems with the correctly
adapted pseudopotentials [21]. For example, for an ion-
ized alkali-atom plasma, the interactions between the
electrons and the ions, or between the ions are affected by
the inner-shell electrons, and are different from the bare
Coulomb interaction. The same situation prevails in
liquid metals, where pseudopotentials are routinely used
[22]. Similarly, in electrolyte plasmas and in molten salts
[23], where the charged particles are large composite
ions, pseudopotentials have been used successfully. The
interaction between the electrons at short range is
modified by diffraction, exchange, and spin-spin-
interaction effects, while the interaction between the elec-
trons and ions is modified by exchange repulsion,
diffraction, and formation of bound and virtual bound
states. The ion-ion interaction is affected by exchange-
enhanced ion-ion repulsion and the modification of the
Coulomb interaction due to ion penetration and screen-
ing. Properly chosen pseudopotentials can reasonably
well characterize such features within the framework of a
purely classical description. There is a large body of
literature on the choice and construction of pseudopoten-
tials. Simple analytic models with adjustable parameters
were suggested by Hellmann [14],Dunn and Broyles [15],
and Deutsch and Gombert [16]. More elaborate pseudo-
potentials for electron-ion interaction based on the Slater
sum over one-particle wave functions were constructed
by Barker [17], Storrer [18], Rogers [19], and Kraeft
et al. [20]. However, the precise form of the pseudopo-
tentials is not of concern to us in the present paper.
Rather, it is important to point out one of their common
features. It follows from the nature of the physical effects
that give rise to the pseudopotential that the pseudopo-
tentials between particle pairs belonging to different
species are quite different from each other. For example,
in a hydrogenic plasma, the characteristic distance within
which the electron-electron pseudopotential deviates
from the Coulomb potential is given by the de Broglie
wavelength; for the electron-ion pseudopotential the
characteristic distance is determined by both the de Bro-
glie wavelength and by the Bohr radius, while the ion-ion
pseudopotential is practically identical to the Coulomb
potential. In general, in a multispecies plasma, g„„and
Pzz, the pseudopotentials within species A and B, respec-
tively, do not determine the l(„z, the pseudopotential be-

tween particles 3 and B. This is, of course, in contrast
to the case of the Coulomb potential (or of any other
potential derivable from a Hamiltonian) where

g„~ =Qg„„g~z, i.e., where the potential is factorizable,
while the pseudopotential, in general, is not. The more
precise mathematical statement corresponding to this
fact is that detg&0. This formal difference between pseu-
dopotentials and the Coulomb potential has to be careful-
ly observed in the development of the multispecies for-
malism. While the justification of the use of pseudopo-
tentials for the analysis of static properties is relatively
straightforward, it is more difficult to be satisfied with

their role in the description of dynamical processes. Nev-
ertheless, there is a fair amount of evidence, both from
computer simulations [21] and from the experimental
study of liquid metals [22] and of molten salts [23], that
the approach provides a reasonable description of both
static and dynamical properties, provided either the
quantum-mechanical expansion parameter r, =ala~ (a~
is the Bohr radius) for the electrons satisfies the r, « ~

condition, or the electronic Fermi energy c.F is small
compared to the thermal energy, cF&&z &&1. If this is not
the case, exchange and related effects become sufficiently
dominant to invalidate the naive pseudopotential ap-
proach.

The second calculational feature is the use of the
Vlasov-Dupree (VD) operator technique [24,25]. The VD
operator is the time-evolution operator associated with
the Vlasov equation. However, its applicability is much
more general than that suggested by its origin. This is
due to the structural feature of the BBGKY equations,
which exhibit the simple two-, three-, etc. particle gen-
eralizations of the Vlasov operator. Thus, it is natural to
represent the solutions (in particular the solution of the
second BBGKY equation) in terms of the VD operator.
This allows a great calculational simplification.

The third line of development in the present paper con-
sists of the adoption of the partial response function for-
malism as developed by Kalman and Golden [26]. The
concept of the partial response function was originally
suggested by Vashishta, Bhattacharya, and Singwi [27] in
order to make it possible to construct response functions
in equal number to the structure functions in a multicom-
ponent system. The formal development of the idea is,
however, due to Kalman and Golden [26], who intro-
duced matrix algebra in species space. As a result, the
analysis of the multispecies problem can be brought into
a one-to-one correspondence with that of a simple one-
component plasma (OCP), and we can display the calcu-
lational results in a transparent and relatively compact
form. This is not a negligible advantage in view of the in-

herent complexity of the perturbation calculation and the
traditional proliferation of algebraic errors in such calcu-
lations. We also find results for the density response
functions g „~(ken) that are directly related via the
fluctuation-dissipation theorem to the dynamical struc-
ture function S„8(kco) of species A and B. An additional
benefit of the formalism is that, even though our main in-

terest lies in binary systems, the results also hold for sys-
tems of an arbitrary number of components.

Our results are given for arbitrary k and ~ values. For
a bare Coulomb potential in the long-wavelength k=O
limit they are identical, although given in a much more
concise form, with the earlier results of Oberman, Ron,
and Dawson [3]; in the static co=0 limit, they agree with
those of Kalman [28]. The question of the uniformity of
the y expansion should be mentioned. There is a good in-

dication that in the co~0 and the k~O domain the ex-

pansion breaks down. However, this does not seem to
affect the correctly obtained limiting cases described
above, and not even the calculation of the dc conductivi-
ty [13]. The problem deserves more detailed analysis, but
such a study is not the subject of the present paper.
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The results of this paper are formal: no explicit calcu-
lations are performed and no numerical results are
presented. The computation of the dielectric function
based on the formal expressions given in this paper and of
the related damping and dispersion will be the subject of
a separate publication [29] (see also [13]). The implemen-
tation of the numerical program is feasible on the basis of
the formulas derived in the present work without any fur-
ther approximation, although the actual computations
are restricted to the small-k domain.

Sections II and III of this paper are devoted to the ex-
position of the calculational techniques. In Sec. IV, we
study the second equation of the BBGKY in the presence
of an external perturbation and obtain the perturbed
pair-correlation function. In Sec. V, the density response
functions and the dielectric-response function are calcu-
lated, and the static and long-wavelength limits are also
evaluated and contact is made with earlier results.

II. GENERAL FORMALISM

The theory of the partial response functions [26] is a
central tool in the formalism of this paper. This section
summarizes it and the related definitions.

The density response of species A is related to the
external or to the total fields (the words "field" or "poten-
tial" are used as a shorthand expression for the potential
energy of the particle in the given potential or field)
through the partial density response functions as

A A
n A +AB@B+XABC+B+C+

+AB +B++ABC +B+C +
where the subscripts denote the different species,
yAB, gAB are the external and the total partial linear den-

sity response functions, respectively, and yABc, yABc are
their quadratic counterparts; 4B represents the external
"partial potentials, " an artificial construct conceived to
act on the specified species only; 4B stands for the total
partial potential which includes the induced average plas-
rna potential. The notation is highly symbolic: depend-
ing on the representation used, integration over space-
tirne variables or integration and summation over fre-
quencies and wave vectors are implied. Unless specified
otherwise, summation over the repeated species indices is
understood here and throughout this paper, if the index
does not appear again on the other side of the equation.

The total field 4B is

with

Then,

g=e '=I+fy .

The connection between gAB and gABc on the one hand
and yAB and yABc on the other is provided by

i~a«~) =r~c«~)nca«»
XABc(PP qv) )DA( ~)XDEF(PP q )EB(PP)QFc(qv»

k=p+q, co=p+v . (9)

Finally, the conventional dielectric function, a scalar in
species space, is given by

e(ken) = lie(ken) ll

=1—«[e(k)x(k~) ]+lie(k) II ll&«~) II (10)

the second part of the equation being valid for binary sys-
tems only; ll l

stands for the determinant and tr for the
trace. In the case of a (factorizable) Coulomb potential
P „~(k) =Z„Z~qr(k), p(k) =4nelk, an. d (10) reduces to
the traditional expression for e(ken):

e(kco) =1—y(k) g Z„y„(kco) .

It is the e(ken) =0 dispersion relation that determines the
longitudinal collective modes of the system.

When a perturbation expansion in the coupling y is
contemplated, both n and 4 (but not 4) and

AB g ABc g AB g ABc can be expressed as sums over
terms of order y": y„~=+„"Oy'„"~, etc. The lowest-
order term is the RPA (Vlasov) contribution: to this or-
der both y„~ and y„~c (but not y „s and y„zc ) are diag-
onal:

+ABC(PP qv) =fiABfiACXA (Pv qv) .

To next order

n(1) — (1)@(0)+ (0)@(1)— T (1)@(0) ~~(1)@
7

(12)

(13)

e= 1 —
PX

which is the dielectric matrix in species space. One can
also introduce the inverse dielectric matrix g

(6)

(P —@ + (Pllld (2) which then implies

where the induced field due to the density fluctuation is
related to the density of species C by

lnd@B WBcnc (3)

is the general pseudopotential describing the
effective interaction between species B and C, whose
properties have been described in the Introduction. Sub-
stituting (2) and (3) into (1), and changing to matrix rep-
resentation in species space, we have

e@=@, (4)

~(1)—~T~( & )~ (14)

Here and in the sequel g and e stand for their Vlasov
values: g=g' ', e—=e' '.

III. THE VLASOV-DUPREE-OPERATOR TECHNIQUE

The Vlasov-Dupree-operator technique was originally
introduced for the OCP [24,25], but its generalization to
the multicomponent situation is straightforward. The
Vlasov-Dupree operator is defined through the Vlasov
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equation as its time-evolution operator: its importance
lies in the fact that its two-particle, etc. generalizations
reappear in the second- and higher-order equations of the
BBGKY hierarchy.

The linearized Vlasov equation for a multicomponent
plasma is

Equation (15) is solved formally to yield

aF,'-'~'i
F„" '(v;kcu)=iW„~(kco;vv') N~(kcv)k.

mg Bv

(17)

—t [cuf„s —V„z(k;vv')]F~ '(v';k cv)

BF„'(v}„=i k 4„(kcv), (15)
mg Bv

where here and in the sequel the F~ "' are the one-
particle distributions function in the mth order in the
external field and in the nth order in the coupling. 2}2„& is
the general pseudopotential; 4„ is the external partial
field acting on the species A only. The velocity argu-
ments v and v' are treated as matrix indices and summa-
tion (integration) is implied over dummy velocity argu-
ments. The Vlasov operator is defined through Eq. (15);
for any "well-behaved" f (v),

F(' )(v;kcv)=— k 'F' '(.)
m co —k v BU

X 21 „~(kcv)42t(kcv), (19)

where 2) is constructed with the aid of the Vlasov (RPA)
density response

where W'now is the Vlasov-Dupree operator, the Fourier
transform of the time-evolution operator (resolvent
operator) associated with V:

W(kcv; vv') =i [cu —V(k; vv') ]

The solution of Eq. (15) is well known:

V„~(k;vv')f~(v')= f d u' k v'5(v —v')5„~

Qqg(k)k F„'~'(v)
av

y' '(kcu)= — f d u
1

m,

k. c}F„(u)
Bv

co k'v

Xf~(v') .

Comparison of (17) and (19) immediately yields the W
operator:

W„~(kcu;vv')F~(v') = ~c(k)f 5(v —v')5„2t—,. k F„' '(v)2)sc(kcu) F~(v')d'v' . (20)
co v lo m co 'v +lo v

The correct treatment of the singular denominators is by adding a small, positive imaginary part (+io) as indicated,
which then ensures that W„~(cv} possesses proper causal behavior. This interpretation of the frequency denominators
will be implicitly understood throughout the paper, without the I'o term being explicitly displayed.

IV. THE PERTURBED PAIR-CORRELATION FUNCTION

The second equation of BBGKY hierarchy to the first order in coupling is [30]

a a—+v
at ' ax,

a a4„(x„t) +v2.
mz Bx&

a - a
@s(X2,t)

m Bx BV2

a / I I, 3 I 3 I
wc(x& x&)' Fc(xl, v, ;t)d x,d u,

my Bx) Bv&

a a, , 3, 3BD(x2 x2)
~

FD(x2, V2,'t)d x 2d u2 GgB( ), vxl, x2, V2,'t)
mg BX2 v2

a / ~ 1 I 3 I 31(„c(x,—x, ). F„(x,, v»t)Gsc(X2, v2;x, ,v, ;t)d x,d v,
m~ Bx, Bv&

1
~ t I 3 t 3 t

p&D(X2 x2}. Fa(X2, v2, t)GDw(X2, v2, xt, v, ;t)d x2d v2
m~ Bx2 BV2

a a i a a
g„v(x, —x2) + Q„s(x,—x2). F„(x»v»t)F~(X2, v2;t) . ( }

m~ Bx& Bv, mz Bx2 BV2
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The two-body distribution function F„B(x„v„x2,v2,
.t)

has been expressed as
F„(x,v; t) = F„' '(u)+F„" '(x, v; t)+F„'"'(x,v; t),
GAB(x»v»x2) v2, ~)= F„' '(u, )FB '(u2)g„'B"(x, —x2)

(24)

FAB(x, ) v, ) x2) v2) t ) =FA (x1)v, ) t)FB(x2)v2) t)

+G„B(x„v1)X2, v2, r), (22)

where GAB(x„v„.x2, V2, t) is the nonequilibrium two-body
correlation function, and one has the normalization con-
ditions

+G„B(x, )v»x2)v2i~) )
(&1) (25)

where we have set F' "=0, for correlations do not affect
the equilibrium distribution. Substituting (24) and (25)
into Eq. (21), and keeping the first-order terms both in
the external field and in the coupling, and taking the
Fourier transform, one finally obtains [13]

g fFA(x, v;t)d u=gnA=n . (23)
I ~~AC~BD ~AC ~BD('q 2 2)

5BD ~AC(p 1 1)]GCD (p 'q ~ V1V2)

Now, we further take the expansion up to the first or-
der both in the external perturbation 4 and in the cou-
pling constant y: where

=LAB(p, q, co;v,v2), (26}

a
LAB(p, q, m;V, V2)= 1' @A(kco)k FA(u, )FB(u2)gAB(q)

m& Bv&

+i f d u10AC(k)Fc (VI,ken)gAB(q)k F„(u, )FB(u2)
mz Bv&

fd ul SAC(g}q FA '(Vl kCO)gBC(q)FB(u2)FC(u1)
Pl g Bv&

JAB(q)q FA (V1', k~)FB(V2)
. 1 (&0)

mg Bv&

1 c}+1' JAB(q)q FB(u, )F„" '(v, ;k~)+[1~2,A~B, p~q], k=p+q .
mz Bv2

(27)

Note that the y expansion implies that while e is of the order of the coupling constant, the product e n is of zeroth or-
der in the coupling, that is, e is formally compensated by the density. [1~2,A ~B,p~q] signifies the preceding terms
subject to the designated exchange operation. L„B is a known function and can be simplified to [13]

P JAB(q)q v2k v, m A Pk'v1q'v1
LAB(p, q, ~;V1V2)= —

1 + g AB(q) 13mAk v1+
co k vi mg co k'v i

XF„(u, )FB(u2 )4A (kco)+ [1~2,A ~B,p~q] .

cok q
(co —k v, )

(28}

We have dropped the superscripts from g' " and F'~'.
g ( k ) and F ( u ) signify the equilibrium Debye pair-
correlation function and the equilibrium Maxwell veloci-
ty distribution, respectively. Equation (26) is easily
solved by applying the Vlasov-Dupree-operator method
to yield

(11)
GAB (p, q, ~;V1V2)= d& &AC(pv;V, V', )

This is an exact formal solution for the perturbed two-
body correlation function. By substituting it into the first
equation of the BBGKY hierarchy, one is able to obtain
the density response to the first order in the coupling.

V. THE DENSITY RESPONSE FUNCTIONS
AND THE DIELECTRIC FUNCTION

X WBD(tLM; V2V2)

XLcD(p, q, co;v', v2),

co=p+v . (29)

The Fourier transform of the first equation of BBGKY
[30] in the first order in both of the external field and of
the coupling is
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—i [co5„C—V„c(k;v&v', )]F„""(v'&, kco)

i 1
QP~C(p)p d U2G~C(p q co viv2)3 (11)

m„V Bv&

(30)

Equation (30) is solved by using the Vlasov-Dupree
operator again to yield

1 1F„'"'(kco;v, )= i W„B(kco;v,v', )
m~ V

aX& Ac(p)p
dv&

X f d'U2GBc'(q, p, ~;vIv2) .

Substituting Eq. (29) into Eq. (31), one finds

(31)

F„""(kco; v)= i W»(kco;vivi) g PBC(p)p ' fdvf d'U, WBE(qv;V, VI )WcF(pp v2v2 )LEF(q p co vI'v2 ),
m~ V Bv ) 2'

(32)

and the density response is given by

n z" '( kco ) =f d v
&
F„""(kco; v

&
) . (33)

By using the explicit representation of Was given in (20), one can see that the integrals over v„v2, and v', in Eq. (33)
can be carried out by defining the dimensionless function

TB(kco;qv) —=

a
k pq. FB(v)

, fd'U
nB(PmB) (co —k v) (v —

q v)

which is related to the RPA quadratic density response function:

2

gB '(qv;pp) = — [TB(kco;qv)+ TB(kco;pi2)] .

(34)

(35)

One can finally obtain

1 1n„"'(kco)= — g f dv f d'U3 f d' 4gUgB(k )cgo(Bpc)
mz V 2a

kp TB(kco; qv)
5BE PnB mB —

PBG (q )riEG (qv )
(co —k v, ) (v —

q v3) V —
q V3

1
X QFc( pp )LEF(q p ~' v3 4)

p pv4 (36)

where LEF is given by (28).
By comparing Eqs. (36) and (13), one obtains the first-order correlational part of the partial density response function,

2

XBD(kco) = — g f d v jd v3 f d v4$BC(p)

where

k.p TB(kco;qv)
X 5BD PBF('V)QDF(qv)

(co —k.v3) (v qv3)P —mBnB v q v3

1
X YJEc ( pp )FD ( U 3 )FE '( U4 ) [HDE ( k, p, co; v3v4) +HED ( k, q, co; v4v3 ) ]

P Pv4
(37)

l 1
HDE(k, p, co;v3v4)= — gDE(p) PmDk v3+.

m D s k v 3

cok pmDPk. v3p. v3- s k v 3

k-v3 p.v4
i p'/DE(p) —. (38)

cO k V3

The velocity integrals in (37) can be carried out in terms of the Vlasov response function y'~I, and the T„(kco;pv)
function defined in (34) and its co frequency derivatives [13].
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After some cumbersome but straightforward algebraic calculations, the partial response function can be finally ex-
pressed as

X'A'D(k~) =—
V X f dv 5 (-» PAc(e)nDc(qv)PAE(p)nDz(pV)X'A"(pV;qv)XD'(pl;qv)

P

5AD ~ nA a2
k pPAc(p)24 m~ Bco

X [2IAc(pp)TA (k~ qv')+2)AC(pv) TA (k~'q(u) 221 Ac(pO) TA (k(0'qO) ] (39)

where 5 (v) has its conventional definition

5 (v) = lim
—i 1

o~0 2K v lo

The dielectric function e can be calculated through (10).
The result (39) is a relatively simple and compact expression for arbitrary k and (o values; it possesses the requisite

symmetry y'~z =gz~, which can be seen by observing the identity

X 4AC 9DC g 4DC /AC
C C

It also satisfies the co high-frequency sum rule. As we show in the following, in the k=O and co=0 limits the general
expression (39) for the response function can be reduced to much simpler forms.

In case of the bare Coulomb potential, (39) becomes

T (Ak o;(q )vT (Akco; qp )+
e(p(M ) ~(pv)

dv5 (v) ZAZD XA (pp;qv)XD (pp;qv)2 2 %('V)%'(P) (0) . (0)

e qv e pp

5AD &'nAZA a'

my Bc@

TA(k (;DqO)—2
e(pO)

(41)

The partial response functions X(A'z(ken) can be com-
bined into an expression for the first-order correlational
correction e'")(ken) to the centrally important dielectric-
response function by using Eq. (10). In addition, the par-
tial response functions possess their own physical
significance, for X'A'I)(k(o) given by Eqs. (39) and (41) re-
lates directly to the dynamical structure function
SA2) (k(0) via the conventional fluctuation-dissipation
theorem. The structure of Eq. (41) contains important
physical clues: this point will be elaborated upon in Sec.
VI.

A. The static limit

In order to evaluate the static (co=0) limit result, we
effect the interchange of the variables p~q, v~)((, in (39);
this leaves the integrand invariant, except for the 6
function. But

X'„'(pO;qO) =
—,'p n„, (44)

one then obtains

3nAnD~ 1
XAD( 0)

2 y g PAc(P)QDc(qO)
p

X 1()Az(p)2)Dz(pO) . (45)

This result can be shown to be equivalent to the results
of Kalman and Golden [26], Golden and Lu [31], and
Kalman [28], which are obtained by applying the linear
and quadratic fluctuation dissipation theorems (FDT and
QFDT) [31,32] to the first equations of the BBGKY
hierarchy at the static limit. Their result is

2
()) D& 1

XAD(kO) 2 g k PPAC(p) IDC(PO) )DA(qO)V,
(46)

lirn [5 (v)+5 ((D —v)] =5(v),
co~0

(42) Using the relation

and thus the v integral can immediately be done, which
eliminates all but the first term in the integrand. Observ-
ing that

)DA 5DA +4DCXAC 5DA +PDCXA IAC

5DA +XA PAC IDC (47)

X'„'(kO) = Pn „, — (43)
the 5D„ term in (46) will vanish because it is an odd func-
tion of p:
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3
11 A nDp

D(ko) = —
2

—g k.ppAC(p)11DC(po)

X JAB(q)11DB(qo) . (48)

By combining the above expression after the variable
change p~q with its original form, one can immediately
recover the result Eq. (45).

In the important two-component case (electron-ion
plasma or binary ionic mixture) XI', ' and XI3' become

(, )
n1p' 1 [@11(p)+pn2llg(p)ll][411(q)+pn3ll@(q)ll]

X", , '(ko) =—
2 V E(po)E(qo)

1 4&2P 412 q

2 V E(po)E(qo)

(49)

For the bare Coulomb interaction (49) reduces to
3

X„(ko)= Z,—n, P(k),1 1

X,2(ko)= —Z Z1',n, P(k),

where

p(k) 1 g tp(q)q (p)
V E(q)E(p)

(50)

(51)

with

a=4rre .P(Z, n, +Z3n2) .

These expressions are equivalent to those given earlier by
Kalman [28] for the calculation of the pair-correlation
functions g„B. Finally, we note that expressions (51) and
(52) satisfy, as they should, the generalized multicom-
ponent "compressibility" sum rules given by Totsuji [33].

More interesting are, actually, the X»(ko) and X»(ko)
expressions which relate directly, via the Auctuation-
dissipation theorem, to the partial structure functions
S»(k) and S,2(k):

p3 ( Z, —Z, Z'n,
""'(kO)= —Z'n'" 1++11

B. The long-wavelength limit

The long-wavelength (k=o) limit result can also be
easily extracted from the result (39). At this limit, one
has

P(k),1

E (ko)
p3

X",,'(kO) = —Z'Z'n, n, "
Z, —Z2 Z2n22

X 1+
Z, Z, n, +Z2n2 k

Z2 Z1 Z1n 1

2

X 1+
Z2 Z1n1+Z2n2 k

(52)

kpTB(k~0~;q&)=, , XB '(pv)
nBmBp cg

and

k.p»m X'"(pV;qv)=,[X"'(pp) —X"'(pv)] .
k~0 2mgco

(53)

(54)

X P(k),1

E (ko)

Thus we find the partial response function up to order
(k3),

2

XAD( ~) g g
v~ —(v)[ PDcPDEQAcQAE(XA XA (XD XD

(1) 1 (k.p) (0) -(0) (0) -(0)
m „mDco'p

+~ADPAc(9DcXA + 9DcXA )1 ~AD PAcQAc(p ) Ap (55)

where we have dropped the wave-vector and frequency arguments with the understanding that

CAB = PAB(P)» XAB =XAB(pv)~ XAB =XAB(P~(0) (0) -(0) (0)
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etc. Applying the relation

(0)— (0) (0)4DE) AEXA PDEXAE PDEXEA /DA ~DA

Eq. (55) becomes

(56)

«'p) 2

XAD ~)
V X 4 v~ —(v)l. CDcQAc(XD XD )( /DA ~DA ) PDcQAc(XD XD }( IDA ~DA )

(0) -(0) (0) -(0)
V

p m„mDco'P

+5ADPAC(9DCXA +)DCXA )) ~ADPACQAC(p ) Ap (57)

f d v5 (v)ll „cXD=rl „c(pO)XD'(pO),

fdv5 (v)qAcXD'=0,
(58)

Exploiting the properties of the plus and minus functions,
one has

and

k
~ A(co),

6m. pm, m2co
X',"(k Oco) =—

k
X",, '(k —+Oco) = A (co),

6n. pm lco

2

(60)

(61)

and thus the final result for the partial response function
in the k=0 limit can be expressed in the more compact
form

e(1)(~)— Z]2e

3~Pco m,

Z '
A (co),

m2
(62)

'D(k~Oco) =

X (X(0) X(0) ) (59)

m„mDco PV

Xg(k p) g„
P

x f dv5 (v)(gDArlDC vlDArlDC—)

with

A (~)= f dp p (('l2(p)

X] X] X2 X2(
(0) -(0))( (0) -(0))

X dP5 lM
E'F

Although the symmetry of the above expression is not
manifest, it can be proven with the aid of (40).

The most interesting cases to which (59) applies are
again the two-component electron-ion plasma and the
binary ionic mixture. For these situations, X'&'&', X'&z', and
the dielectric function e'" can be displayed concisely as

(63}

where we have exploited that QAE(k)~ZAZEqr(k) for
k ~0.

Specializing further to the Coulomb potential, we have
the more explicit expressions for the partial response
functions:

k Z„Z~e
X'„" (k 0 )=

3co mAmEP V

p
2

Xg fdv5 (v) 25AEpnE 2 2+5AE
P +K

-(0) (0)
Xg Xg +f'wa

(X(0) X(0) )(Xlo) Xlo) )
(64)

and the expression for the dielectric function is the same
as in Eq. (62), except that the interaction potential is re-
placed by the bare Coulomb potential, resulting in

A (co)= (4vrZ, Z2e )

(
(0) -(0))( (0) %0))

f ~d f d ~ ( )
Xl Xl X2 X2

(65}

VI. CONCLUSIONS

In this paper we have presented the most complete per-
turbation theoretic result for the response functions of a
classical multicornponent plasma. The expansion pararn-
eter is the plasma parameter (or coupling constant) y, or
in other words, the expansion is in the "uncompensated"
e, while terms "compensated" by a density factor n, i.e.,
being of the order O((e n) ), are included to all orders.
Even though the treatment is classical, quantum effects
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due to virtual bound-state formation, diffraction, and ex-
change can phenomenologically be accounted for
through a properly chosen pseudopotential. Our deriva-
tion is valid for any physically reasonable set of pseudo-
potentials and for an arbitrary number of components.

In contrast to earlier works [2,3,6,7,28] on the subject,
which were restricted to the k~0 or co=0 limits, we
present results y„zt(kco) for the full range of k and co

values [Eqs. (39) and (41)]. A judicious use of the power-
ful partial response function formalism allows us to
display these results not only in a more compact form
than given in earlier works, but also to identify the physi-
cal origin of the various contributions. A glance at Eq.
(41) [or Eq. (39)] shows that the two terms in it have
different physical characteristics. The first term can be
characterized as a "collective, " while the second as a
"scattering" contribution. The scat tering term apart
from its e denominator is proportional to e: it is the re-
sult of a direct (dynamically screened) two-particle in-
teraction. The collective term, in turn, is proportional to
e n, and the presence of the quadratic response functions
in it indicates that it is akin to the "triangle" vertex term
in the quantum-mechanical calculations. The collective
nature of this term is most evident in the double-t
denominator, which gives rise to mode-mode interaction
and is responsible for the appearance of the peaks at
su=co and co=2co in the high-frequency conductivity
[2,34]. It is also clear that this "collective" term is the
source of the correct static behavior. From g„zt(kco), we
can derive the centrally important e'(kto), and we also
display results for the external partial density response
functions y„tt(kco) which link to the partial dynamical
structure functions S„zt(kto), and to their combinations
into charge and mass density fluctuation spectra.

In the long-wavelength (k~O) limit our general result
is given by Eq. (59), while the same limit for the case of
bare Coulomb interaction reduces to the relations (64)
and (65). This latter result is equivalent (although given
in a more compact and physically meaningful notation)

to the earlier results of Oberman, Ron, and Dawson [3]
and Coste [5] and to the classical limit of the quantum-
mechanical calculations by Tzoar and Platzman [35]. In
the static (to =0) limit the result can be translated into re-
lationships for the pair-correlation function or for the
static structure function. In this language they are
equivalent to those derived by Kalman [28].

Some of the physical characteristics of the two- or mul-
ticomponent system are quite distinct from those of the
OCP. The main difference is that, as dictated by momen-
tum conservation, the OCP conductivity and related
response functions vanish in the k~O limit, while those
of the multicomponent system do not. This behavior is
easily demonstrated by going to the OCP limit (by setting
Z

&

=Zz, m
&

=m z ) in Eq. (62). It is also clear that the
symmetric two-component mixture with Z] /m,
=Zz/mz has properties in the k~O limit similar to that
of the OCP. Finally, the special role of the hydrogenic
plasma (Z, = —Zz, n, =n z ) is worth pointing out: in the
static limit, as pointed out by Coste [5], the lowest-order
correlational correction vanishes for such a system.

%e contend that our results represent the most com-
plete and most systematic calculations available for the
lowest-order correlational contribution to the response
functions for any Coulomb system. Similar calculations
done for the degenerate electron gas are either restricted
to what is equivalent to the "scattering" term [36], or in
calculating the "collective" contributions include certain
terms arbitrarily while discarding others of comparable
significance [37]. Only the formal results are presented in
this paper. Concrete calculations for various physical
quantities, based on the formulas given here, will be the
topic of a separate publication [29,13].
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