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A number of well-known features of a constricted discharge in plasma near-electrode layers (e.g., the
normal current-density effect) proceeds from the fact that the layer thickness is much smaller than longi-

tudinal dimensions. A better understanding of these features may be achieved by means of the asymptot-
ic approach, which treats the ratio of the above-mentioned lengths as a small parameter. In the vicinity
of extreme points of the current-voltage characteristic of the distributed discharge regime (regime with a
uniform distribution of the current density over the electrode surface), this approach is similar to the
perturbation method, reducing the reaction-diffusion equations in the vicinity of an instability point to
the Ginzburg-Landau equation, and results in a Fisher-type equation for perturbations of current-
density distribution. Using this equation, stationary perturbations are found and their stability is ana-

lyzed. In addition, the above-noted asymptotic approach is applied to the analysis of normal current-
density regimes. In particular, it is shown that interaction of a current spot (covered area) with lateral
boundaries and/or other spots is transmitted by means of the exponentially small perturbations intro-
duced by spots into regions occupied by the cold and hot phases. Application of the results obtained to
the transition between the normal and abnormal regimes of the glow-discharge near-cathode region is

discussed.

PACS number(s): 52.40.Hf, 52.80.Hc

I. INTRODUCTION

The appearance of current structures in plasma near-
electrode layers presents an important example of a self-
organization phenomenon; see, e.g. , [1—10]. Most
theoretical investigations of these structures (for instance,
[3,4,7,8]) are based on a phenomenological equation for
the current-density distribution across the electrode sur-
face. This approach results in interesting static and dy-
namic patterns. On the other hand, it seems worth trying
to develop a technique of investigation of the structures
on a physical basis, i.e., in the framework of some physi-
cal model describing the basic physics of the particular
problem.

The speci6cs of current structures in near-electrode
layers that distinguish them from other dissipative struc-
tures proceeds from the fact that the thickness of a near-
electrode layer is usually much less than its longitudinal
dimensions. It is this inequality that plays a fundamental
role in such well-known effects as the normal current-
density effect or the appearance on an electrode surface
of current spots (covered areas) whose radius is much less
than longitudinal dimensions. Thus an appropriate way
to investigate near-electrode current structures is to treat
the basic (three-dimensional) physical model asymptoti-
cally, taking advantage of the smallness of the ratio of the
above-mentioned length scales.

Such an approach is developed in the present paper.
Basically, two questions are studied. First, the question
of intermediate stationary regimes between regimes with
spots and the distributed regime is discussed: whether
such regimes exist; if so, whether they are stable and
what their properties are.

Second the question of an interaction of a current spot
(covered area) with lateral boundaries of the discharge

vessel and/or with other spots is discussed. This interac-
tion is of principal importance for existence of these
structures. Indeed, each spot, which is an element of a
regular structure, can sense positions of neighboring
spots and lateral boundaries; the correlation between the
shape of the covered area on the cathode of the normal
glow discharge and the shape of the cathode may be re-
ferred to as the well-known example. However, the way
in which this interaction is transmitted through the
near-electrode region occupied by the cold phase and
how to calculate it are not well understood.

In Sec. II the problem is stated and the general behav-
ior of solutions is discussed. An equation governing per-
turbations of the current-density distribution along the
electrode surface in the vicinity of extreme points of the
distributed discharge current-voltage characteristic is
asymptotically derived in Sec. III. Stationary solutions to
this equation are found analytically in Sec. IV for the pla-
nar case, and numerically in Sec. V for the axisymmetric
case. Some considerations for the general case are
presented and stability of the stationary solutions is dis-
cussed in Sec. VI. Asymptotic analysis of normal regimes
of current transfer (regimes with coexistence of phases) is
presented in Sec. VII. Finally, in Sec. VIII among other
concluding remarks the application of obtained results to
the glow-discharge cathode region is discussed.

II. THE STATEMENT OF THE PROBLEM

A. The model

Consider current transfer through a plasma near-
electrode layer (Fig. 1). The discharge vessel is in the
form of the cylinder whose cross section is not necessarily
circular, the lateral surface of the cylinder being insulat-
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ing, the foot being the electrode surface. The x and z
axes of the Cartesian coordinate system are parallel to the
electrode surface, the y axis is directed into plasma
volume. We treat a class of models of current transfer
through the near-electrode region which can be described
by a system of reaction-diffusion differential equations

Bn; + div( D, gra—dn, p, n; g—radar)=w, (2)

Bn, + div ( D, grad —n, +p, n, grad g) =w,
at

eo div(grad g) =e(n, —n; ), (4)

where D;, D„p;,and p, are diffusion coeScients and
mobilities of ions and electrons (prescribed functions of
the electric field strength

~ grady ); w is the rate of
change of the concentrations of ions and electrons due to
volume ionization and recombination (a prescribed func-
tion of n, , n„and

~

grady~~

); eo is the permittivity of the
free space; e is the electronic charge. These equations as-
sume the form (1), if

n,

X= n, , B=
e(n; n, )—

A =B+V.(DVX) .
at

Here the vector X represents a set of functions to be
found describing space distributions of plasma parame-
ters in the near-electrode region; the vector B and the
matrices A and D will be treated as arbitrary prescribed
functions of the components of the vector X; t designates
time.

Consider, for instance, the well-known hydrodynami-
cal set of equations describing distributions of concentra-
tions of ions and electrons n, and n, and the potential cp

in the near-cathode space-charge layer of the glow
discharge

PLASMA
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X
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FIG. 1. Geometry of the problem.

B. General behavior of stationary solutions

propriate boundary conditions which include conditions
at y =0 (these conditions should account for basic physi-
cal processes on the electrode surface), at large values of y
(these conditions follow from the requirement that far
away from the electrode surface the considered solution
should become the solution corresponding to the plasma
column), and conditions on the lateral surface of the
vessel. The explicit form of these boundary conditions is
not important for the following analysis, we assume only
that one of these conditions specifies the voltage drop U
across the considered near-electrode region, this voltage
drop being constant along the electrode surface, and that
these conditions allow the existence of a stationary one-
dimensional solution X=X'"(y) to the whole problem.
The first assumption holds if the voltage drop in the
near-electrode region is much greater than that in the ad-
jacent plasma, which is usually the case. The second as-
sumption means, in particular, that the nonuniformity of
the electrode surface is negligible.

1 0 0 D, 0 p;n;
A= 0 1 0, D= 0 D, —pn,

0 0 0 0 0 eo

where t =t/t; B=t B; D=t D/h; a prime designates
differentiating in y =y/h; V~~ is the gradient in the vari-
ables x =x /L and z =z/L; g=h /L . The tilde will be
dropped in future for the sake of brevity.

Suppose that the system (6) is supplemented with ap-

To make use of the fact that the characteristic dimen-
sion L of the cross section of the discharge vessel is usual-

ly much greater than the characteristic thickness of the
near-electrode layer h, we normalize the coordinates x
and z by L, the coordinate y by h, and the time by t,
which is the characteristic time of relaxation of the sys-
tem. Splitting derivatives in y and in x,z we rewrite (1) as

A =B+(DX')'+XVll (DVllX),
ax

t

The above-mentioned stationary one-dimensional solu-
tion X'"(y) describes a regime in which the current den-
sity is constant along the electrode surface (regime of dis-
tributed current transfer). Assume that the current-
voltage characteristic U(I) described by this solution is N

shaped (the line OAMBN in Fig. 2).
Non-one-dimensional solutions to the considered prob-

lem X=X(x,y, z) describe regimes with current density
variable along the electrode surface (regimes of constrict-
ed current transfer). The general impression of these
solutions is given by the two-dimensional numerical cal-
culations Il 1] (these calculations were carried out in the
framework of a thermal constriction model). A represen-
tative current-voltage characteristic is shown schemati-
cally in Fig. 2 by the line CDEF. As the ratio of the di-
mension in the direction normal to the electrode surface
to the along-surface dimension becomes smaller, the bi-
furcation points C and F (in these points the non-one-
dimensional solution joins the one-dimensional solution)
come nearer to the points of maximum and minimum 3
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B)X2+(D~Xq+D)XqX~ )'

A~Z —b ~~FD~Z —F [B2ZZa7.

+(D,ZZ'+D2ZZX~)'] .

(12)

Equation (12) (we imply again that it is considered along
with corresponding boundary conditions) represents a
linear inhomogeneous problem, the corresponding homo-
geneous problem being Eq. (8). The existence of a non-
trivial solution to (8) means that for the problem (12) to
be solvable its right-hand side should satisfy some special
condition, namely, it should be orthogonal to the solution
Z"(y) of the linear homogeneous problem which is ad-
joint to (8) (e.g. , Coddington and Levinson [12]). By in-
specting the general structure of (12) one can see that this
solvability condition assumes the following form (with
the accuracy of constant coefficients of the order of unity
which can be absorbed by renormalization of F, r):

BF =AF —F +c2 2 (13)

corresponding to the one-dimensional stationary solution
X"'(y) and describing the beginning of the section BM of
the one-dimensional current-voltage characteristic and
the beginning of the section BX, respectively. Noncon-
stant solutions f= f(x,z) describe initial sections of the
stationary non-one-dimensional solutions branching off

The term c, to the accuracy of a coefficient of the order
of unity, is equal to (U —Uz)/(U~y ) and results from
the above-mentioned term of one of the boundary condi-
tions that is proportional to ( U —U~).

Evidently, F is proportional to the difference (j—j~)
between the local current density at the electrode surface
and the value of the current density corresponding to
point 8, so this equation may be considered as governing
perturbations of the current-density distribution in the vi-
cinity of the extreme point.

It may be desirable to determine numerical values of
coefficients of proportionality relating the dimensionless
quantities F, c, and r to dimensional (j—j~ ), ( U —U~),
and time. This task is not much harder than the calcula-
tion of the one-dimensional stationary solution alone.
Indeed, the main additional element is calculation of the
function Z"(y); this function is governed by the linear
boundary-value problem for the (vector) ordinary
differential equation which may be solved by a standard
numerical technique, for instance, by that employed in
[6].

Equation (13) is studied in biomathematics as the pro-
totype nonlinear equation which admits traveling plane-
wave solutions and is usually referred to as the Fisher
equation; see, e.g., [13]and references therein. We are in-
terested in stationary solutions of (13) and in their stabili-
ty. To study stationary solutions it is convenient to intro-
duce the new dependent variable f=f(x,z)=F/c. Evi-
dently, there are two constant solutions

(14)

from the solution X'"(y). In Secs. IV and V these non-
constant solutions are presented for the planar and ax-
isymmetric cases. In Sec. VI some considerations for the
general case are presented and stability of stationary solu-
tions is discussed.

Before solving Eq. (13) one should specify boundary
conditions for the function F at the boundary of the con-
sidered region, that is, at the perimeter of the discharge
vessel cross section. These boundary conditions follow
from those obeyed by the function X at the lateral sur-
face of the discharge vessel. For definiteness, assume that
the latter are the Neumann (zero derivative) conditions,
which are the simplest boundary conditions allowing ex-
istence of a one-dimensional solution (the influence of this
assumption for the above-considered example of the
glow-discharge near-cathode space-charge region is dis-
cussed in Sec. VIII). Then the function F also satisfies
Neumann conditions.

IV. THE PLANAR CASE

We shall find here stationary nonconstant solutions to
(13) in the case when the cross section of the vessel in a
rectangle and the function f depends on x only. Evident-
ly, this case corresponds to planar solution of the initial
problem: X=X(x,y). Supposing the length scale L coin-
cides with the dimension of the rectangle in the direction
x, the problem (13) may be treated in the interval [0,1].
Then nonconstant solutions may be written as

1+en u m

Here

Q =2x
1/2

c sin(P+m/3) sin(P+2m. /3)
v'3 sin (P+ n./3)

cn(u ~m ) and dn(u m) are the Jacobian elliptic functions
[14],and p is a root of the equation

&c =MD, (17)

where
1/2

E(m),
sin (P+ m /3 )

(18)

M is an arbitrary positive integer number, and E(m) is
the complete elliptic integral of the first kind [14]. The
parameter p satisfies the inequality 0 &p & m /3.

Solutions described by formula (15) present sequences
of alternately rising and falling half waves: the function f
grows from the minimum value f;„=—2 cos P up to the
maximum value f,„=2cso( P+~ 3/) in the rising half
wave and decreases from f,„

to f;„in the falling half
wave. The solution described by the formula (15) with
the minus before cn(u ~m) begins with the rising half
wave, f(0)=f;„,and the solution with the plus begins
with the falling half wave, f(0)=f,„.Forms of the ris-

ing and falling half waves are identical within the accura-
cy of the inversion of x, and their width is 6/&c. Equa-
tion (17) reflects the fact that the number of half waves in
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the interval considered should be integer.
One can verify easily that the function b, =h(P) is

monotonically decreasing; b (m. /3) =rr/&2; b,~ ao as
P~O. Hence the number of roots of Eq. (17) equals the
integral part of &2c /rr.

The formula (15) gives f= —1 for P=rr/3 H. ence
solutions (15) join the first solution (14); bifurcation
points are c =m. M /2. All the bifurcations are supercrit-
ical, that is, non-constant solutions branch off into the re-
gion c & HM /2.

Integrating (15) we obtain the value of the function

f (x) averaged over the discharge vessel cross section

(f ) =2cos(P —~/3) —2&3sin P+- E(m)
(19)

3 K(m)

1/2
rr M 4&15f= —1+ c- cos (rrMx )+

2 5aM
(20)

This expression describes the solutions in the vicinity
of the offshoot points. It shows that the perturbation of
the current-density distribution over the electrode surface
is harmonic in the vicinity of the offshoot point, its am-
plitude growing proportionally to (U —U;)' . The sub-
sequent evolution of this distribution is illustrated by Fig.
4, where the function f(x ) describing the rising half wave
is shown. One can see that as the distance from the
offshoot point grows (i.e., P decreases) the minimum of
the current-density distribution becomes narrower

Here E(m ) is the complete elliptic integral of the second
kind [14].

The dependencies of (F ) =c (f ) on c have been cal-
culated by means of this formula and are shown in Fig. 3,
line 1 representing the pair of solutions which consist of
one half wave (rising or falling), line 2 representing the
pair of solutions which consist of two half waves, etc.
The dependencies corresponding to the solutions (14) are
shown, too. Evidently, Fig. 3 may be considered as the
asymptotic representation of the vicinities of points A
and 8 of the current-voltage characteristic schematically
plotted in Fig. 2.

Asymptotic behavior of the solutions (15) as P~m. /3
(that corresponds to c ~m M /2+0) is

0-

-8
0.00 0.25 0.50 0.75 1.00

X

FIG. 4. Perturbations of current-density distribution over the
electrode surface, planar case. 1, P= 50'; 2, 30', 3, 1'.

whereas the width of the maximum grows; in other
words, the cold domain begins forming. To obtain an
analytical expression describing the shape of this domain
at large distances from the offshoot point we apply the
limit P~O (c/M ~~) to the formula (15) with the
minus. The result is

1/2
Cf=3 tanh — x —2 .
2

(21)

Evidently, far away from the offshoot point the width
of the domain is of the order of L /&c, the current densi-
ty in the region occupied by the hot phase equals that
corresponding to the point with the same value of U on
the ascending part of the one-dimensional current-voltage
characteristic, the difference between the current density
corresponding to the point of minimum 8 and the
current density in the center of the domain exceeds by a
factor of 2 the difference between the current densities
corresponding to the point of minimum and to the point
with the same value of U on the descending part of the
one-dimensional current-voltage characteristic.

6000-
c2

4000-

2000-

0—80
I—40 0 40 80

&F&

FIG. 3. Asymptotic representation of the current-voltage
characteristics in the vicinity of the extreme point, planar case.

V. THE AXISYMMETRIC CASE

Consider now the case when the vessel cross section is
a circle and the function f depends on the distance from
its center only: f=f(r). The length scale L in this case
is taken equal to the radius of the circle.

The problem considered was solved numerically; some
results are presented ir &igs. 5 and 6. Figure 5 shows the
dependencies of (F ) on c, line 1 representing the mono-
tonic solution, lines 2 and 3 representing the solutions
which consist of two or three monotonic sections, respec-
tively. Representative graphs of the function f are given
in Fig. 6.

It can be shown that in the case considered bifurcation
points are c =p, /2 (here p, is the ith positive zero of the
Bessel function of the first order). Each nonconstant
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FIG. 5. Asymptotic representation of the current-voltage
characteristics in the vicinity of the extreme point, axisym-
metric case.

2Jo(p;)f= —1+ c—
2 p

2

solution consists of two branches, one of them being sub-
critical (bifurcating into the region c (p; /2) and the oth-
er supercritical (bifurcating into the region c )p, /2); for
instance, the branch CQ of line 1 in Fig. 5 is subcritical
while the branch CR is supercritical. The subcritical
branch corresponds to solutions with the minimum in the
center of the circle, the supercritical branch corresponds
to solutions with the maximum. The offshoot of current-
voltage characteristics in Fig. 5 is smooth, unlike that in
Fig. 3 where lines 1 —3 branch off from the line f= —1 at
certain angles.

Asymptotic behavior of solutions in the vicinity of bi-
furcation points is

where Jo is the Bessel function of zero order.
Behavior of the solutions as the distance from the bi-

furcation point grows (i.e., as c~co) can be seen from
Fig. 6. Cold domains of two types are forming: a central
domain which is positioned in the center of the circle,
and ring domains which are positioned either inside the
circle or at its outer boundary. The current-density per-
turbation in the central domain is greater than in ring
domains: the calculated numerically lower limit value of
f(0) is equal to —3.783 91, whereas the lower limit value
of the function f in ring domains is equal to —2. Posi-
tions of the inner ring domains change as c grows.

The radius of a ring domain substantially exceeds its
thickness. Therefore one may expect that its form in the
first approximation is the same as the form of a domain
in the planar case and is described by the expression (21).
However, analytical determination of positions of inner-
ring domains is not as simple as determination of domain
position in the planar case, when because of spatial uni-
formity all the distances between neighboring extreme
points are equal and do not change as c grows.

As an example, the position of the inner-ring domain is
determined in the Appendix for the case when it is the
only domain present (such a situation is depicted by line e
in Fig. 6). Some asymptotic results [calculated by means

of formulas (A3) and (A17)j are presented in Fig. 7 as
well as the corresponding results of the numerical solu-
tion (line 3 represents the same data as line e in Fig. 6).
Agreement between the numerical and asymptotic results
is reasonable. It follows from the asymptotic solution
that interaction between the domain and the boundaries
of the considered region realizes by means of the ex-
ponentially small perturbation introduced by the domain
into the region occupied by the hot phase.

X f rJO(p r)dr
0

—
1

Jo(p;r)+ (22)

0- 0-

—20.3 0.5 0.7 0.9

0.00 0.25 0.50 0.75 1.00
r

FIG. 6. Perturbations of current-density distribution over the
electrode surface, axisymmetric case. States a, b, d, and e are
marked in Fig. 5.

FIG. 7. Perturbations of current-density distribution in the
forming ring cold domain. Solid lines, numerical calculation;
dashed lines, asymptotic results. Lines 1,3,c =80; lines
2, 4, c =320.
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VI. DISCUSSION OF STATIONARY SOLUTIONS
IN THE GENERAL CASE
AND THEIR STABILITY

One may hope that main features of the stationary
current-density distribution studied above for the planar
and axisymmetric cases will be similar in a general case.
It may be shown that the bifurcation points at which the
nonconstant stationary solutions of the problem (13)
branch off from the solution f= —1 are connected to the
spectrum of the Neumann problem for the two-
dimensional Helmholtz equation

4+k'C =0 (23)

where k is the eigenvalue parameter; the region con-
sidered, as for Eq. (13), is the cross section of the
discharge vessel. We denote by k; (i =0, 1,2, . . . ; k0=0;
k; & 0 for i & 1) the ith eigenvalue of the problem (23), by

N; the degeneracy of this eigenvalue, and by
(x,z) (m =1, . . . , N;) the corresponding

orthonormal set of eigenfunctions ( ( 4; 4,k ) =5, 5 k).
Bifurcation points of stationary solutions of the prob-

lem (13) correspond to the first and all the following ei-
genvalues k; and are c=k; /2. Asymptotic behavior of
the nonconstant solutions in the vicinity of these points is
described by the formulas

k; 4f= —1+ c — 0;,+
k,'(e,', )

(24)

k
c — a.

2 l

1/2
2

k,
4, i+

a;=
N (@ q)2 )2

X X—0 —) k k
jAi

(25)

It is supposed here for the sake of simplicity that N; =1,
(24) is written for the case (4, , )%0, and (25) for the case
(C,', ) =0.

If (4;, )%0 the nonconstant solution consists of sub-

critical and supercritical branches. If it is not the case,
both solutions branching off in the considered bifurcation
point are either subcritical (if a; &0) or supercritical

(a; &0).
Note that in the planar case ( 4, , ) =0, while in the ax-

isymmetric case (@,)%0 [accordingly, (24) is in agree-
ment with (22), and (25) with (20)]. Evidently, just this
difference results in difference appearances of current-
voltage characteristics in Figs. 3 and 5 in the vicinity of
bifurcation points.

Solutions considered in Secs. IV and V are valid until
the width of the domain is much greater than the layer
thickness h. This condition holds in the range
U —U~ «U~. Obviously, this range is much wider than
the range

~
U —U, ~

&&y Us in which the usual bifurca-
tion theory is applicable to the problem considered [i.e.,
expressions (20), (22), (24), and (25) are valid].

If the parameter c (which is related to the voltage drop
in the near-electrode layer) is considered as fixed, it fol-

lows from the general theory [15] that all the stationary
solutions of (13) except the second solution (14) are unsta-
ble. This means that the transition from the distributed
regime to regimes with spots under the conditions of con-
stant voltage drop (in other words, without sufficient bal-
last resistance} cannot be quasistationary. To analyze sta-
bility with ballast resistance the parameter c should be
treated as time dependent, its perturbation being subject
to the condition of the total voltage drop in the circuit
being fixed

a (c(f )ai+c )=0,
a~

(26)

VII. ANALYSIS OF NORMAL REGIMES

We shall consider now the theory of normal regimes,
when some part of the electrode surface is covered by the
hot phase and the other part by the cold phase, a two-
dimensional structure (domain wall) separating these

where co is the normalized ballast resistance.
Linear analysis of stability of solutions (14) with ballast

resistance shows that the second solution (14} is stable.
The first solution (14) is unstable if c )k, /2; if c & k, /2,
it is stable provided that ballast resistance is sufficient
(co& k, ).

Linear analysis of stability of nonconstant stationary
solutions in the vicinity of bifurcation points also is an
easy matter. Solutions branching off in the second and
the following bifurcation points are unstable. In the case
(4»)%0 (we suppose Ni =1) the subcritical branch of
the solution branching off in the first bifurcation point is
unstable; the supercritical branch is stable provided that
co) ki. In the case (4ii) =0 both solutions branching
off in the first bifurcation point are unstable, whether
these solutions are subcritical or supercritical.

One can see that, while in the case (4»)%0 only a su-

percritical solution may be stable, which is the usual situ-
ation, in the case (4» ) =0, even supercritical solutions
branching off in the first bifurcation point cannot be sta-
bilized by the ballast resistance. The reason is that in the
case (4» ) =0 the ballast resistance affects not only per-
turbations of the zero-order mode, as in the case
(@ii )%0, but also of the first order. While its effect on
the zero mode is stablilizing, its effect on the first mode
contributes to the instability, this instability occurring
just in the same moment when the stability against the
zero mode is suppressed.

Thus in the conditions of Fig. 3 the transition from the
regime with uniform distribution of the current density
over the electrode surface (distributed regime) to the re-
gimes corresponding to lines 1,2,3, etc. , cannot be carried
out in a quasistationary way. In the conditions of Fig. 5

the only quasistationary transition may be that to the
branch CR.

It should be emphasized that it does not follow from
the above that all the nonconstant stationary solutions
which are unstable in the vicinities of bifurcation points
will remain unstable far away from these points. In fact,
studies of stationary dissipative structures provide con-
trary examples [16].
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U= U„(1+v), (27)

where E is a given parameter,
~
E ((1. One of our goals is

to determine the relationship between c, and b.
Solutions in the regions occupied by the cold and hot

phases coincide to the first approximation with the one-
dimensional stationary solution X"'(y) in points L and P,
respectively, and will be denoted by XL(y) and Xp(y).
Asymptotic expansion describing the domain wall is

X=X3(A,,y )+eX4(i, ,y ) + (28)

phases. These regimes correspond to section DE in Fig.
2.

As the simplest example we treat the stationary planar
case when the discharge vessel cross section is a rectan-
gle, its parts adjacent to the lines x =0 and 1 being occu-
pied by the cold and hot phases, respectively. The
domain wall separating these phases is positioned in the
vicinity of the line x =b. The value of the voltage drop U
is close to U„(seeFig. 2):

surface and at the outer boundary of the considered
near-electrode layer (it should be set U= U„).

The stated problem cannot be solved with an arbitrary
value of U„which rejects the well-known fact that
phases may coexist only in special circumstances. Thus
the condition of solvability of this problem presents the
relationship determining U„(Maxwell s construction;
e.g. , [17]). To derive an explicit form of this relationship
in general is not a simple task, so we present this deriva-
tion only for the case when the problem under considera-
tion is scalar. In particular, in such a case the coefficient
D may be absorbed by the transformation to the new in-

dependent variable fD dX (the so-called heat fiux poten-

tial), so it will be assumed D = 1. Also, it will be assumed
that mentioned in Sec. II boundary conditions at the elec-
trode surface and at the outer boundary of the considered
near-electrode layer either determine the value of the
function X (evidently, this value should be independent of
x) or specify BX/By as a prescribed function of the local
X value. Multiply Eq. (29) by BX3/BA, and write it as

B3+V (D3VX3)=0, (29)

where A, = (x b)/V—y.
The function X3 obeys the two-dimensional equation BX3

83 +V'.
aX, l a

VX3 —— (VX3) =0 .3 2 ax
(30)

where Q3=B(X3), D3=D(X3), and V designates the gra-
dient in the variables A, ,y. Boundary conditions for this
equation are X3( —~,y)=XI (y), X3(~,y)=Xp(y) and

mentioned in Sec. II boundary conditions at the electrode
I

Integrate (30) in k from —~ to ~ and in y from 0 to 5
(which is the thickness of the near-electrode layer con-
sidered). The result may be written as

2
xp(y) dXpf f a(X)dX ——

0 x, (y) 2

x (0) xp(6)
(31)

L( ) ()y xL (5) ()y

If the one-dimensional stationary solution X"I(y) is known, both sides of this relationship may be regarded as known

functions of U„.Thus (31) presents the desired equation determining U„.
One can see now that analysis of the first approximation allows one to determine the normal voltage drop as well as

the form of the domain wall. To determine the position of the domain wall the second approximation should be ana-

lyzed.
The asymptotic behavior of the function X3 at large values of A, is

XI.(y )+u JUL (p)exp(aL, X)+
X3=

Xp(y)+w2Up(y)exp( —apA, )+ ' ' '
A, ~ oo

(32)

(33)

where w& and w2 are certain constants of the order of
unity; ai, UL(y ), ap, and Up(y) are the least positive ei-

genvalues and corresponding vector eigenfunctions of the
eigenvalue problem for the following system of linear or-
dinary differential equations:

dU, dX,

(34)

in Sec. II boundary conditions at the electrode surface
and at the outer boundary of the near-electrode layer
linearized about X, (it should be set U = U„).

The second terms of the asymptotic expansions
describing regions occupied by the cold and hot phases
also are governed by the problem (34). Choosing solu-
tions which satisfy the condition of matching with the
first term of the expansion (28) and the Neumann condi-
tions at the lateral boundaries, one obtains two-term ex-
pansions as follows:

Here e =P,L; D„=D(X); the matrices D, » and B,» are

determined similarly to (10), X, appearing instead of X~.
Boundary conditions for this equation are the mentioned

X=XI (y)+2+, exp
aLb

UI (y) cosh (aL v)+L

(35)
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ap(b —1)
X=Xp(y )+2w2exp Up(y )

x
CupX cosh apv — — + (36)

c=qL w, exp
2a~b

qp w2exp
x

2ap(b —1)

&i
(41)

where v=x /&y.
The second terms of these expansions describe pertur-

bations resulting from the presence of the domain wall.
These perturbations contain two components: perturba-
tions directly introduced by the domain wall [which are
described by the items proportional to exp(ar v) and
exp( —apv), respectively] and those reflected by the la-
teral boundaries [described by the items proportional to
exp( —aL v) and exp(apv)]. Evidently, the quantities aL,
ap may be interpreted as the dimensionless inverse at-
tenuation lengths of perturbations. The Neumann
boundary conditions used above result in "perfect
reflection" of the perturbations by lateral surface of the
discharge vessel.

Now we should treat the interaction of the reflected
perturbations with the domain wall, which means match-
ing of the second terms of the expansions (35) and (36)
with the second term of (28). Asymptotic behavior of the
function X4 as A, ~—Dc or A,~ 00 is, respectively,

X~=w3UL (y )exp( —aI A, )+

X4=
w4Up (y )exp( ap A ) +

(37)

where w3 and w4 are arbitrary constants. Similarly to
the constants w5 and w6 in the theory developed in the
Appendix of a forming ring domain, w3 and w4 are
linearly dependent and satisfy a relationship similar to
(A6),

qL w3 —qpw4=1, (38)

1w4=0, w3 E qL w&exp
2uL b

(39)

W3 —0, W4= qp w2 exp
qp

2ap(b —1)

&i
(40)

In the case ~b
—ap/(aI +ap) ~

~ O(&y) reflected per-
turbations are of the same order, second terms of both ex-
pansions (35) and (36} may be matched with the second
term of (28). s may be written as

where qL and qp are certain constants of the order of uni-
ty.

If b is not close to ap/(aL+ap), reflected perturba-
tions coming to the domain wall from the regions occu-
pied by the cold and hot phases are of different orders of
magnitude. Hence only one of them (the larger) may be
matched with X4, while the smaller should be matched
with the higher-order term. One obtains for the cases
b (ap /(aI +ap) and b )ap/(aL +ap), respectively,

Both items in the right-hand side of (41) are of the
same order in this case. In other cases one item is negli-
gible and this expression turns into the last formula (39)
or (40). Thus (41) is uniformly valid (may be used in all
cases).

The asymptotic solution is complete now. In particu-
lar, expression (41) is obtained; it relates the position of
the domain wall and the difference U —U„. When
0 & b ( 1, that is, when areas occupied by both phases are
comparable, this difference is exponentially small. That
means that the corresponding section of the current-
voltage characteristic (section DE in Fig. 2) must be close
to the horizontal line U = U„even if the ratio of the layer
thickness to the longitudinal dimension is not too small.
Numerical results [11] confirm this conclusion: the
current-voltage characteristic of a thermally constricted
discharge has a distinct flat section already when the cor-
responding ratio is equal to 0.5.

As it should be expected, as b ~0 (or b ~1), i.e., when
the greater part of the electrode surface is covered by the
hot (cold) phase, the order of magnitude of ~s ~

tends to
unity. This situation corresponds to the vicinities of
points E and D in Fig. 2.

If a=0, to the first approximation b=ap/(al +ap).
In other words, areas occupied by the hot and cold
phases when U=U„are determined by the inverse at-
tenuation lengths aL and ap only, namely, each area is
proportional to the corresponding attenuation length.

It should be emphasized that, as is also true in the case
of the forming ring domain treated in the Appendix, in-
teraction between the non-one-dimensional structure
(domain wall} and the lateral boundaries occurs by means
of perturbations introduced by the domain wall into re-
gions occupied by the cold and hot phases, this interac-
tion being described by exponentially small terms.

VIII. CONCLUDING DISCUSSION

The above theory provides an asymptotic description
of stationary non-one-dimensional solutions in the vicini-
ties of the offshoot points (points C and F in Fig. 2) and in
normal regimes (corresponding to the line DE).

Offshoot of stationary non-one-dimensional solutions
occurs in the vicinities of extreme points of the one-
dimensional current-voltage characteristic. Perturbation
of the current density along the electrode surface in this
vicinity is governed by Eq. (13). Its derivation has many
features in common with the derivation of the Ginzburg-
Landau equation in a vicinity of an instability point of
reaction-diffusion systems [17,18], however (13) is the
Fisher equation rather than the Ginzburg-Landau one.
This question is interesting by itself, but we only note
here that it is due to the fact that we are dealing with
structures with slow variation in space and time. The
other difference is that the considered system is of strong-
ly different dimensions, so the number of space variables
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in (13) is less than in the initial problem.
In [9] small deviations from the one-dimensional refer-

ences state were considered in the framework of equa-
tions similar to (2)—(4). This approach agrees with that
used in Sec. III, however, the resulting equation in [9]
differs from (13). For example, the term with b,

~~

in the
equation in [9] accounts only for diffusion of the charged
particles; if diffusion is neglected as compared to drift,
this term in treatment [9] vanishes, in contrast to that of
Sec. III. This difference results from a number of as-
sumptions used in [9], in particular, that of quasineutrali-
ty of perturbations.

It is worth noting that the question of whether
diffusion of charge particles plays a decisive role in for-
mation of structures on the cathode of the glow discharge
has been intensively discussed (e.g. , [19] and references
therein). Present results are on the line of [6,20]: in prin-
ciple, structures may appear without diffusion, due to
only nonquasineutrality and drift.

Solutions to Eq. (13) studied in Secs. IV —VI describe
evolution of perturbations from harmonic to spotlike.
Consider conclusions which follow in regard to the tran-
sition between the normal and abnormal regimes, i.e., be-
tween sections DE and BÃ in Fig. 2.

This transition cannot be continuous: line DE does not
reach line BX. If the transition is quasistationary, it
should occur along the path EFB and be accompanied by
the change of the voltage drop. At least some part of this
path, in principle, may be passed in a quasistationary
way. Then, the point separating regimes with uniform
and nonuniform current-density distributions (point F) is
positioned on the descending section of the current-
voltage characteristic. The exact position of this point
depends on the dimensions of the cross section of a
discharge vessel. The features of joining the current-
voltage characteristics corresponding to the regimes with
uniform current-density distribution and nonuniform one
(BF and FE, respectively) depend on the shape of the
cross section. For instance, if the cross section is a sector
of a circle with the angle at the apex, say, 60 (such that
the axisymmetric solution is the first to branch off), the
initial portion of the characteristic corresponding to the
nonuniform discharge will be represented by the branch
CR in Fig. 5. It is interesting to note that the slope of
this branch to the current axis is positive, while those of
sections DE and FB in Fig. 2 are negative. In other
words, the section DEFB is Z shaped.

Generally speaking, the relaxation time of the
discharge in the near-electrode layer is equal to the
characteristic time t introduced in Sec. II, which may be
interpreted as the time of spreading of perturbations
across the layer. However, the relaxation time in regimes
near point B (for example, the time of a spontaneous
transition from section BF to section ED) is by a factor

' greater and equal to the time of perturbation spread-
ing in the direction along the surface. On the other
hand, it follows from the analysis of Sec. VII that the re-
laxation time in normal regimes is of the order of t .

Consider now the applicability of the presented results
to the glow-discharge near-cathode region. These results
were derived using the Neumann (no-flux) boundary con-

ditions at the lateral surface of the discharge vessel,
which means neglect of the losses of the charged particles
due to diffusion to the lateral surface. In fact, because of
these losses the current distribution over the cathode sur-
face is nonuniform even in abnormal regimes: the current
density is reduced in small regions adjacent to the lateral
surface. The width of this region is of the order of
h [kT, /(eU)]', where kT, is the average energy of elec-
trons.

At low pressures kT, /(eU) is of the order of unity.
When the current in the normal regime is increased, the
cold domain formed at point E cannot vanish and section
EF will be absent. Thus one may expect that at low pres-
sures the above-discussed features may be present only if
diffusive losses to the lateral surface are excluded or, at
least, considerably reduced.

This conclusion is supported by the experiment [21] in
which the main discharge was surrounded by the auxili-
ary one. Stationary states corresponding to sections DE
and BP were observed. The transition between these sec-
tions was nonstationary and with hysteresis. Note that
the variation of the voltage drop corresponding to this
transition (i.e., the difference between the normal voltage
drop and the voltage drop corresponding to the minimum
point B) amounted only to a few volts.

It seems interesting to measure the characteristic time
of this transition and to compare it with the relaxation
time in normal or abnormal regimes: while the latter
may be expected to be of the order of the time of ion drift
across the layer, the former is expected to be larger by a
factor of g '. Another very interesting question is
whether it is possible to stabilize section BF in experi-
ments of this type (that is, with an auxiliary discharge).
If the answer is positive, one can think of further experi-
mental investigations (maybe, with a number of neighbor-
ing discharges) in order to realize the stationary solutions
of the above-discussed type, current-voltage characteris-
tics with a break point being of particular interest.

With increasing pressure relatively more electrons have
low energies [22] and it may be possible that the average
energy becomes small as compared to eU. Thus it seems
interesting to investigate experimentally the transition be-
tween normal and abnormal regimes also at high pres-
sures: if the transition occurs discontinually without an
auxiliary discharge, it means that the ratio kT, /(eU) is
small and diffusion is not important as compared to drift.
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APPENDIX

Denote the coordinate of the peak of the domain by R.
Considering c as the large parameter we seek the asymp-
totic expansion valid in the vicinity of the point r =R as
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1f(r;c)=f, (p)+ —f2(p)+ . , p=(r —R)v'c
c

The solution may be expressed in terms of the modified
Bessel function of zero order Io,

(A 1) f4= 3 O( (A12)

The function f, satisfies

d'f i f,—+1=0,
dp

"fl "fl "fl
( —~)= (0)= (~)=0 .

dp dp dp

(A2)

Ci =C3(2~i/2c ) (A13)

where C3 is an arbitrary constant.
Matching leading terms of the expansions (A7) and

(A10) with the known asymptotic behavior of the func-
tion Io at large values of the argument we find the rela-
tionship between the constants C, and C3 ..

The solution of this problem is similar to (21),

f =3 tanh — —2 .i (A3)

The function fz satisfied the equation

d f2 1 dfi
, —2fif2= ——

dp
' R dp

(A4)

The asymptotic behavior of solutions of this equation
(which is necessary for the following matching) is as fol-
lows:

f2
=w ~exp( —v'2p)+, p~ —oo

f =iswexp(v'2p)+. . . , p~ ~
(A5)

where w5 and w6 are arbitrary constants. Multiplying
(A4) by df, /dp and integrating we obtain the relation-
ship between these constants

1

5v'2R
(A6)

To describe the range 0 & r & R we introduce the two-
scale asymptotic expansion

f(r;c)=1+f3(g, r))+ . (A7)

Here g=ri/c and ri=r are the fast and slow variables,
respectively; if& i

« 1.
The function f3 obeys the equations

~'f3 df3 ~'f3
2

—2f3=0,
~(

+2g
~(~~

=0 .

The solution is

C, C2f3
= —exp''2g+ —exp( —i/2g),3 v'g

(A8)

(A9)

where C, and C2 are arbitrary constants.
This solution has a singularity at r =0. That is why for

small r a new asymptotic expansion should be introduced:

f(r;e)=1+f4(g)+ (A10)

d df4
2f~=0, (0)=0 . —df4

dg'
(A 1 1)

The function f4 is asymptotically small (
~ f4' && 1) and

satisfies the equation and the boundary condition as fol-
lows:

Evidently, C2=0(C, ).
Matching leading terms of the expansion (A7) [that is,

the first term in the right-hand side of (A7) and the first
term in the right-hand side of (A9)] with the first term of
the expansion (Al) we find the constant C, :

C, = —12/R exp( —v'2cR ) . (A14)

The second term in the right-hand side of (A9) is of the
order of exp( —v 8c R ) as r ~R and cannot be matched
with the second term of the expansion (Al). Therefore it
should be supposed that w5 =0.

Asymptotic expansion which is valid in the region be-
tween the domain and the outer boundary of the circle is
similar to (A7),

f(r;c ) =1+f, (g, rI)+
( )

C4 C5f5
= —exp'/2(+ —exp( —i/2g),5 v'r)

where C4 and C5 are arbitrary constants, and
~ f~ ~

&& l.
Taking into account that 8f~ /8( equals zero at r = 1

and matching expansions (Al) and (A15) we find C4 and

C5 and obtain the equation determining the parameter R,

A15

C4= —12''R exp[v'2c (R —2)],
C~ = —12''R exp''2c R,
exp[v'8c (1—R )]=60R i/2c

(A16)

(A17)

Now the asymptotic solution is complete. The physi-
cal sense of results is quite clear. The expansion (A 1) de-
scribes the domain. As was expected, the form of the
domain differs from that in the planar case only in the
second approximation which is of the order of 1/v'c.
However, this approximation should be analyzed to
determine the position of the domain. It may be seen
from Eq. (A17) that the distance between the peak of the
domain and the boundary of the circle is of the order of
L(inc )/v'c and exceeds substantially the domain width
which is of the order of L/Vc. That means that the
domain moves to the boundary of the circle as c grows,
however its width decreases faster than the distance to
the boundary. Accordingly, the current-density distribu-
tion in the domain becomes closer to (21).

The expansions (A7) and (A10) describe the solution in
the region surrounded by the domain. This region is oc-
cupied by the cold phase. The perturbation due to the
domain presence which is described by the second terms
of the expansions decreases in this region from the values
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of the order of unity in the domain to the exponentially
small [of the order of Vc exp( —&2c )] value in the
center of the circle.

The expansion (A15) describes the solution in the re-
gion between the domain and the boundary of the circle.

This region is occupied by the hot phase, too. The order
of magnitude of the perturbation introduced by the
domain presence decreases here from unity in the domain
to c ' at the boundary.

*Permanent address: Institute for High Temperatures of
the USSR Academy of Sciences, Izhorskaya, 13/19, Mos-
cow 127412, U.S.S.R.

[1]D. G. Boyers and W. T. Tiller, J. Appl. Phys. 44, 3102
(1973).

[2] D. G. Boyers and W. T. Tiller, Appl. Phys. Lett. 41, 28
(1982).

[3] Ch. Radehaus, T. Dirksmeyer, H. Willebrandt, and H.-D.
Purwins, Phys. Lett. A 125, 92 (1987).

[4] K. G. Miiller, Phys. Rev. A 37, 4836 (1988).
[5] S. W. Simpson and C. A. Schmidt-Harms, Appl. Phys.

Lett. 52, 1950 (1988).
[6] M. S. Benilov, Zh. Tekh. Fiz. 58, 2086 (1988) [Sov.

Phys. —Tech. Phys. 33, 1267 (1988)].
[7] H.-D. Purwins, C. Radehaus, T. Dirksmeyer, R. Dohmen,

R. Schmeling, and H. Willebrandt, Phys. Lett. A 136, 480
(1989).

[8] H. Willebrandt, C. Radehaus, F.-J. Niedernostheide, R.
Dohmen, and H.-D. Purwins, Phys. Lett. A 149, 131
(1990).

'

[9] C. Radehaus, R. Dohmen, H. Willebrandt, and F.-J.
Niedernostheide, Phys. Rev. A 42, 7426 (1990).

[10] H. Willebrandt, F.-J. Niedernostheide, E. Ammelt, R.
Dohmen, and H.-D. Purwins, Phys. Lett. A 153, 437
(1991).

[11]M. S. Benilov and N. V. Pisannaya, Zh. Tekh. Fiz. 58,
2075 (1988) [Sov. Phys. —Tech. Phys. 33, 1260 (1988)].

[12] E. A. Coddington and N. Levinson, Theory of Ordinary

Differential Equations (McGraw-Hill, New York, 1955).
[13]J. D. Murray, Mathematical Biology, Biomathematics Vol.

19 (Springer, Berlin, 1989).
[14]Handbook of Mathematical Functions, edited by M.

Abramowitz and I. A. Stegun (Dover, New York, 1964).
[15]P. C. Five, Mathematical Aspects ofReacting and Diffusing

Systems, Lecture Notes in Biomathematics Vol. 28
(Springer, Berlin, 1979).

[16] G. Nicolis and I. Prigogine, Self Organi-zation in None
quilibrium Systems (Wiley, New York, 1977).

[17]H. Haken, Synergetics, An Introduction, Springer Series in

Synergetics Vol. 1 (Springer, Berlin, 1978).
[18]Y. Kuramoto, Chemical Oscillations, Waves, and Tur-

bulence, Spnnger Senes in Synergetics Vol. 19 (Spnnger,
Berlin, 1984).

[19]Yu. P. Raizer and S. T. Surgikov, Teplofiz. Vys. Temp. 26,
428 (1988) [High Temp. 26, 304 (1988)].

[20] S. Hollo and B. Nyiri, in Contributed Papers of XX Inter
national Conference on Phenomena in Ionized Gases (Il
Ciocco, 1991), edited by V. Palleschi and M. Vaselli,

(IFAM, Pisa, 1991),Vol. 2, p. 482.
[21] L. Rothhardt, in Proceedings of the 5th International

Conference on Ionization Phenomena in Gases (Munich,

1961) (North-Holland, Amsterdam, 1962), Vol. 1, p. 290.
[22] G. Francis, in Gas Discharges, edited by S. Fliigge, Ency-

clopedia of Physics Vol. XXII (Springer, Berlin, 1956), p.
53.


