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The many-body problem in a hot dense plasma is treated using the "effective one-particle" description
of density-functional theory. Three key ideas emerge, viz. , (i) the neutral-pseudoatom (NPA) concept to
describe a nucleus plus its electron distribution in the plasma, (ii) the concept of hopping electrons

describing the effect of the ion-distribution on the electrons, which are shown to exist as bound, hopping,
and free electrons, and (iii) the concept of the mobility edge replacing that of the continuum edge as we

go to denser plasmas. The NPA concept shows that the electron-density profile around an ion in a plas-

ma is very similar to that of the isolated neutral atom in a relevant configuration, and explains the ab-

sence of large polarization shifts predicted by simple plasma-screening theories. Several models of the
ion distribution are used to study level shifts as a function of temperature and density. The change of
continuum phase shifts with density is shown to give information about level formation. The appearance
of hopping electrons signals the breakdown of Saha theory and the need to evaluate the effective charge
Z of an ion in a dense plasma as a function of the ion distribution. The ion-correlation sphere is shown

to be the "optimal volume" that maximizes the number of hopping states in the plasma. The mobility

edge for the plasma percolation cluster is calculated and shown to depend on exchange-plus-correlation
effects of electrons and ions, a Friedel-sum contribution, and a percolation contribution.

PACS number(s): 52.20.—j, 05.30.—d, 71.20.—b

I. INTRODUCTION

An important question that has been repeatedly raised
[1—5] is the effect of the plasma environment on the
bound electron levels of an ion placed in a plasma. The
free-electron continuum is also changed by electronic and
ionic correlation effects, leading to a modification of the
density of states and a "lowering of the continuum edge. "
A knowledge of the bound energy levels, the density of
states, other properties of the continuum, etc., is basic to
microscopic calculations of plasma properties (e.g., plas-
ma partition functions [6], ionization balance, electrical
conductivity, opacities). Hence, any advance in our un-
derstanding of these matters is important.

Density-functional theory (DPT) provides a rigorous
method for constructing effective one-body electron and
ion equations leading to a set of "Kohn-Sham" (KS)
eigenfunctions and eigenvalues for the electrons, and dis-
tribution functions for the ions. Here "pair interac-
tions, " etc., have been replaced by effective one-body in-
teractions. But, as shown by the Hohenberg-Kohn-
Mermin (HKM) theorems [7], this is not an approxima
tion. However, the standard form of DFT is a static
theory. Hence, while thermodynamics and static trans-
port properties are rigorously given, dynamical proper-
ties require additional steps like the solution of the Dyson
equation for the quasiparticle energies (see Ref. [8]).
Nevertheless, in practice the KS equations give a good
first approximation to the quasiparticle energies and

eigenstates.
Here one may raise the question of ion and electron

time scales. Since electrons are affected by the "instan-
taneous" ion distribution, which ion distribution should
one use? For thermodynamics the equilibrium ion distri-
bution is relevant, and it is this that is picked up by the
HKM variational principle when applied to plasmas [8].
For other properties, the optimal distribution depends on
the time scales involved and on the nature of the plasma.
In many cases one may start from an equilibrium distri-
bution and consider fluctuations about that distribution.
This approach does not involve assumptions about the
Born-Oppenheimer approximation or mean-field approxi-
mations to pair forces, etc. , but merely a definition of an
exact model for static properties, one that needs further
theory (e.g. , Dyson equation, or microfield theory, etc.)

for handling time-scale effects. In this spirit a simple
quasistatic theory of transient states (hopping electrons)
will be discussed below.

The usual atomic-physics calculations for plasma do
not invoke DFT. The ion distribution is replaced by, e.g.,
a single nucleus in a Wigner-Seitz (WS) cell (as in the
T=O ion distribution). Single-particle bound states in the
cell are calculated using a one-body Schrodinger equa-
tion. The bound states have "average occupations" given
by the Fermi distribution. The free electrons cannot be
confined to a single cell and are roughly approximated by
a Thomas-Fermi model. Rozsnyai's average-atom (AA)
model (HopE code) [9] is typical of such approaches. The
Friedel-sum (FS) rule [10] is not satisfied in such models.
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The theory is greatly improved if the ion distribution
around the central nucleus is modeled so that there is no
ambiguity in defining boundary conditions for the contin-
uum states, permitting a full quantum treatment of the
whole spectrum. Liberman's INFERNO models [11],and
the model of Davis and Blaha [12] go in this direction.
The DFT approach also yields a set of one-particle KS
equations from which, by further approximation, these
AA models can be derived. Further, the DFT model is
constructed to give the correct Friedel sum. Chihara's
"quantal hypernetted-chain" theory [13] also uses DFT
within the language of the liquid-structure integral equa-
tions.

The objective of this paper is to relate the bound and
free KS levels of an ion in a plasma to those of the isolat-
ed atom and the isolated ion, clarifying the nature of
screening, ion correlations, and transient cluster struc-
ture in the plasma. The plan of the paper is as follows.
We show in Sec. II that the electron-density profile n (r)
around an ion placed in a plasma is quantitatively almost
equal to that of the corresponding neutral atom, estab-
lishing a charge-similarity principle (CSP). Thus, ions in
plasmas are neutral pseudoatoms (NPS's), a concept first
introduced explicitly by Ziman. This CSP clarifies
the failure of Debye-Huckel, Thomas-Fermi, or
hypernetted-chain descriptions of electron screening to
the calculation of level shifts in plasmas, and why the ex-
pected "plasma-polarization shift" [1] of bound states is
very small. The CSP is used in Sec. III to model plasma-
level shifts. The density and temperature dependence of
level shifts obtained from this CSP model (CSM) is com-
pared with detailed DFT results. The breakdown of DFT
at low densities due to the use of a single average
configuration is discussed in Appendix B via a study of
phase shifts and continuum resonances. In Sec. IV we in-
troduce the concept of hopping electrons and discuss
their role in the transition from strongly localized atom-
iclike states to fully delocalized continuum states. These
hopping-electron states define a mobility edge fixing the
onset of fully delocalized electron states. A combination
of Lifchitz, Anderson, and Mott mechanisms [14,15] con-
tributes to the mobility edge. Thus, we use the term
"continuum edge" to define the onset of the continuous
spectrum of a reference mean-field Schrodinger equation
for Hartree electrons. This gets shifted due to electron
and ion-correlation effects and exchange effects. We
reserve the term "mobility edge" for that shifted continu-
um edge that includes the effect of percolation clusters
arising from random ion-density fluctuation effects as
well. In Sec. V the density of hopping states filling up the
region between the last bound state and the continuum
edge is calculated and compact expressions are given.
The position of the shifted continuum edge is calculated
as a sum of chemical-potential shifts, Friedel-sum contri-
butions, and percolation-cluster effects. We present our
summary and concluding remarks in Sec. VI.

II. MODELING AN ION IN A PLASMA

We consider, to be specific, an aluminum ion Al
immersed in a plasma so that the nuclear charge Z=13,

(2.2)

The isolated-atom or -ion energies c.'; and c'; can be accu-
rately calculated. Since an ion in a neutral plasma would
be shown to behave as a NPA, the most useful reference
will be the isolated atom. In Sec. IIA we discuss the
NPA model, in Sec. II B numerical results will be given,
while in Sec. IIC we comment on Debye-type linear
screening models. In Sec. III we present a simple screen-
ing model arising from the results given in Sec. II C.

A. The neutral pseudoatom model

The calculation of the bound-state energies requires a
proper description of the screening charge n~(r) in and
around the ion in the plasma. This problem is equivalent
to constructing a NPA in a solid and has been discussed
at length in the theory of metals [16] by Ziman and oth-
ers. The main idea is to construct a weak scatterer,
essentially a neutral object whose Friedel sum [10] is
zero, to which linear screening as well as the superposi-
tion principle can be applied. The NPA is not an "aver-
age atom, " but for dense plasmas the most convenient
analog of Ziman's NPA would be a "neutral average
pseudoatom, " and we will continue to call it a neutral
pseudoatom for brevity and because the Friedel sum
would be constructed as in Ziman, but adapted for the
finite-temperature problem at hand. The correct calcula-
tion involves (i) a full quantum treatment of the continu-
um electrons so that the short-range correlations due to
the internal structure of the ion, orthogonality, and Pauli
exclusion are correctly treated, and (ii) inclusion of the
effect of the ion-density distribution p(r) around the ion
under study. A common approximation for p(r) is the
"jellium model" of uniform density p, in addition to the
central nuclear charge. In simple NPA approaches a
spherical cavity with a radius rws=(3/4rrp)' can be
used to simulate the WS volume of exclusion of other
ions by the central ion. The "ion plus its cavity" forms
the NPA having a zero Friedel sum. In the plasma (or in
fiuids) such a volume of exclusion is naturally described
[8] by the ion-ion-pair correlation function g (r), which is
related to the mean one-body ion distribution (p(r)) in
the presence of the ion under study, placed at the origin.
Thus

(p(r)) =Pg(r) . (2.3)

The use of (2.3) rather than the many-body instantane-
ous distribution p(r, , r2, . . . ), where r,. refers to the in-

stantaneous position of the ith ion, is an approximation if
the object is to study short-time-scale phenomena. But
the use of a one-body distribution is exact for static prop-
erties and is rigorous, as required by HKM theorems [7].

and the ionic charge is Z . In the following an energy
level i—:n, l in the plasma, in the isolated ion, and in the
isolated atom will be denoted by c~, c', , and c';, respective-
ly.

Hence we can define energy shifts referred to the isolat-
ed ion, or the isolated atom,

(2. 1)
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The systematic derivation of this model from the HKS
variational principle is given in Ref. [8]. The stationary
properties of the grand potential Q[n, p] as a functional
of the electron density n (r} and the ion density p(r), i.e.,
the properties 5Q/5n=O and 5Q/5p=O, lead to two
coupled equations, viz. , a KS equation for the electrons
and a Gibbs-Boltzmann equation for the ions. These are

(2 4)

p(r) =p exp[ f3V;(r—)), (2.5)

where the effective one-particle potentials V, (r) and V;(r)
are of the form

V, (r) = — —+ Vp(r) + V'„,(r)+ V (r), (2.6)

V;(r) =Z —+ V~(r) + V,'(r)+ V,"(r) . (2.7)

No two-body potentials appear in these equations. It is

emphasized that this not an approximation but a conse-
quence of the HKM property that 0 is a functional of the
time-averaged one-body densities, which are denoted for
brevity by n (r) and p(r), without the usual averaging sign
( ). To reemphasize this point, if an instantaneous
"snapshot" of the ion distribution is taken at some
time instant t, then p(r, t)= g;5(r —r;) where

[r„.. . , r;, . . . ] defines the instantaneous ion positions
at time t. The "external potentials" of DFT, defined by
(2.6) and (2.7) contain Vz(r), which depends on the aver-

age distribution (p(r)) =pg(r), as emphasized in Eq.
(2.3), since the thermodynamic potential Q depends only
on the time-averaged distribution and not on the instan-
taneous distribution.

Z is an effective ionic charge for the "field ions. " This
arises from using the simplest example of a pseudopoten-
tial, viz. , ZIr, of zero well radius [17,18]. The many-
body correlations and exchange effects are simulated by
the one-body exchange-correlation (xc} potentials V'„„
V, V,", and V,

' of DFT [19,20]. For example, if V,
' is not

retained the ion g (r}does not show oscillations typical of
strong-coupling correlations.

The Poisson potential V arising from the net charge
density Zp(r) n(r) also occurs—in Eqs. (2.6) and (2.7).
The densities p(r) and n (r) are determined self-
consistently from (2.4) and (2.5). The electron density
n (r) is

n (r) =nb(r)+En (r)+n,
nb(r)= g n; lP;(r)l, E; ~0

(2.8)

where n,- is the Fermi function of the bound energy level
i. The "displaced charge" of the continuum electrons
hn (r) is

«("}=22 (2I+1}nk[lykI(r}l' —1jkI(r)I'],

where jkI(r) is a spherical Bessel function. The continu-
um states Pkr and energy ek carry phase shifts 5kI. The
self-consistent solution must satisfy the finite-temperature
Friedel-sum rule and overall charge neutrality. The
Friedel-sum rule controls the self-consistent interplay of
bound, resonant, and free states (see Appendix B and Sec.
IV).

If we had not started from the DFT variational princi-
ple we would have had to write Eq. (2.4) for each instan-
taneous ion configuration, and that too only as a mean-
field (e.g., Hartree-Fock field) equation. On the other
hand, Eqs. (2.4) and (2.5) are not mean-field equations,
but proper many-body equations following from the
properties 5QI5n=0 and 5Q/5p=0 of the grand poten-
tial Q. However, the KS eigenstates and the eigenvalues
cannot be directly interpreted as physical one-particle en-
ergies, as given by the Dyson equation. (The same prob-
lem exists in cornrnonly used AA models, irrespective of
the model used for the ion distribution. ) Further, in this
model n and p have spherical symmetry, because they re-
sult from a double average, one on the electronic
configurations and another on the ionic configurations,
after having placed the nucleus to be studied at the ori-
gin. This ion at the origin is similar to an "impurity"
embedded in an initially uniform system. Thus
n (r) =ng„.(r), where g„.(r) is the probability of finding an
electron at the distance r from the central ion. This DFT
treatment produces one-particle eigenstates that provide
an exact treatment of the ion-ion and ion-electron distri-
bution functions needed for thermodynamics, linear stat-
ic transport coefficients, etc. It is clearly more useful
than a table of eigenvalues and eigenfunctions obtained as
a function of a very large number of arbitrary instantane-
ous ion configurations.

Equation (2.4) decouples from Eq. (2.5) under the
weak-scatterer assumption. Then the screening distribu-
tion n (q) is a superposition

n (q) = n"'(q)S (q), (2.9)

B. The position of the continuum edge

The bulk-plasma chemical potential is the zero of ener-

gy in these calculations, and defines the onset of the shift-
ed continuous spectrum of the effective Schrodinger
equation given by Eq. (2.4) containing exchange and
correlation effects. The explicit shift in the electron
chemical potential due to exchange-correlation interac-

where n'"(q) is the screening profile associated with a
single ion. If the ion distribution could be frozen in a lat-
tice, each ion occupies a Wigner-Seitz sphere and
p"'(r)=0 for r (rws and p'"(r)=p for r ) rws The to-.
tal ion distribution p(r) is also a superposition based on
S(q). The screening charge n'"(r) associated with an ion
placed in the cavity like ion distribution p"'(r} can be
calculated using the KS equation, and then the effect of
the cavity can be subtracted off using perturbation
theory. Where applicable this is simpler than solving the
coupled equations (2.4) and (2.5). Perrot [16] has given
calculations for liquid simple metals and plasrnas using
this approach to the NPA.
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tions is

bp=bp„, (n)+bp„(p, n) . (2.10a)

beFs= lim —
pm Zp(k)/k . (2.10b)

The finite-temperature phase shifts are known from the
solutions of the plasma Kohn-Sham equation (2.4) and
hence (2.10b) can be evaluated (note: AA models using a
Thomas-Fermi continuum provide no phase shifts). An
additional shift of the continuum edge (to give the mobili-

ty edge) will be discussed in Sec. V.

C. Numerical results from the neutral-pseudoatom model

In Fig. 1 we show as triangles the NPA calculation of
the electron density n~(r) for an Al + ion in the plasma.

10

Ap„,(n ) is negative and is the lowering of the continuum
due to exchange and correlation. The other term covers
electron-ion-correlation effects [20]. The Debye-Hiickel
(DH) limit of p„, is —kDH/2, where kDH is the DH
screening momentum. Evaluation of p„, for arbitrary de-
generacies is given in Ref. [20]. An additional shift of the
continuum arises from the presence of ions in the plasma
that produce phase-shifted continuum states. Let No be
the integrated density of states in the absence of the ionic
potential, which becomes N in the presence of an ion.
Then, if ZF(k) denotes the Friedel sum [10], AN
=N —NO=ZF(k). The density of states Uo(E)=dNo/de.
Hence vo(E ) = bN /—b, e and the energy shift per ion is

b 8 = ZF(k)—/No = mZF(—k)/Bk

where 8 is the volume of the system. If N ions are added,
and if the effect is taken to be additive (linear theory), the
bottom of the continuum would be lowered by the
amount

This n~(r) is made up of the bound charge nf(r) plus den-
sity displacement b, n (r) plus uniform electron density n

The NPA is calculated using the Kohn-Sham equations
and taking the uniform ionic charge density outside the
cavity to be pZ. We also show the NPA An (r), the De-
bye hn, (r), and the electron density in an isolated Al
atom. The Debye b, n (r) is for a point charge Z in jelli-
um. The Debye b, n (r) for the point charge in a cavity in
jellium does not differ visually for r shown in Fig. 1. In
Fig. 2 we give similar results for aluminum and carbon
plasmas. It is evident that the Al ion or the C ion, to-
gether with their screening charges, look very much like
the isolated atoms, except that in the isolated atom the
electron density decays exponentially to zero, while in the
plasma n (r) drops towards the mean density n. Instead
of using a cavity, if the ion profile p(r) were optimized us-

ing Eq. (2.7), the same conclusion regarding the similanty
of the screening charges of isolated atoms and ions in
plasmas would hold. We call this the "charge similarity
principle" (CSP). This is mainly a result of the ortho-
gonality of continuum states to core states, which strong-
ly reduces the penetration of free electrons into the
atomic-core region.

Figure 2 indicates that the continuum electrons associ-
ated with the Al pseudoatom manifest themselves as a de-
viation from the isolated atom electron-density profile for
r ~1.5 a.u. This may well be taken as the size of the
average atom, viz. , r„ in the plasma at this density and
temperature. As the ionization is increased r, shrinks,
but the n (r) for r (r, continues to obey the CSP.

D. Comment on linear-response models

The plasma effect is often treated by the Debye-Huckel
or the Yukawa screening approach. Studies of plasma
polarization shifts were motivated by the simple screen-
ing ideas that were current in the 1960's. But DH screen-
ing has been used even in recent plasma level-shift calcu-
lations [21]. It is currently used, without much discus-

Debye

10

o
C:

10

-3
10 I I I I I I I I I I I I I I I I I I I I I I I

2.00.0 0.5 1.0 1.5 2.5
r(a.u. )

FIG. 1. Electron-density profile n (r) in an isolated Al atom
is shown (solid line) together with the n (r)=nb(r)+En(r)+n
at an Al+ ion in a plasma (triangles) calculated from the
Kohn-Sham equations (NPA model). The Debye-Huckel
electron-density enhancement hn (r) should be compared with
the An(r) from NPA for the same ion. The plasma electron
density n =0.0135 a.u. (9.1 X 10' electrons/cm') and tempera-
ture is 4TF (i.e., 29.53 eV). The shallowest "bound-state" ener-

gy is = —0.843 eV (3p state).

0.0 0.5 1.0 1.5
r (a.u. )

2.0 2.5

FIG. 2. Electron-density profiles n(r) in isolated Al and C
atoms are compared with the NPA density profiles for the Al
and C ions placed in their respective plasmas. The Carbon n (r)
has been scaled down by 10. The nominal neutral-pseudoatom
radius is r, .
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sion, even for very-dense-plasma microfields [22] and
opacity calculations.

Although DH theory is applicable to the screening of
two well-separated weak static charges, or a weak pseu-
dopotential, it is inapplicable to ions with bound states, at
length scales corresponding to the bound charge distribu-
tion, as seen from Figs. 1 and 2. Debye-Huckel,
Thomas-Fermi, or classical hypernetted-chain (HNC)-
type calculations [23] fail to describe screening electrons
in the presence of bound electrons, not only because of
the need to account for nonlinear effects, but also because
the screening (i.e., "free") electron states have to be or-
thogonal to the core states. Average atom treatments
where the core states are solutions of a Schrodinger equa-
tion while the continuum states are treated using a
Thomas-Fermi approximation [9] also miss orthogonality
corrections and are not trustworthy except in extreme
conditions of temperature and (or) density.

In linear-response theory (LRT) the bare-electron —ion
interaction (using A =e =m = 1 a.u. ) given as
V„=—

Z * /r or as V„(q ) = —4m.Z ' /q becomes the
screened potential

V&(q)= V„(q)/~(q),

e(q) '=1+ V~g(q) .

(2.11a)

(2.11b)

Here e(q) is the plasma dielectric function, y(q) is the
electron-response function, while V =4m/q is the bare
Coulomb potential. If the small-q limit of the simplest
model of y(q) is used, then the screened potential be-
comes

V~(q)= —4n.Z*/(q +k, ), (2.12a)

—k, r
Vi,'(r) = —Z*e ' /r (2.13a)

and

n~(r) = n exp[ PV~ (r)], — .

An~(r) =n~(r) —n = —n pVi';(r) .

(2.13b)

(2.13c)

This DH profile hn (r) at an Al ion in a plasma is
shown, together with that of the electron distribution
n (r) in an isolated Al atom in Fig. 1. The DH profile
predicts a large (incorrect) charge pileup inside the atom.
Also, the changes in the electron-ion interaction V~. shifts
the energy levels of the ion. From a first-order perturba-
tion we have

bc) '=(P;HZ*[1—exp( —k, r)]r~P, ) =Z*k, . (2.13d)

where the square of the screening momentum k, is given

by

k, =kqP nkdk . (2.12b)
0

Here kr„, the Thomas-Fermi momentum (4ar, /m. )'
and k are in units of k~, with k~= 1/ar„a=( —9ir)'
and r, =(3/4nn )'i . The Fermi function nl,= [expP(E+k —p, )+ I ] '. The screening wave vector
k, goes to kz„or k~z as T~O or T~ ~, respectively.

Consider the electron-density profile n i'( r) formed
around the ion in the plasma. We have, for DH,

Instead of using perturbation theory, the Schrodinger
equation with the DH potential [21] Vi';, or with a poten-
tial derived from an HNC calculation for the electrons
[23] may be solved. Unfortunately, such calculations for
level shifts miss the relevant physics.

III. SIMPLE APPROXIMATE FORMULAS
FOR SCREENING AND LEVEL SHIFTS

The charge-similarity property CSP of the isolated
atom and the plasma pseudoatom suggests that we may
use the energy levels c, '; and c.'; for the isolated ion and the
isolated atom to interpolate to the energy level of the

plasma pseudoatom. Such a charge-similarity model
(CSM) clarifies how energy levels are shifted by plasma
effects and shell effects. We also compare three models
where the plasma ions are modeled as a jellium, a jellium
with a cavity, or by the self-consistent DFT distribution.
We compare the trends in temperature and density ob-
tained from the detailed DFT calculations with the pre-
dictions of the present CSM. In Appendix A we develop
simple formulas that can often be used without the perils
of DH theory.

Let i,j denote bound levels (=—n, l) while the "free"-
electron states k, l (the continuum) are collectively treated
as a "shell" denoted by f. In the NPA model the free
electron shell f is largely outside the atom for r & r, . The
electron occupation number of the level i is n;, while nf
denotes the number of free electrons in the NPA, i.e., on
integrating over r )r, .

The energy of the ith level of an ion in a plasma can be
written as

ei'=c.';+(P;ihV~ '+b V~, '~P;) . (3.1)

(3.3)

where V'„', ( n ) is the Kohn-Sham exchange-correlation po-
tential at temperature T. The ion-electron and ion-ion
correlation potentials V,

" and V,
' also contribute in the

same way but we disregard them in this discussion. For
j=f, i.e., for the free-electron density n&~(r), the atomic
term nf'(r) is zero but, because of the neutralizing charge
density of the ionic background we use hnfi'(r)
=[nf(r) ng(r)] instead of nf—J'(r) in (3.3). Hence we
write (3.1) as

Et'=E', + g' V,, [n,~ n,']+ ( Vf—hnfi'),
J

(3.4)

where the free-electron term j =f is given as the last
term. The "matrix elements" V," in (3.4) contain electro-
static and exchange-correlation contributions (in a DFT
sense). The level shift arises from the discrete levels j as
well as the plasma effect term j =f. When the ion is

The Coulomb term A V~ ' is

b, V," '= g' f dr'[nf (r') —nf(r')] ir —r'i . (3.2)

J

The primed summation implies j Wi The e. xchange-
correlation correction (correct to first order in Qn ) has
the form

b, V~, '= g' jdr[n~(r) —n'(r)]5V'„;(n) 5n (r),
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TABLE I. Kohn-Sham eigenvalues for Al + ions in their ground state in free space. Only occu-
pied states are given. The energies are in hartrees and are negative. An exchange-correlation correc-
tion in LDA has been included.

Z*
Level

1$

2$

2p
3$

3p

55.168 19
3.935 36
2.564 42
0.28645
0.102 24

50.481 23
4.242 615
2.872 10
0.546 65

55.945 66
4.693 08
3.322 54
0.877 24

56.474 12
5.201 24
3.830 37

58.082 22
6.433 66
5.096 99

59.866 17
7.758 11
6.473 86

+ Vz, 3 (n ( n3 )+—( Vz, &bnf ) . (3.5)

The principle plasma effect is found in the last term and
we concentrate on that. The 2s electron is practically in-
side the atom, i.e., r2, &r„and Vz, & is just the Coulomb
interaction 1lr. Hence the last term of (3.5) is

placed in a plasma, the main effect is to change the n~

while the matrix elements V; remain more or less un-

changed. These matrix elements can be evaluated from
the energies c,' and c'; of the isolated ionic species and the
isolated atom, respectively. Such a set of energies for Al
is given in Table I. Tables II and III give results of KS
energy-level calculations for plasmas and provide a
means of testing the model (CSM) presented here. This
model is in many ways similar to the "inner-
screening —outer-screening buildup" model discussed by
More [24j, where the level energies are taken as simple
functions of the level populations.

As a specific example let us consider the energy level 2s
of a once ionized Al species, viz. , Al'+ in a plasma (e.g. ,

at density=0. 008 437 5 a.u. , i.e., —,', of the normal density,
see Table II for DFT results). Taking the isolated atom
as the reference we can write, frotn (3.4),

+ V2, 3

( Vp fAn J ) = I bnf (r')4rrr' dr' Ir'
a

(3.6)

Unlike DH theory, here the charge pileup interacts
with the electron in the ith level and does not directly
screen the electron-nuclear interaction since the charge
pileup (see Fig. 1) close to the nucleus is small due to
orthogonality and other quantum effects responsible for
CSP. The density and temperature dependence of the
level shift implied by (3.6) is more complicated than from
DH theory, which gave in Eq. (2.13d) a linear depen-
dence in k, Z'. Appendix A shows that the shift could be
proportional to the k, , Eq. (2.12b), or to a higher power.
In Fig. 3 we plot the DFT-calculated plasma-atom energy
shifts he~ 'i =a~—c', for several i, as a function of k, ,
for several plasmas (some of the data are in Tables II and
III). The k, dependence expected from CSM is seen in

Fig. 3(a) where the results of DFT energy-level shifts for
the Al and Ca plasmas are displayed. At T=O the k,
dependence implies an n ' dependence on the density.
In the classical limit this becomes n!T, whereas the be-
havior at finite temperature given by DFT is more corn-
plicated. Figure 3(b) shows the temperature dependence
at a fixed density for the 3s-Ca level and the 2s-carbon
level. Clearly the simple theory is useless for the Ca-3s

TABLE II. Kohn-Sham energy levels (hartrees) of An Al-ion placed in a plasma modeled by jellium

(J) or jellium with a cavity (C). The electron density is 0.0008437a.u. (-5.69X10 ' e/cm'), i.e.,
r, =6.565 a.u. The energy s„l, Fermi occupation factor f„, , and the orbital radius (r„, ) are given

where relevant. The Fermi temperature TF= 1.16 eV (=0.0426 hartrees).

T=O T 2TF T =4TF

&4s

4s

3.7685

2.3975

0.120 61
1.0
2.619

3.7493

2.3781

0.11542
1.0
2.692

3.8591

2.4879

0.198 51
0.7505
2.550

0.018 80
0.2677
3.973

4.0674

2.6962

0.338 32
0.4132
2.380

0.13052
0.1727
3.012

0.00404
0.090 54

11.566
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TABLE III. Comparison of energy levels (hartrees) from three models of the ion distribution (a) jelliurn, (b) self-consistent spheri-
cally averaged ion profile pg(r), and (c) jellium with a cavity of radius rs. The calculations are at n=0.0135 a.u. , i.e., 9.11X10
e/crn .

T=TF (7.38 eV)=0.2712 a.u.
p= —0.00565 a.u. , p„,= —0.26187 a.u.

T 2TF
p= —0.66730 a.u. , p„,= —0.230145 a.u.

Level

1s
2$

2p
3s
3p
Z

Jelliurn

—54.876
—3.660 92
—2.288 85
—0.081 98

2.0485

Profile

—54.801
—3.5752
—2.2039
—0.046 48

2.2030

Cavity

—54.765
—3.5275
—2.1564

3.002 18

Jelliurn

—55.219
—3.9331
—2.5659
—0.185 79
—0.008 975

1.4321

Profile

—55.137
—3.8318
—2.4661
—0.1123

2.7969

Cavity

—55.079
—3.7554
—2.3906

3.2470

level. When a fully self-consistent ion profile is included
[in the sense of the DFT equations (2.4)—(2.7)] the results
are intermediate between those of jellium and cavity
models (see Table III). As seen in Fig. 3(a), the linear be-
havior breaks down for low densities (k, ~0 limit) even
for the T=O limit. The data in Figs. 3(a) and 3(b) do not
give a zero shift in the k, ~0 limit. We discuss this case
in detail in Appendix B, as it brings out the role of con-
tinuurn resonances, etc. , in determining level formation.

IV. HOPPING ELECTRONS
AND QUASILOCALIZED STATES

Solution of the Kohn-Sham equations for the ion-
profile model [cf. Eqs. (2.4) —(2.7)] provide KS eigenstates
for the charge-neutral ion-electron system contained in

1.00 0.8
Ca (

0.75

E
o
I
O
E
8 050—
CL

cl Ca& (plasma-atom)

0.00

(a)

0.6

0.4

0.2

C2, (plasma-atom)
0.0

t
(b)

I

blue shift

I I I-0.2
0.0 0.5 1.0

k 2 (a.u.)

1.5 0.0 0.2 0.4 0.6 0.8 1.0
(a.u)

FIG. 3. (a) Energy shift b,c~ ' for i =2s and 3s for Al and Ca
ions in their plasmas (jellium model) as a function of the screen-
ing wave number k, =4/(mar, ) at zero temperature and as a
function of the density. The Al density range is 5.7X10 ' to
1.8X10 electrons/cm . The Ca density range is 8.4X10 to
5.4X10 electrons/crn . (b) Energy shift he~ ' for i =2s and
3s for Ca and C ions in their plasrnas as a function of the screen-
ing wave number k, at fixed density and as a function of the
temperature. The Ca and C densities are 2.7 X 10 and
5.1X10 ' electrons/cm', respectively, while the temperature
range is 0.5T+ to 2TF in both cases, where T~ is the Fermi tern-
perature.

= b —nbZ hop T core (4.l)

where nT is the total number of electrons in the bound
spectrum of the DFT calculation [i.e., the sum of elec-

the correlation sphere (radius Rg = 10rws ), consisting of
the central nucleus and a spherically averaged cluster of
some 1000 plasma ions. Three types of electron eigen-
functions are obtained.

(i) Solutions that asymptotically tend to free-particle
wave functions, i.e., phase-shifted spherical Bessel func-
tions for r &Rg, the ion-correlation sphere radius [for
r &R the pair-correlation function g, , (r) is essentially
unity]. These have energies s & 0.

(ii) Solutions that decay exponentially to zero within a
length scale r, & r & R and have energy c ~0. Here r, is
the size of the plasma pseudoatom such that the electron
density n (r) is essentially that of the isolated atom (see
Fig. 2). Note that r, is (rws

(iii) Solutions that decay exponentially to zero within a
length scale r ~ r, & rws, and have energy c & 0.

The electrons of type (iii) are the core electrons, i.e.,
electrons essentially bound to the central ion. Let the
number of these bound electrons per ion, obtained by in-
tegrating the density n„„(r) defined by eigenstates of
type (iii) alone, be n„„. The electrons of type (i) are not
localized with respect to any nucleus; they are the free
electrons nf. The electrons of type (ii) are bound to the
central ion and its associated ion distribution. The ion
distribution actually consists of a time-evolving cluster of
nuclei, and the electrons bound weakly to any ion in this
dynamic cluster may be pictured as hopping among the
quasilocalized states centered on each nucleus. We
denote the number of such bound electrons per ion as
Zz,p=nh, p. Since the cluster has been replaced by an
average distribution, the KS eigenstates obtained for the
average distribution represent the time-averaged en-
velopes of the transient multicenter eigenstates (hopping
electron states) found in the plasma.

The effective charge Z* to be ascribed to the central
ion depends on energy scales and time scales. Since only
electrons of type (iii) may be considered as true bound
states associated with individual ions in the plasma, a
strict definition would be to set Z*=Z —n o The num-
ber of hopping electrons visiting any ion is given by
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trons in categories (ii) and (iii)]. However, for certain
physical processes some of the hopping electrons may
behave as bound, while for others they may appear as
free. This is particularly relevant to calculations of the
frequency-dependent conductivity ~(co) in a plasma.
Further, the effective charge Z* relevant to a given static
process cannot always be identified with the global plas-
ma neutrality parameter Z such that n =Zp. Also, as
seen from Table III, in many cases the estimate of Z de-
pends significantly on how the ion distribution is
modeled. Thus, in Table III, Z for the jellium model is
1.421, while that for the cavity model is 3.2470. Under
such circumstances the NPA superposition assumption
implicit in Eq. (2.9) that the cavity is a small perturbation
on the energy levels is clearly inapplicable. [Also, stan-
dard AA models (e.g. , HOPE, INFERNO) would yield in-
correct values of Z" ]. Hence the coupled variation of
both n (r) and p(r) implicit in the full DFT equations
(2.4) and (2.5) becomes relevant. Theri Z is found (in the
column "profile" in Table III) to be =2.8.

In Chihara's [13] "quantal hypernetted-chain" ap-
proach to strongly coupled plasmas he defines an effective
ionic charge Zch;„.,„,=Z —n T, and hence ascribes all the
bound electrons to the central nucleus. This may still be
satisfactory at very low temperatures (e.g. , in liquid met-
als) and for simple metallic systems (e.g. , sodium, lithium,
etc. j. However, in hot plasmas the quasilocalized hop-
ping extends over an energy range comparable to k&T
and Chihara's model, where Zch, „„.„„, plays a central role
in controlling bound-free interactions, etc. , may lead to
significant errors. Rozsnyai (see Ref. [9]) has recently
calculated AA energy levels in an ion profile and divided
the bound electrons nz into a . part [1—

g (r)]nr ascribed
to the central nucleus, and a part g (r)nT ascribed to the
ion distribution. In calculating opacities he even parti-
tions dipole matrix elements in the same manner. How-
ever, different eigenstates (e.g. , P, and P ) have different
extensions into the ion distribution and hence (P, ~rl&t&& )
cannot be meaningfully partitioned. The ad hoc division
of nT in terms of g (r) is seen to be invalid if we consider
the jellium limit where g(r)=l for all r. Then, in
Rozsnyai's model [1—g (r)]nT" is zero and the central nu-
cleus cannot be assigned any bound electrons, although
an independent calculation with a jellium background es-
tablishes otherwise. Further, Rozsnyai treats the contin-
uum electrons using a Thomas-Fermi model. Also, stan-
dard microfield methods assume a uniform neutralizing
background, and cannot be used with AA models con-
taining an ion profile to calculate opacities since ion-
screening effects get over counted [25].

The delocalization of a bound state to become a free
state when the density is increased does not induce
discontinuities in the thermodynamic functions of the
plasma [26]. However, it may be associated with the for-
mation of resonant states that have positive energies c.,
but a pronounced localized character (particularly for
high 1 values) in some regions of space and an itinerant
charge in other regions, as a result of tunneling. The ex-
istence of high peaks in the density of states reAects the
existence of such levels, as illustrated in Fig. 4. Resonant

100 0 — Resonant state contribu

Al plasma, T=20 eV

75 0 — 2 27x 1 022 eP ln (0 0P3

50.0

25.0

0.0

-25.0
0.0 0.2 0.3

k (a.u.)

FIG. 4. Partial density of states vI(k) for the l=2 state show-
ing resonant character for Al at 20 eV; the ion distribution is
modeled as a cavity in jellium.

(bound electrons)~(free electrons)

has to be replaced by equilibria involving bound
electrons, hopping electrons, and free electrons, via
three channels [(bound)~(hopping), (bound)~(free),
(hopping)~(free)]. In fact, even in dilute plasmas, the
ionization process probably proceeds via hopping states
and not via the simple ionization process implicit in the
Saha equation.

V. THEORY OF THE MOBILITY EDGE
AND HOPPING STATES IN A PLASMA

The local cluster of ions defined by the g (r) and higher
correlation functions defines a disordered structure to
which many of the ideas of electron localization and the
formation of the mobility edge could be applied. If each
ion center is called a site, Anderson's localization model
treats the effect of variations in the on-site (or diagonal)

states contribute more or less to the ionization Z*, and
their effect on various properties may be difticult to ana-
lyze in simple models. At low temperatures they are re-
sponsible for the differences between simple metals and
transition metals where the description of the total elec-
tron density as a superposition of pseudoatom densities
break down. Fortunately, in general the importance of
resonant states decreases with temperature.

Within this picture of hopping states in a transient ion
distribution, the ionization of a bound electron in a plas-
ma proceeds by the following steps: (i) the transfer of a
bound electron to a hopping-electron state defined on a
small part of the local cluster, (ii) transition of the elec-
tron to other (higher-energy) hopping states extending
over a larger volume of the cluster, and (iii) eventual pas-
sage into the full delocalized, i.e., continuum states of the
plasma, depending on the kinetic energy available to the
ionizing electron. Thus the simple Saha picture (valid for
nearly "ideal" plasmas) as a single-channel equilibrium of
the form
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E,=~P+~e Fs+E (5.1)

one-body potential as an electron hops from site to site,
while the intersite interaction ("hopping" or "off-
diagonal" matrix element) remains constant. In a plasma
the hopping energy for electrons changes as the ions
move to and fro. Hence off-diagonal disorder (the
Lifshitz localization model) is also relevant in a plasma.
The hopping is strongly controlled by whether a site is
occupied or not. Hence the on-site Coulomb correlations
("Hubbard's U") central to the Mott mobility edge come
into play. All these complicated effects control the densi-
ty of states near the a=0 energy region. The static
(DFT) picture treats the hopping electrons and their
eigenstates only in terms of the time- and angular-
averaged envelope described by the n t, (r) obtained from
the DFT calculation. Explicitly multicentered Kohn-
Sham codes are now available [27], but such calculations,
using very limited basis sets, less than a hundred atoms,
translationally invariant boundary conditions, etc., are
not as trustworthy or as useful as conceptual models that
reveal the physics of the process. Up to 30 ions are used
by Younger et al. [28] and correspond to a cube of
=3rws along each side —thus the first peak of g (r);; will

not be fully treated, and no correlations beyond the first
neighbor exist unless more ions are included. Also, as
previously remarked [18],multicenter effects are not very
pronounced in dense plasmas.

The DFT calculation with an ion profile p(r) =pg (r)
provides us with the time-averaged and spherically aver-
aged density nh, of hopping electrons. The density of
states U(E) of these hopping states (i.e., prior to the
averaging) fill up the energy "gap" between the last
bound state of the ion and the nominal continuum edge
whose position has been lowered due to (i) exchange-
correlation effects of electrons and ions (by an amount
hp), as discussed in the context of Eq. (2.10a), and (ii) by
the Friedel sum b,e„s given as Eq. (2.10b). However, the
"physical" onset of the continuum will be further
changed due to the existence of the hopping density of
states U(E), where E is numerically a negative energy.
There will be some energy E within the energy range of
v (E) such that states with E )E will overlap
sufficiently with other such states of neighboring tran-
sient clusters, forming a "percolation cluster" of infinite
extent. Electrons in such energy states (i.e., E )E ) can
diffuse to infinity even though they are in localized states.
Electrons in energy states, such that E &E, do not form
an infinite percolation cluster and they remain localized
for long times. The energy E is called the mobility edge
and defines the physical onset of the continuum. Thus
the energy of onset of the continuum can be given as

the theory of disordered systems [14] and construct a
simple model relevant to hot dense plasmas from which
numerical estiinates of E and v(E) can be obtained.
The results obtained from the present simple model [29]
have been confirmed by more sophisticated techniques
[30—32] (path-integral techniques, field theories, replica
tricks, etc.). We assume the following model Hamiltoni-
an:

H =Ho+H),

Ho = (p /2m, )+Eo,
H, =

g u(r —r, ) —Uo .

(5.2)

(5.3)

Ho is the kinetic-energy term of the hopping electron,
and Eo contains constants needed [cf., Eq. (5.1)] to define
the energy zero. The potential u (r r, )

—is the energy of
interaction of an electron at r with an ion centered at r;.
Hence u (r —r; ) can be represented by a screened pseudo-
potential of the form

Z,*
u (r) = — exp( —kscr)r+r, (5.4)

U =(p p8) f —
2

u (r, —r2)dr, dr&,
1

(5.5)

where the integration is over the cluster volume L As in
Friedberg and Luttinger [30], isoperimetric arguments
could be invoked for considering 8 to be spherical and
having a radius r&. The kinetic energy of localization of
an electron in 8 is given by

where r is a radial distance and r, the radius of the atom-
ic core, already introduced in discussing n„„. We can
choose ksc so that it, when used in linear-response theory
(LRT), reproduces the free-electron density hn(r) ob-
tained from DFT. This is not LRT and hence the previ-
ous symbol k, [see Eq. (2.12b)] is not used for the screen-
ing wave vector. For strongly coupled plasmas
ksc=1/R where R is the radius of the correlation
sphere defined by g(r) such that all its principle oscilla-
tions are contained within R and g (R ) = 1. The mean
energy Uo occurring in (5.3) is the average potential given

by integrating over the ion distribution, and is already
treated in the DFT calculation.

Consider a cluster of p ions, in a volume 8, transiently
occurring as a deviation from the normal density back-
ground. The lifetime of such a cluster is of the order of
an ion-plasma oscillation that is long compared to elec-
tronic processes and hence H, of Eq. (5.3) applies. The
potential fluctuation associated with the cluster is

Eq=(~ /2rq)A' /m, . (5.6a)
The quantities on the right-hand side (5.1) are usually

negative and hence they lead to a "lowering of the contin-
uum. " The theory of the density of localized states U (E)
as well as the associated mobility edge E is very compli-
cated. Highly formal theories have been constructed,
especially for zero-temperature systems with special re-
strictions on dimensionality (e.g., one-dimensional sys-
tems), interactions, etc. Here we use the basic ideas of

For large enough volumes 8, the distribution of levels for
E —U)E& is quasicontinuous. A study of the depen-
dence of Ez and v(E) by Chan, Louie, and Philips [29]
on U for a variety of well shapes and models shows that
there are three distinct regimes for the three-dimensional
problem. These are where logu(E) is (i) Gaussian in ~E~

for deep-lying levels, (ii) quasilinear in ~E~ for a large
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(5.6b)

We use fE& as the cutoff where f will be chosen, follow-
ing Kane [29], to normalize the distribution. The nor-
malization condition (including a spin factor of 2) for
u, (E) is

E~
2f u, (E)d (E —U) =1

and determines f to be 0.84. (A more systematic pro-
cedure is to numerically solve for the energy states of a
spherical well given by the condition acot(arv)=13,
where a=[2m(E —U)]~', P=[2m( E)]'~ —and use
the resulting distribution of energies. The present simple
approach yields very similar results . )

For noninteracting particles, the Poisson distribution
can be used for the probability of occurrence of a cluster
ofp ions in a volume B. We have

Po(p, 8)= exp( —p8) .
(p&)~

p1
(5.7)

For p interacting particles the interaction energy E(p);„„
calculated as a sum of pair potentials constructed from
the electron-ion pseudopotential of Eq. (5.4) has to be
included via a Boltzmann factor of the form
A exp[ PE(p);„,]. —The constant A is determined from
the normalization of P(p, 8)=PO(p, d)A exp[ 13E(p);„,]. —
That is,

g P(p, B)=1 . (5.8)

The contribution to the density of states from all clus-
ters requires a summation over p of u (E) of each cluster
weighted by P(p, 8). If the total volume is 0 there are
0, /8 cluster volumes that contribute. Converting the p
summation to an integration, we have, for the whole plas-
ma with volume 0, on including the factor 0/8,
v (E)=(m, ~ A )Qm. f [2(E —U) ]'~ P (p, 8)dp

for E —U ~ fE& . (5.9)

The volume 8 occurring in (5.9) is chosen so that the
number of states below the nominal continuum edge [the
zero of potential in H, Eq. (5.1)] is a maximum. That is,
we require to choose the radius r z such that

N(0)= f v(E)dE (5.10)

is maximized. The analysis can be easily carried through
using Pu(p, 8). The probability factor Pu(p, 8) has its
maximum value at p =p6. Using Stirling's approxima-
tion for p f, and expanding about the average number of

range of energies [30], and (iii) has a ~E~
' dependence in

the Halperin-Lax [32] regime, for very small energies
near the continuum edge. The free-particle distribution
u (E) behaves like ~E~

' and hence logv (E) falls into the
quasilinear regime. We model the density of states for
the given cluster in the spherical well as

(m,3~2fi 3)w ~8[2(E —U)]'~ for E —U ~ fE&
v, (E)=

0 for E —U (fE~ .

particles in the volume, viz. , p8, we obtain

Po(p, 6 ) = (2~pB )
' exp[ —(p p—8) l2pP] . (5.1 1)

Hence the probability distribution can be written in
terms of Uas

P ( U) = (2~NO )
' exp( —U l2w),

2w =NoE A'o =P8

K= f u(r~ —r2)dr~dr2 .
1

(5.12)

The constant Xo is the number of particles in the op-
timal fluctuation volume 8 (i.e., the volume of the corre-
lation sphere). The fluctuations of the potential about the
mean potential follow a Gaussian probability distribution
with m playing the role of a variance. In this problem the
(screened) Coulomb (SC) interactions are short ranged
and the present result may be regarded as a manifestation
of the central limit theorem, although we have not in-
voked it in our derivation. Using Eq. (5.12) in (5.9), the
hopping electron density of states becomes

v (E)=(m,'"a ')nrr '"q-f ' [-2(E/g —z)]'"

g=(2w)' =(2Nu)' K

Xexp( —z )dz, (5.13)

(5.14)

The constant g defining the energy spread can be cast
into a more transparent form if one notes that

&o = e ksc kscr& = 1
2 (5.15)

for the choice of 8 that maximizes N(0) of Eq. (5.10).
This analysis does not recover the Halperin-Lax [32]

regime close to the nominal continuum edge (this is a
very narrow regime of energies and is probably unimpor-
tant to us). Energies very close to the continuum edge
correspond to wave functions localized within a very
large volume. Such "localized" states overlap with simi-
lar states whereby the electron diftuses through the whole
plasma. As we move to more negative energies the locali-
zation of these states increases and we cross the mobility
edge. We use a simple percolation argument to estimate
the position of the mobility edge. The average length of

The fluctuation in the number of particles about the aver-
age p6 is p —p8. This quantity is significantly smaller
than p6, except in very dilute plasmas. Hence the ap-
proximation (5.11) is probably reliable for most plasma
situations. Using (5.11) in (5.10) it can be shown that
N(0) has a broad maximum and for volumes 8 such that
r&=0.7/ksc. The broadness of the maximum implies
that the numerical factor 0.7 is not too critical. Thus the
optimal volume for considering particle fluctuations is of
the order of a screening sphere. In the DFT model that
is applicable to arbitrary couplings, the relevant volume
is just that dictated by the range R of the pair distribu-
tion function g(r), i.e., the correlation volume. Using
this optimal volume, we have

(p —p8) = U f u (r& r2)dr—&dr2 .
1
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TABLE IV. Energies (in hartrees) relevant to the position of the bottom of the continuum in an Al-

plasma. Ap„, and hp;, denote shifts in the chemical potential due to electron exchange and correlation,
and ion-electron correlation, respectively. EFs is the contribution from the Friedel sum and E is the

mobility edge correction. The electron density n =0.000 843 7 a.u. corresponds to an r =6.565.

n =0.0135 a.u. n =0.0008437 a.u.

p
~pxc
kp;e
hcFs
E

b~ core

z
Zhop

T TF

—0.005 649
—0.2619
—1.7048

0.1959
0.1601
9.9982
2.2030
1.0752

T 2TF

—0.667 30
—0.2301
—1.7309

0.1072
—1.0274

9.7900
2.7969
0.5288

T 2TF

—0.104 61
—0.1106
—0.1077

0.0394
—0.0156
10.000
0.4104
3.0600

T =4TF

—0.398 30
—0.094 33
—0.2845

0.0201
—0.6787
11.7486
1.2545
0.1774

any electron hop is -res. An electron at the origin has
to hop over a distance of about r& to hop out of the op-
tirnal volume 8. Since a random walk is involved, the re-
quired number of hops is estimated to be

Nhop (rylrws) '

Since there are No=p8 ions in the optimal well, the
fraction of time occupied by an electron at any ion is

Nz, /No. Since there are Zh, = n n„—„hopping elec-
trons [see Eq. (4.1)] visiting each ion, the average popula-
tion of electrons at the energy level that supports the re-
quired number of hops to diffuse out is given by

2/[exp(E —p)P+ 1]=Zh, ~Nh, ~/No, (5.16)

where we have included a factor of 2 for spin. The ener-

gy E satisfying (5.16) is taken as the energy defining the
mobility edge E . Using N„,~=(r zlrws), rzksc=i it
is easy to show that

r„=(PZ /"ws)exp( —k, rws) (5.19)

where k, is the electron-screening wave vector of Eq.
(2.12b). Then ksc is defined via

hopping electrons can support a percolation cluster and

suggests that all the hopping electrons are localized. Al-

though the model is too simple to be definitive, the posi-
tive E may be interpreted as showing that a part of the
bottom of the nominal continuum, up to 0.16 a.u. , is also
converted to localized (hopping) states. In the fourth and
fifth columns we consider a plasma at —,', of the normal Al

density. Similar considerations (and caveats) apply to the
E = —0.0156 entry in the fourth column where

IM= —0.1046 a.u. For calculating E we estimated ksc
as the reciprocal of the ion-cluster size dictated by the
effective ion-ion coupling parameter I,&. This is taken to
be

E =E =ks T in[2/(Zhoprwsksc) 1]+p . (5.17) ksc ~ ff/rws (5.20)

The final position of the lowered continuum is given by

E, =hp„, +hp;, +AcFs+E (5.18)

In Table IV we present data relevant to the calculation
of the position of E, as well as other quantities of in-
terest. These calculations involve the solution of the
Kohn-Sham equation for the electronic system, with the
ion subsystem self-consistently coupled to give the profile

pg (r). In the plasma at the density n=0 0135 a.u. .( —,
' the

electron density in normal Al) and at a temperature
T = TF, the noninteracting chemical potential IM is nearly
zero, and signals the passage from an essentially degen-
erate system to a nondegenerate system. The terms
bp„,(n ) and bp;, (p, n ) were calculated as in Ref. [20].
That is, the distribution functions g„(r) and g,, (r) are
taken in the random-phase approximation. Both b p„,(n )

and hp, , (p, n ) contribute to a lowering of the continuum.
The Friedel sum leads to a raising of the continuum for
the four cases discussed here. The formation of a per-
colation cluster among the hopping electrons leads to the
mobility edge term (or percolation contribution) E, and
this is found to lower the bottom of the continuum, ex-
cept in the plasma at T =T„. In this plasma none of the

and roughly corresponds to the reciprocal of the radius of
the ion-correlation sphere.

The calculation of the density of states of hopping elec-
trons in the region of the mobihty edge includes thermal-
and density-fluctuation-related disorder effects (approxi-
mately, Anderson- and Lifchitz-type localization mecha-
nisms), but does not include the on-site Coulomb repul-
sion (Mott-Hubbard mechanism). The treatment of this
disordered "Hubbard-model" problem is beyond the
scope of this paper.

VI. SUMMARY AND CONCLUSION

%'e have studied the electronic states in plasmas as a
function of the ionic and electronic environment of the
plasma. Using density-fluctuation calculations, we con-
cluded that ions in plasrnas form "neutral pseudoatoms"
with electron distributions closely approximating those of
the isolated atoms. This clarifies why the plasma effect
on energy levels is much smaller than that predicted by
simple screening ideas, which do not account for orthog-
onalization of the continuum eigenstates to the core
states, nonlinear effects, etc. The ionization process in a
plasma is viewed as the progressive delocalization of an
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electron via passage into hopping states and finally into
the continuum. A compact expression for the density of
hopping states is given. The ion-correlation sphere
defined by the range of g(r) is found to be the "optimal
volume" containing the transient cluster that maximizes
the number of hopping states supported by the plasma.
The mobility edge is calculated via the statistically
minimal number of hops required by the electron to
diffuse out of the ion cluster. The continuum edge is
shown to depend on the exchange and correlation effects
of the ions and electrons, a Friedel-sum contribution, and
a percolation contribution.
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APPENDIX A: EXTENSION
OF THE LINEAR-SCREENING EQUATIONS

The Coulomb interaction of the plasma electrons with
the ith bound-state electron is contained in the last term
of Eq. (3.4). This can be written as in Eq. (3.6),

Ae~f =( V;fAnft')i= f bn&~(r')4trr' dr'Ir' .
0

The lower bound of the integration has been put to zero
for simplicity. We start from the above equation and
show how different shifts arise from details (of the depen-
dence on the level i, screening and interactions) retained.
The electron-gas response y(q) in the random-phase ap-
proximation is

k,
X(q)=X(q)'/Il —V,X(q)'j, X(q)'= —

4
f'(q),

1. Debye-Huckel shift

Here the response function g(q) is taken in the q=O
limit where f (q=O) is unity. The electron-ion interac-
tion is that of a point ion, viz. , V;, (q)= —4~Z'/q .

Then

Ac =—k Z* dq =Z k, ,
OC 1

o ( +k') (A3)

as in Eq. (2.13d). The shift is independent of the energy
level i.

2. Ion with bound levels (pseudoatom)

=Z*k, /(q, +k, )=Z*k, /q, . (A4)

Thus the shift is proportional to the square of the screen-
ing wave number and strongly weakened by the large

q, =q„. Even in this simple model there is a level depen-
dence of the shift via q„.

3. Pseudoatom model inclusive of q dispersion

The small-q approximation is not justified for the
response to a neutral pseudoatom, especially in the low-
density regime. Let us consider the T=O K case for sim-
plicity. Then y(q) = (k, /4')f (q) c—an be written
as y(q) = (kF l~ )f (»—) where»=qlkF, with

f (»=0)=1. Then the energy shift can be written as

'»)
Aetf': kF f d (kF») V(kF»)

0 1+(k, /» kF)f (»)

Hence an upper bound to the shift is given by

, k,'~ V(O)
~ f d»f'(») .

0
(A5)

This integral converges since f (») goes as I/» for large
» and f (»=0)= 1. Thus the use of the full q dispersion
in y(q) allows us to say that the shift decreases like kF
(i.e., k, ), or even faster in the low-density case (Appendix
B).

Here the point ion is replaced by a point ion with
structure and hence the electron-ion interaction is
modeled as V;, (q) = 47rZ—*I(q +q„) where i is the lev-

el index and q„ is of the order of the inverse atomic ra-
dius, i.e., 1/r, pertinent to the shell i. Thus is q„))k,.
Hence in the small-q approximation for the response, we
have, writing q„=q, for simplicity,

oC
2

Ac~f =—k, Z* dq
(q +q, )(q +k, )

b, n&~(q) = V,, (q)y(q) . (A2)

Let us consider different approximations to V„(q) and

y(q) and the resulting energy shifts b, etf'

where V is the Coulomb potential 4~/q and f (q) con-
tains the essential q dispersion. The density displacement
is given to leading order in the ion-electron interaction
V,, (q) by

APPENDIX B: LOW-DENSITY REGIME

The dependence of the level shift on the square of the
screening wave vector needs careful study for small densi-
ties (small k, ) since in Fig. 3 the level shifts do not extra-

polate to zero as k, goes to zero. From Figs. 3(a) and 3(b)

it is clear that the T=O case is simpler. At zero tempera-
ture k, =4/(~ar, ), i.e., 4kF lvr and hence we use kF to
define the screening. In Fig. 5 we show the behavior of
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FIG. 5. The behavior of the s and p phase shifts go and g& for
Al in jellium at T=O for a range of k values when the electron
density is decreased.

the s and p phase shifts go and g& for Al in jellium at
T=O for a range of k values when the electron density is
decreased from normal density to —,', of the normal densi-

ty. go converges towards a limit curve that corresponds
to that obtained for the potential of the free atom with
the configuration 3s 3p'. However, even for the lowest
density displayed (curve 6), the p bound state has already
ceased to exist. The change in q& is large and indicates
the formation of a resonance in the continuum with an
increase near the Fermi level, which becomes steeper and
deeper for lower densities. As the phase shifts for I ~2
are negligible, the Friedel sum reduces to

2
ZF =—[iso(kF)+3il, (kF)]=1 .

Now, because the 3s bound state exists, go is negative,
and hence g& must be positive and large to fulfill the sum
rule. As the resonance can contain six electrons, the Fer-
mi level must fall inside the resonance peak, showing that
it is impossible for the resonance to go to zero energy (be-
fore the appearance of the 3p bound state) for a finite den-

sity (i.e., a finite kF). In other words, the model cannot
produce the 3p bound state of the free atom, and is not
appropriate at the low-density limit. This is numerically
manifested by convergence instabilities as the low densi-
ties are approached.

The situation is similar in C (configuration 2s 2p ).
But in the case of Ca, where we have a closed-shell
configuration 3s 3p 4s, the bound state 4s exists down
to vanishing electron densities. However, now there is a
3d resonance in the continuum that must stay above the
Fermi level in order to satisfy the Friedel sum (ZF=0).
%hen the 3d resonance approaches the Fermi energy the
instability develops.

%hen the plasma density is low enough, an atom in the
plasma has most of the bound states of the free atom.
The free-atom self-consistent potential V„may then be
an appropriate starting point for the calculation of the
small screening e6'ect in the plasma. Let the density in-
duced (with no self-consistent adjustment of V„) by V„
in the electron gas be n, . This may be easily calculated
as the result of a single "iteration" in the DFT code,
starting with V„. This n

&
consists of a bound and a free

part, i.e., n, =n»+n». Even though V„ is "weak" in
some sense, linear response cannot be applied directly to
V„since it supports many weak bound states. But it is
reasonable to assume that the self-consistent free-electron
density n» is given by

nf (q)=n, f(q)/e(q)= V„y(q),

where E(q) is the linear-response dielectric function.
Then the perturbation correction due to n if(q) on the
low-lying bound levels is

b,e~&= I nf (r)4nrdr.
0

"4~ sc
2 nf (q)q dq(2' ) o q

Now, writing nf (q)= V„y(q) and expressing q in units
of kF it is shown that Ac~& varies as kF, i.e., as k, , rather
than linearly with kF (i.e., as k, ). The above discussion is
admittedly not rigorous but gives an indication of how
the peculiarities of the low-density regime develop. It
also highlights the importance of the Friedel-sum rule
and casts doubt on those AA calculations that do not
satisfy the sum rule.
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