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A comprehensive analysis is presented that describes the generation of harmonic radiation by the
stimulated backscattering of intense laser fields from electron beams and from plasmas. The dynamics of
the intense laser-electron interaction are analyzed using a fully nonlinear, relativistic, cold fluid model
valid to all orders in the amplitude of the pump laser. In general, the backscattered radiation, from an
electron beam or stationary plasma, occurs at odd harmonics of the Doppler-shifted incident laser fre-
quency. The strength of the harmonics is strongly dependent on the incident laser intensity. The growth
rate and saturation level of the backscattered harmonics are calculated, and the limitations due to
thermal, space-charge, and collisional effects are discussed. Significant radiation generation at high har-
monics requires sufficiently intense pump laser fields and sufficiently cold axial electron distributions.
This mechanism may provide a practical method for producing coherent radiation in the xuv regime.

PACS number(s): 52.40.Nk, 52.60.+h, 52.35.Nx, 41.60.Cr

I. INTRODUCTION

Recent technological advances have made possible
compact terawatt laser systems having high intensities
(>10"" W/cm?), modest energies (>1 J), and short
pulses ( <1 ps) [1,2]. These high-laser intensities lead to a
number of laser-plasma and laser-electron beam interac-
tion phenomena [3-11]. This paper discusses one such
phenomenon, stimulated backscattered harmonic (SBH)
radiation generated by the interaction of intense, linearly
polarized laser fields with electron beams or plasmas [11]
(see Fig. 1). The intense-laser-backscattering mechanism
is essentially stimulated coherent scattering in the
strong-pump regime. For sufficiently intense incident
laser fields, the electron quiver velocity becomes highly
relativistic. The high-laser intensity, along with the in-
duced nonlinear relativistic electron motion, results in
the generation of stimulated backscattered radiation at
odd harmonics. In the interaction of an intense-laser
pulse with a counterstreaming electron beam, SBH radia-
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FIG. 1. Schematic of the incident pump-laser field,

~expliwyn/c), of frequency w,, and the backscattered harmon-
ic radiation field, ~exp(iw&/c), of frequency w, as obtained via
stimulated scattering from an electron beam or a plasma, where
n=z+ctand §=z—ct.

tion is generated via a free-electron-laser (FEL) mecha-
nism [12-22] resulting in a relativistic Doppler-frequency
upshift. Hence, a laser-pumped FEL [13-17] (LPFEL)
may utilize both the harmonic upshift as well as the
Doppler upshift to generate short-wavelength radiation.
In the interaction of an intense laser pulse with a station-
ary plasma, SBH radiation is generated via a nonlinear
Raman backscatter mechanism [3,23] at odd multiples of
the fundamental laser frequency. Previous analyses of
stimulated backscattering of intense lasers from electron
beams (i.e., LPFEL’s) or plasmas, due to the complex dy-
namics of the laser-electron interaction, have been limit-
ed to studies of the fundamental backscattered mode
[13-17,23].

In the following, a fully nonlinear analysis of SBH gen-
eration is presented which is valid for arbitrarily high
pump-laser intensities. The growth rates, saturation lev-
els (efficiencies), and thermal limitations are obtained for
the SBH radiation generated from either an electron
beam or a plasma. Differences between the SBH radia-
tion generated from an electron beam and from a plasma
are discussed. Sufficiently intense pump lasers and
sufficiently cold axial electron distributions are required
for significant radiation generation at high harmonics.
The SBH mechanism may provide a practical method for
producing coherent radiation in the xuv regime.

In conventional FEL’s, a linearly polarized (planar)
static magnetic wiggler may be used to generate stimulat-
ed harmonic radiation at odd multiples of the relativistic
Doppler upshifted fundamental FEL frequency [18-21].
In the LPFEL, the static periodic magnetic wiggler is re-
placed by a counterstreaming intense laser field [13-17].
For a given electron beam energy, the LPFEL can lead to
substantially shorter-wavelength radiation than a conven-
tional FEL since the pump-laser wavelength (typically
~1 um) is several orders of magnitude smaller than the
conventional wiggler period (typically ~1 cm). In the
LPFEL, the free energy driving the radiation is available
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from both the electromagnetic energy of the pump laser
and the kinetic energy of the electron beam. In conven-
tional FEL’s, free energy is available from only the kinet-
ic energy of the electron beam and, hence, the FEL in-
teraction vanishes in the limit of vanishing beam energy.
This, however, is not the case in the LPFEL mechanism
and SBH radiation may still be generated in the limit of
zero electron beam energy. Hence, an intense laser field
interacting with a stationary plasma may also generate
SBH radiation. This process may be viewed as nonlinear
Raman backscattering in the strong-pump limit (or
strongly coupled regime) [23].

Significant radiation generation at high harmonics in
conventional FEL’s requires that the normalized ampli-
tude of the magnetic wiggler field be somewhat greater
than unity [20]. Similarly, in the LPFEL (as well as in
the nonlinear Raman backscattering mechanism), it is
shown that the growth rate for the higher harmonics be-
comes significant when the normalized pump-laser ampli-
tude exceeds unity, a, > 1, where a,=le| 4q/myc? is the
normalized amplitude of the pump laser vector potential,
A,. The normalized laser amplitude, a,, is related to the
power, P, (in GW), of a linearly polarized laser by

P0:21.5(aor0/}\'0)2 ’

where r, is the spot size of the Gaussian profile, A is the
laser wavelength, and the power is in units of GW. Phys-
ically, ag>1 implies that the electron quiver motion in
the laser field is highly relativistic. This may be seen
from conservation of canonical transverse momentum
which, in the one-dimensional (1D) limit (A, <<7,), states
that a, =y, where y is the relativistic mass factor and

B,=v, /c is the electron quiver velocity. The nonlineari-
ties associated with the highly relativistic electron motion
result in the generation of harmonic radiation. In terms
of the laser intensity (I,=2P,/7r}), the quantity a, is
given by

a,=0.85X10A1}% ,

where A, is in gm and I, is in W/cm?. Relativistic elec-
tron motion (a, = 1) requires laser intensities greater than
10'® W/cm? for wavelengths of ~1 um. Such intensities
are now available from compact laser systems using a
technique referred to as chirped pulse amplification
(CPA). The CPA technique allows ultrashort pulses ( <1
ps) to be efficiently amplified in solid-state media such as
Nd:glass, alexandrite, and Ti:sapphire [1]. Alternatively,
KrF excimer laser systems may be used to generate
ultrahigh-intensity, subpicosecond laser pulses [2].

The remainder of this paper is organized as follows. In
Sec. II, the generation of coherent SBH radiation is ana-
lyzed using a relativistic, cold fluid theory. This theory
includes the nonlinear effects of the pump laser to all or-
ders in the normalized vector potential, a,. A dispersion
relation for the SBH radiation is obtained in the strong-
pump regime in which the effects of the perturbed elec-
trostatic potential are neglected. Based on particle-
trapping arguments, the saturation level of the backscat-
tered harmonics is calculated in Sec. III. Limitations of
the theory due to thermal, space-charge, and collisional
effects are discussed in Sec. IV. Examples of SBH genera-
tion using an electron beam and a plasma are given in
Sec. V. The growth rates, saturation efficiencies, and
thermal requirements for SBH generation from electron

TABLE 1. Growth rates, efficiencies, and thermal requirements for stimulated backscattered harmonic generation. wj is the
pump-laser frequency, o, is the plasma frequency, y, is the initial relativistic factor, a,= le] Ag/mc? is the normalized pump-laser
amplitude, y,,=(1+a3/2)!?, N=(21+1) is the harmonic number, F,=b[J,;(b)—J,,,(b)]* is the harmonic coupling function,
b=Na}/4y%, and M, is the frequency amplification factor, o= NMywy.

Laser plasma

Laser electron beam

(My=1, yo=1) (My>>1, yo>1)
Arbitrary ay<<1, Arbitrary ay<<1,
‘107N N=1 a(),N N=1
Growth rate 173 2/3 — — 2/3
V3 w}F, V3 w,ag V3 w3 vioF) V3 | @40
T /awo 4wy 1o 4w, Yo 40} Yo | 4wo
a
Laser eff. w,z,yloF/N wﬁ 4/3 02y /N m; 473
Py /Py \/3508(1 3y 2wia, \/Ewéa 2yt 2wda,
Electron. eff. 2/3
/N 1 | @3
Me 2‘/3600-,(2) 2?/0 4&)0
Thermal spread 2 4/3
1[r 1 [ @9
AE,, /myc? << 6 | woN 2 | 4w,
E read 2/3
nergy sprea L/N 1 [ wpa
AYwm/Yo<< 2V3w, 2vo | 4w,

*Formulas valid provided a, > »? /20}.
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beams and plasmas are summarized in Table I. This pa-
per concludes with a discussion in Sec. VI.

II. INTENSE-LASER-ELECTRON INTERACTION
AND STIMULATED HARMONICS

The 1D fields associated with the pump laser, backscat-
tered radiation, and plasma response are described by the
transverse vector potential, A, and the scalar potential,
®. In what follows the Coulomb gauge is used, i.e.,
V- A=0, which in 1D implies 4,=0, where z is along
the axis of propagation of the SBH radiation. The polar-
ization of the laser field is arbitrary.
tentials satisfy the field equations

The normalized po-

9’ 1 3 n
- = :kz— = , 1
3z% ¢? dr? =% noﬁl 2 (12)
az _kz n
9% 2|y, 1
P! 7 g (1b)
where t)=le| A/myc?, @(z,t)=|e|®/myc?, w,
=ck,=(4mle|’ny/my)'/? is the ambient plasma frequen-

cy, n(z,t) is the plasma density, n, is the ambient plasma
density, B=v/c is the normalized plasma fluid velocity,
and

:(1_Bg_Bi)——l/Zz(1+a2)1/2/(1_—,[_’)§)1/2

is the relativistic factor. In obtaining the right-hand side
of Eq. (la), use is made of the fact that the transverse
canonical momentum is invariant and that, prior to the
laser-pulse interaction, the particle distribution is as-
sumed to have no transverse velocity, i.e., B, =a/y.

The fluid quantities n, f3,, and ¥ are assumed to satisfy
the cold, relativistic fluid equations which can be written
in the form

8_n+c ~(n,) (2a)
at
a __i__zi 2, 04

t()/BZ) 2y o a‘+c 32 (2b)
dy _ 1 9 » .Q

a2y 3 +cf, (2¢)

where d/dt=8/8t+c/328/az. The first term on the
right-hand side of Eq. (2b), proportional to a?, represents
the ponderomotive force. In the present model, thermal
effects have been neglected. This is valid provided (i) the
electron quiver velocity is much greater than the electron
thermal velocity and (ii) the thermal energy spread is
sufficiently small so that electron trapping in the plasma
wave does not take place. The effect of a thermal axial
velocity spread on the wave-particle resonance is dis-
cussed in Sec. IV. Also, the ions are assumed to be sta-
tionary.

It proves convenient to replace the independent vari-
ables (z,t) with the independent variables (7,£), where
n=z+ct and £=z—ct. To transform Egs. (1) and (2)
from z,t to 7,£ variables, note that 9/0z=09/3£+03/97
and 0/t = —c(3/0§—3/3dn). In the new variables, Eqgs.
(1) and (2) become
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ii l,, n —
an 9 477 yny a=0, (3a)
d d n
—+- —r2 |
a3 $=k] ne 1, (3b)
B+ m-3 [(1—B,)n]=0 3c)
am z & z ’ ¢
1+ —(1-5,)2 |( B,)
Y 2 ) 2 |7
a d |a? d d
=— |24+ 24 124+ 2
an ot | 2 Vl|an  aE ]¢’ (3d)
) 9
1+8,)2> —(1—8,)-<
( /32)877 ( Bz)ag
3 d a2 3 .3
— - |+ —+=—1¢.
Py vB, 3 ¢ (3e)

Introducing the new fluid quantities g=y(1—J,),
h=y(1+,), and p=(yon)/(yny), where y, is a con-
stant equal to the initial relativistic factor of the electrons
prior to the laser interaction, Egs. (3) become

d d _
8_55_470 'kjp |a=0, (4a)
9 4 ¢ k2|2 —1 (4b)
8§ Yo ’
9 0
— h _— =
an (ph) ag(pg) 0, (4¢)
oh oh _ d 9 a
h——g—=——a’+h |—+—
an 8§ ag an 8§ [¢’ 4d)
ag g _  d o ) d
_pl__ 2 9 4, 9
ag on ana a§+a ¢, (4e)
where gh=1+a? y=(h+g)/2, and B,=(h—g)/

(h+g).

To proceed with the analysis, the radiation is assumed
to consist of a large-amplitude incident (pump) field trav-
eling towards the left and a small-amplitude backscat-
tered field traveling towards the right. The total radia-
tion field is denoted by

(n )+a 1 (&)

where a (© is the incident pump (equilibrium) field, a "’ i
the backscattered (perturbed) field, and |a‘©|>>|a “)|
The pump field, a'?, is taken to be a function only of 7
(group and phase velocxty equal to ¢, assuming w, <<ay),
which implies that the envelope of a ‘@ is nonevolvmg,
i.e., pump depletion effects are neglected. Since the back-
scattered field may be temporally growing, it is a function
of both £ and 7. The fluid quantities all have the general
form

Q(n,6)=QV(n)

a= a

+Q (&)
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where Q (%) represents the fluid quantity in the presence
of only the incident field, Q ‘" is the perturbed contribu-
tion due to the backscattered field, and |Q ‘!'| <<Q |,

A. Equilibrium

Since the equilibrium quantities are functions of only
the variable 7, Egs. (4) become

2

aa_nzfﬁ(()):kpz(?’(mp(())/?’o_” X (52)

%(p(o’h(o’)=0 : (5b)
3 10 _ 4(0)y— 5¢)

g(h —¢"’)=0, (5¢
@9 _0_ 98 p2__ 09 0 5d

h ang an(a )y —g 817¢ , (5d)

where the superscript (0) refers to quantities in the pres-
ence of only the incident field, a (0)(17), and
g(O): [ 1 +(a(0))2]/h (),

The equilibrium state of the electron fluid in the pres-
ence of the pump field can be obtained from Egs. (5)
which, in terms of ¢'?, give

hO=y(1+8,)+¢(n) , (6a)
pOV=y(14+By) /% 7) , (6b)
g V=(14+[a PP} /h %) , (6¢)

where the pump field, a‘©(), is assumed to be known,
vo=(1—PB%) 712, and B, is the axial velocity of the fluid
(electron beam or plasma) in the absence of the pump
field. The self-consistent scalar potential is given by

2
L

2

[1+(a(0))2]
(1+¢(0))2

a_zdj(m: (7a)
an? ’ a

where ¢'9=¢'"/y(1+5,) and Ep =k, /vy 1+B,). In
the limit that |'?| << 1, Eq. (7a) reduces to

2
{a +k?

)
PR P O=k2a'"?/2 . (7b)

The equilibrium between the pump laser and the elec-
trons is given by the expressions in Egs. (6) together with
the solution of Eq. (7a) for the potential ¥'*). The solu-
tion of Eq. (7a) is, in general, highly nonlinear. However,
simple solutions can be obtained under conditions which
are relevant to a wide range of applications. The pump-
laser—electron fluid equilibrium will be considered in two
limits. In these limits the characteristic temporal varia-
tion of the pump-laser envelope, 7, (typically the pump-
laser rilse time), is compared to an effective plasma period
(ck,)™ .

I[IJI the short-pulse limit, 7 <<(cic},) !, the magnitude
of ¥© is much less than unity, || <<1, provided [6]
lagl <2/ (CTLEP ), where a, is the normalized amplitude
of the pump-laser envelope, e.g., a'¥=aycoskyn. In this
limit, ¥'© can be neglected in Egs. (6).

In the long-pulse limit, 7, >>(cEp )1, the left-hand

5875

side of Eq. (7a) can be neglected. Furthermore, it can be
shown that the fast oscillatory part of ¥’ (on the laser
frequency time scale) can be neglected [6] and, hence,
PO~ (1+a3/2)*—1.

For applications which utilize intense pump lasers with
pulse lengths on the order of a ps, the short-pulse limit is
relevant to interactions with electron beams with densi-
ties ny/y3<<107!® cm ™3, whereas the long-pulse limit is
relevant to interactions with stationary (y,=1) plasmas
with densities n,>>10'® cm™3. It proves convenient to
define the equilibrium parameters h, and p,, such that
h'®=h, and p'”=p,. The values of the parameters h,
and p, depend on which of the above two equilibriums is
being examined, i.e.,

Iyo(l-i-ﬂo), e beam (short pulse),
0:

Y10 plasma (long pulse), (8a)
1, e beam (short pulse),
Po= , (8b)
0" |1/7, plasma (long pulse)

where y,,=(1+a3/2)!”2. Hence, the equilibrium fluid

quantities 8%, y'©, and n'? are given by
O=[h3—1—(a"?]/[h}+1+(a'?)1], (9a)
yO=[r3+1+(a?)?]/2h, , (9b)
nO=(nypo/2hoy ) h3+1+(a'®)?] . (9¢)

Physically, the difference between the plasma (high-
density) equilibrium and the electron beam (low-density)
equilibrium is due to the fact that, in the high-density re-
gime, the ponderomotive force associated with the laser
envelope variation is balanced by the space-charge force,
whereas in the low-density regime the ponderomotive
force dominates.

B. Backscattered radiation

To analyze the SBH radiation, Egs. (4) are expanded
about the equilibrium state given in Egs. (6). In the fol-
lowing, the perturbed electrostatic field, ¢'"), is neglected.
This is valid provided [12,20,23] the temporal growth
rate of the backscattered harmonic radiation is much
greater than the relativistically corrected plasma frequen-
cy, @, /3. In this strong-pump regime, the SBH radia-
tion is completely described by the fluid equations

th%—(l+az)a—a§ h=—ha—a§a2, (10a)
hZ%—(Haz);—§ p=—P%h2, (10b)

along with the wave equation, Eq. (4a), and the equilibri-
um given by Eq. (8).

The self-consistent closed set of perturbed quantities
RV, o'V and a‘V satisfy

B 2 p=—

2 3 .,
an (a'?-a'")

Y hy OF , (11a)
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Equations (12a) and (12b) have the solutions
i--u(n)i ) 2 poi - (11b)
an "0 hoP3n ik
2 K2 k2 hyp=e!) [ i | — SFa O a,(') |do
9° _ pPo |y Kp a0 (11c) 0
and 4 4 ’
n g Yo 7/() (13a)
where u(n)=[14+(a'”)*]1/h3. To proceed, the perturb- pi(n)
ed quantities are represented by the form QW 1 = ——h (n)
=Q,(n)e’*¢/2+c.c., where k is complex and the ampli- Po ho
tude is a function of 1. Using this representation, the otk
perturbed amplitudes are given by Jel0m) [, —i60y) | _ 2Ky ’ '
e f e 7y wnHh(n') |dy'",
_a__. — 21k (0) X
an ikp(n) |h () ho (m)-a;(n), (12a) (13b)
a . d where 6(7 kf n'")dn".
—— —iku(n) |p;(n)= hi(n), (12b)
an K7 P h o POan an K Takmg the 1n01dent field to be a“=a cosk,n and the
X2 kz complex amplitude of the backscattered harmonic field to
9 %P0 a,(n)= a @ (q)p,(n) . (12¢) be a,=3,exp(iAkn), where Ak is complex, the solutions
am 4y 470 to Egs. (13a) and (13b) become
1
k (=D (B)[J(b)—J, 4 ,(b)]
h(n)=-—aya — exp(i{ky[1+2(I+n)]+Ak}n), (14a)
1\ h 0 11n=_00 [k —ko(1+21)—Ak] pli{ko[ ] jm a
piln) _ 2kk z (Ji(b)—J;14(b)]
=-—-aja (— DY, (b)— expli{ko[1+2(/+n)]+Ak}n), (14b)
om0 2 kg1 20— ak Pl Kl I+ Ak]n

where k =ky2,/h} and b=ka}/(4kyh?). In obtaining
the expressions for #,(7) and p,(7n), the Bessel identity,
2 J,(

exp(ibsinx )= b)explinx) ,

was used. Also, near resonance the first term on the right
of Eq. (13b) has been neglected and the initial-value terms
in Egs. (13a) and (13b) have been neglected compared to
the exponentially growing modes.

C. Dispersion relation

The dispersion relation for the SBH modes may be ob-
tained from the perturbed wave equation. Substituting
Eq. (14b) into Eq. (12¢) and requiring that both sides of
the equation have the same 71 dependence, yields

4k Ak + k220
Yo
_ Pokpzkk al i i —=Ji0)?
voh2 %=, [k—QI+Dky—Ak)
(15)
where a,3,=a,@, has been assumed. The frequency, o,

and temporal growth rate, I, may be determined from
the above expression by setting k =w/c —Ak. The back-
scattered radiation has the phase dependence

a'V' ~exp[i(w/c)E+i2ct Ak ], where the temporal growth

rate is given by I'=—2¢ Im(Ak). The dispersion rela-
tion indicates that the resonant frequency of the /th mode
is

o=NM,o, , (16)

where N=2/+1 is the harmonic number and
My=(hy/y o) is the frequency multiplication factor
which is dependent on the particular equilibrium being
examined, i.e.,

_ y&(1+B,)*/(1+a3 /2), e beam,
0 1, plasma . (17)
Assuming |w/c| >>|Ak] >k, /y3/%, the dispersion re-
lation reduces to

k koMoF,(b))
Ak3:_£9_L£_.l_[__2_I,_ , (18)
Yoll+M,)
where F,=b,[J,(b;)—J,,(b;)]* is the harmonic coupling

function [20] and b,=(2]+ 1)ad/4y%,.

growth rate is

The temporal

1/3

=3¢ pok koMo F

5 (19a)
yoll+Mg)

A plot of the function F}/3 vs by=a}/4yi, for
N=1+2[=1,3,5...,19 is shown in Fig. 2. For a rela-
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F}®

(a/4)/(1 + a3/2)

FIG. 2. The function F}/3 (proportional to the growth rate
I') vs the parameter bo=(a}/4)(1+a}/2) for the harmonics
N=1,3,5...,19.

tivistic electron beam in which hy=2y,>>y,, the
growth rate is given by

T =V3c(kZkgyioF /4v3)' > . (19b)
For a plasma, the growth rate is given by
L =V3c(k2koF, /4y,0)" . (19¢)

The asymptotic value of the harmonic coupling func-
tion F,(b,) for a3 >>1 and / >>1 can easily be found. In
this asymptotic limit, b,~! and J;(I)—J; (1)=J;(])
~0.4111 7273, Hence,

F,~0.169/1'3 . (20a)

Notice that asymptotically (I>>1,a3>>1), I ~I1"1

i.e., the growth rate is a weakly decreasing function of /.
For small arguments, b; <1, the harmonic coupling

function is given by

2

2(b, /2)H 1 b,
= "0+ | (200)
which, for 06/2 << 1, gives
F=2[(21+1)ad/81# (1) ~2. (20c)

Hence, in the limit (2/ +1)a3 /2 << 1, the growth rate is a
rapidly decreasing function of [. Notice that, for
a}/2<<1 and 1=0, Egs. (19c) and (20c) indicate the
growth rate of the fundamental backscattered radiation
from a plasma is I“=\/3(w12,w0a%/16)'/3, which is the
standard result for the Raman backscatter instability in
the strong-pump or strongly coupled regime for a linearly
polarized, low-power (a3 << 1) laser [23].

III. SATURATION

The present analysis indicates that the SBH radiation
grows exponentially, with a growth rate given by Eq. (19).

This growth continues until nonlinear effects (i.e., particle
trapping) limit the amplitude. The saturated value of the
backscattered radiation may be determined from argu-
ments based on electron trapping in the ponderomotive
wave. The growth of the radiation will cease when the
generalized ponderomotive wave traps the electrons. For
small-amplitude pump fields, |ay| <<1, the ponderomo-
tive wave is proportional to the product of the stimulated
backscattered radiation and the pump field, a‘V-a‘”. In
the present analysis a generalized ponderomotive wave is
obtained for arbitrarily large values of |a,|. The non-
linear effects of the pump field, in the generalized pon-
deromotive wave, are included to all orders.

The combined action of the pump laser and the stimu-
lated backscattered radiation results in a generalized pon-
deromotive wave which produces a fluid wave, p'!’, with
the same phase,

pV~3 Cpexplil(21+1+2n)ko+Ak In+ikE) , 1
Ln

as  indicated by Eq.  (14b), where p'V

=p,(nexplik§)/2+cc. and C;, are constant
coefficients. The generalized ponderomotive wave con-
sists of a sum of individual modes characterized by the
mode numbers (/,n). Since {=z—ct, n=z+ct, and
k =w/c — Ak, the normalized phase velocity for a partic-
ular generalized ponderomotive mode (/,n) in Eq. (21) is
given by

u )_a)/c—(2l+2n+1)k0—2Ak
B ) = it 2n + Dk,

(22a)
At a particular resonant frequency w=(2/+1)Myw, of
the Ith mode, the phase velocity in Eq. (22a) becomes

(M, —1)(21 + ko —2nk,—2Ak
(My+1)(21 + kg +2nk,

B,(1,n)= (22b)

Particle trapping for a particular n mode occurs when the
longitudinal fluid velocity of that mode is equal to the
phase velocity in Eq. (22b). Trapping occurs first for the
n =0 mode since it is the mode with phase velocity
closest to the equilibrium velocity of the electrons.
The longitudinal fluid velocity of the electrons is given
by B,=(h —g)/(h+g), which can be written as
h*—(1+a?)
P aran) 23
In terms of equilibrium and perturbed quantities,
B,=BY+B, where the average value of BY s
(BP)~(My—1)/(My+1). Expanding Eq. (23), the
leading-order contribution to the perturbed velocity at
resonance is given by

4M, B

B(zl)2 L
(1+My)? hyg

, (24)

where AU is composed of a collection of » modes, the
phase velocity of the nth mode given in Eq. (22b). Using
Eq. (14a), the perturbed fluid velocity of the nth mode is
given by
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168, Mk,

B = |t
B ao(1+M,)3Ak

(bF)'2T, | . 25)

Particle trapping occurs first for the n =0 mode, which
is the mode with phase velocity closest to the equilibrium
fluid velocity, (B),

Bp(l,n=0)=(/3‘z°))+83p , (26a)
where
BBP=—2Ak/(21+1)(1+M0)k0 . (26b)

The saturated level of the radiation field may be obtained
from the condition for deeply trapped electrons,
1B :ZIS[J’p |, which gives for the n =0 mode,

4a,(21+1)M}
ao( 1+M0)2

Ak _
kg

(bF)' 2, | . 7

A numerical factor of order unity has been neglected on
the left-hand side of Eq. (27). Using the dispersion rela-
tion, the ratio of the radiation power in the Nth harmonic

at saturation to that in the pump laser,
Py /P,=M}N?|a,|?/a}, is given by
Py Pokp2(1+Mo) v F7 (28)
Py YokoMy 16b,J5

A plot of the function F!/3/b, vs by=a}/4y?%, for
N=1+2[=1,3,5...,19 is shown in Fig. 3.

Note that asymptotically (I >>1,a3>>1), Py /P,
~171°/9/J(2,. Furthermore, the efficiency may be sub-
stantially increased by operating in a regime in which
b,=(1+20)a} /4y?, is near a zero of J,, i.e., Jo(b;)~=0.
Physically, the regime for which Jy(b;)=0 for a particu-
lar / mode corresponds to minimizing the perturbed fluid
velocity [J“Z”(l,n =0) of that mode. This implies that a

R
be

(a§/4)/(1 + a3 /2)

FIG. 3. The function F/”*/b, (proportional to the power at
saturation Py /P,) vs the parameter b,=(a3/4)/(1+a}/2) for
the harmonics N=1,3,5...,19.
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larger amplitude of backscattered radiation will be
reached before saturation occurs. At Jy(b;)=0, Eq. (28)
no longer applies, and saturation due to particle trapping
must be determined by consideration of the higher n
modes. In general, Eq. (28) is valid provided Py /P, <1.
If this is violated, then saturation will be caused by some
other mechanism besides particle trapping, i.e., plasma
thermalization or pump depletion. In particular, notice
that, for a plasma with / =0 and a} <<1, Eq. (28) indi-
cates Py /Py=~(k}/2a,k)*” and, hence, Py /P, <1 im-
plies ay > kpz/Zk%,

It is also convenient to define an electronic efficiency,
n,, which is the ratio of the backscattered radiation
power to the electron beam power,

M3N?k3|a, |?
2k;Bo(vo—1)

Using Eq. (28), the electronic efficiency may be written as

Ne= (29a)

= pol1+Mo Pyio/v |AK|
¢ 8IIMBy(1—1/yy) Nkg

where |Ak|=T/V3c is given by Eq. (19). Notice that,
for the fundamental (/=0) in the limit y,>>1 and
ag<<1, n,=T/2V3w,, as is the case for conventional
strong-pump FEL’s [12], where I‘=\/3(a),2,woa§/

167317

) (29b)

IV. THERMAL, SPACE-CHARGE
AND COLLISIONAL EFFECTS

A. Thermal effects

The above results were obtained using cold fluid
theory, i.e., electron thermal effects were neglected. For
a sufficiently thermal electron distribution, however, it is
possible for the longitudinal energy spread to become
large enough so as to degrade the resonant interaction be-
tween the backscattered wave and the electron distribu-
tion. This thermal electron interaction regime corre-
sponds to a weak resonant instability in which the growth
rate of the backscattered radiation is greatly reduced.

It is possible to estimate how large a thermal electron
velocity spread can be tolerated before the resonant
wave-particle interaction is degraded. The growth rate of
the cold electron instability is determined largely by the
resonant denominator, D, in the dispersion relation, Eq.

(15),
D=[k—QI+1)ky,—Ak]?, (30)

where k =k /M, and M, is given in Eq. (17). The effects
of a longitudinal thermal velocity spread [, on the reso-
nance may be estimated by letting S,— By +B,;, in the ex-
pression for D, where |B,,/(1+B,)| <<1. At resonance,
w/c=My2] +1)k,, one finds

D =~[2y314+2DkyBy+(1+1/My)AKk]* . 31

Hence, in order to neglect for the effects of the thermal
velocity spread By, it is necessary that
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(1+My)|Ak| /K,
293M,(21+1)

Bin << (32)

Using the dispersion relation, Eq. (32) yields the condi-
tion
173

k2
B << —— |22 p2(1+A240) (33)
2vN | korvoMo

A plot of the function F!*/N vs by=a}/4y?, for
N=1+21=1,3,5...,19 is shown in Fig. 4. Asymptoti-
cally (I >>1 and a3 >>1), the right-hand side of Eq. (33)
scales as [ ~'°/°. For a stationary plasma, the thermal en-
ergy of the plasma is AE,, =mc?B%,/2. For an electron
beam with initial velocity 8,>>pB,, and y,>>1, the nor-
malized energy spread is given by Ay, /y,=73B,. Note
that, for the fundamental (/=0) in the limit y,>>1 and
a§ <<1, the thermal requirement is Ay /Yo <<17,, as is
the case for conventional strong-pump FEL’s operating
at the fundamental [12]. The usual requirement regard-
ing FEL’s operating at the fundamental, Ay, /v, <<17,,
however, does not apply in general to harmonic genera-
tion.

1

B. Space-charge effects

The expressions for the growth rate of the SBH radia-
tion, the amplitude of the radiation at saturation, and the
allowable thermal energy spread are all increasing func-
tions of the electron density. Hence, optimal generation
of the SBH radiation implies operating in a regime of
high electron density. However, the fluid theory of Sec.
IT used to describe the backscattered radiation assumed
the strong-pump limit, i.e., assumed that the electron
density was sufficiently low so that the effects of the per-
turbed electrostatic potential may be neglected. This is
valid provided the relativistic plasma frequency is small

=5 whaliwaa b

P AT A IS A AT AT AT AT A AT AT

TR 1
o] 0.2 0.3 04 0.5

(a§/4)/(1 + a3 /2)

FIG. 4. The function F'/*/N (proportional to the upper limit
of the thermal velocity spread, fB,) vs the parameter
bo=(a}/4)/(1+a}/2) for the harmonics N=1,3,5. . ., 19.
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compared to the growth rate of the radiation. More
specifically, it can be shown that the strong-pump limit is
valid provided

Pokp2 M,

m<<[Akl2 . (34)
Yo 0

This inequality gives an upper limit to the electron densi-
ty for which the strong-pump limit remains valid. Using
the dispersion relation, Eq. (18), gives

k2 /k§ <<yo(1+My)*FE/peM, . (35)

Note that, asymptotically (! >>1 and a3 >>1), the right-
hand side of Eq. (35) scales as [ ~2/3. Strictly speaking,
the results of the strong-pump theory obtained in the pre-
vious sections are valid provided Eq. (35) is satisfied.

C. Collisional effects

The effects of collisions on the backscattered harmon-
ics may be neglected provided the damping rate of the ra-
diation field due to collisions [3], V’:(wﬁ /@*)v,;, is small
compared to the growth rate of the radiation field, T,
where v,; is the electron-ion collision frequency, i.e.,
r >>(wf, /@*)v,;. The relativistic collision frequency is
given by [24]

V[sT11=4.3X107 ¥ny(InA)B ) 3y )72, (36)
where InA is the Coulomb logarithm and n, is in cm 3.
The collision frequency v,; will be largest for electrons in
a dense plasma. For plasma electrons undergoing relativ-
istic quiver motion in the intense pump-laser field,

(B2
Yol 1+(ad /4yly)cos2kon]

= . 37
aj[cos’kogn+(ad /16y2y)cos?2kyn]>?
An upper limit on Eq. (37) is given by
(1+aj/4vy)
(B(O))—S(y(()))—2< 7;0 5 Y 2731?2 . (38)
00(00/16'}’10)

In the limit a3 /2>>1, the right-hand side of Eq. (38)
reduces to 24/a}. Hence, for intense laser fields where
a3 2 1, the condition that ' >>v is easily satisfied.

V. EXAMPLES

The SBH instability described in the previous sections
may be used as a mechanism to generate coherent radia-
tion in the xuv regime. Conceptionally, a device may be
designed to amplify a small xuv input signal injected into
a plasma or a copropagating electron beam. The input
xuv signal may be obtained by the output of an in-
coherent source, such as a flash lamp, or by using the in-
coherent single-particle (spontaneous) radiation generat-
ed by the interaction of the pump laser with the electron
distribution. The xuv radiation will be amplified as it
propagates, via the interaction with the intense, counter-
propagating pump-laser field. Two examples will be dis-
cussed; one utilizing a stationary plasma and the other
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utilizing a relativistic electron beam. In both examples,
the pump laser is taken to be an intense Nd:glass laser
(Ay=1 pm) with an intensity of I,=9.7X10'"® W/cm?
(ap=2.6) and a spot size of r,=10 pum, which gives a
pump laser power of Py =15 TW.

A. Backscattering from a plasma

Consider the amplification of coherent radiation using
a plasma of density n,=10' cm 3, which corresponds to
fully ionized H, at about 0.1 atm. Neglecting the effects
of relativistic optical guiding [5-8], the interaction
length is approximately either two vacuum Rayleigh
lengths, 2Z; =27r3 /A,=630 um, or one-half the pump-
laser pulse length (which is 150 pm for a 1-ps laser pulse),
whichever is shorter. As an example, consider the
amplification of the third, / =1, harmonic (and the fifth,
I =2, harmonic) at a wavelength of A=3300 A (2000 A).
The e-folding length is ¢ /I’=1.8 um (2.0 um). At satu-
ration, the ratio of the harmonic power to the pump-laser
power is Py /P, =1.0X10"* (3.8 X 10™*), which implies
a saturation power of Py=1.5 GW (5.8 GW). (The
larger saturated power for the fifth harmonic is due to the
factor 1/J3.) The pulse length of the SBH radiation is
approximately the transit length of the pump-laser pulse
through the plasma. Optical guiding [5-8] may substan-
tially increase this length beyond the vacuum diffraction
limit of 2Z; =630 um. The thermal requirement on the
longitudinal energy spread is E,, <77 ¢V (22 eV). Plas-
mas with sufficiently cold longitudinal temperatures may
be produced by laser-induced ionization [25].

B. Backscattering from an electron beam

Consider amplification of coherent radiation using an
intense electron beam with a current of 15 A, a beam ra-
dius of 10 um (a current density of 4.8 MA/cm?), and an
energy of 250 keV (y,=1.5). The interaction length is
approximately either two vacuum Rayleigh lengths,
2Z, =630 um, or one-half the laser pulse length, which-
ever is shorter. As an example, consider the
amplification of the third, !/ °=1, harmonic at a wave-
length of A=2X,/3M =2200 A. The e-folding length is
¢/I'=31 pum. The thermal requirement on the longitudi-
nal energy spread is Ay/(y,—1)<0.18%. The pulse
length of the SBH radiation is approximately the transit
length of the pump-laser pulse through the electron
beam, i.e., 2Z; =630 um. At saturation, the ratio of the
third harmonic power to the pump-laser power is
Py /Py=1.1X10"°, which implies a saturation power of
Py=17 kW. The electronic efficiency at saturation is
17, =0.87%.

VI. DISCUSSION

The generation of coherent, stimulated backscattered
harmonic radiation by the interaction of an intense,
linearly polarized laser pulse with an electron beam or a
plasma has been analyzed using relativistic, cold fluid
equations. This theory includes the nonlinear effects of
the pump laser to all orders in the normalized vector po-
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tential, a,. A dispersion relation for the SBH radiation
was obtained in the strong-pump regime. In this regime,
the effects of the perturbed electrostatic potential are
neglected. The resonant frequency of the /th mode, cor-
responding to the harmonic number N =2/+1, is given
by w/c=NMyk,, where M is the frequency multiplica-
tion factor arising from the relativistic Doppler upshift.
The temporal growth rate is given by Eq. (19).
Significant high harmonic generation, N >>1, requires in-
tense pump lasers, a,>1. The SBH radiation from an
electron beam may be viewed as a nonlinear laser-
pumped FEL mechanism [12-22], whereas the SBH ra-
diation from a plasma may be viewed as a nonlinear Ra-
man instability mechanism [23], both in the strong-pump
regime.

The saturation amplitude of the SBH radiation was
calculated based on particle-trapping arguments. Parti-
cle trapping (wavebreaking) occurs when the amplitude
of the perturbed longitudinal fluid velocity, BV becomes

z

equal to the phase velocity, B,. The perturbed fluid ve-
locity, /3‘2”, consists of a sum of individual waves charac-
terized by the mode numbers (/,n). For a particular /
resonance, particle trapping occurs first for the n =0
mode, which is the component of 8!’ with phase velocity
closest to the equilibrium longitudinal electron velocity,
(B?’). The resulting saturation amplitude of the back-
scattered radiation is given by Eq. (28). Furthermore, the
saturation amplitude of the backscattered radiation may
be enhanced by operating in a regime in which
b;=(21+1)a} /4y, is close to a zero of the Bessel func-
tion Jy(b,;). Physically, J,=0 corresponds to minimizing
the amplitude of the » =0 component of the perturbed
fluid velocity [)"l“. When this occurs, saturation may be
determined from consideration of the next higher n
mode. It should also be pointed out that particle trap-
ping only leads to saturation for sufficiently intense pump
laser amplitudes for which Py /P, <1. When this in-
equality is not satisfied, saturation occurs by other non-
linear effects, such as electron thermalization or pump
depletion.

The most stringent constraint on the production of
SBH radiation is the restriction on the longitudinal
thermal velocity spread. If the longitudinal electron tem-
perature is sufficiently high, the wave-particle resonance
is degraded and the growth rate of the backscattered ra-
diation is greatly reduced. The expression for the allow-
able thermal velocity spread is given by Eq. (33). In gen-
eral, this implies that very small thermal spreads are re-
quired in order to generate high-order harmonic radia-
tion. The expressions for the growth rate, saturation am-
plitude, and allowable thermal velocity spread indicate
that high-electron densities are required. This appears to
favor the use of stationary plasmas over that of relativis-
tic electron beams. However, the use-of an electron beam
has an advantage in that the frequency of the harmonic
radiation is relativistically upshifted (in addition to the
harmonic upshift), which implies the radiation frequency
may be tuned by adjusting the energy of the electron
beam or the amplitude of the pump laser, as indicated by
Eq. (16). The growth rates, saturation efficiencies, and
thermal spread requirements for the SBH radiation are



45 GENERATION OF STIMULATED BACKSCATTERED HARMONIC. ..

summarized in Table I. As the capability for producing
dense plasmas and electron beams with small thermal
spreads improves, along with future advances in
ultrahigh-power laser technology, SBH generation may
provide a practical method for producing coherent radia-
tion in the xuv regime.

5881

ACKNOWLEDGMENTS

The authors wish to acknowledge the numerical assis-
tance of T. Swyden and useful conversations with B.
Hafizi. This work was supported by the Office of Naval
Research and the Department of Energy.

[1] D. Strickland and G. Mourou, Opt. Commun. 56, 216
(1985); P. Maine, D. Strickland, P. Bado, M. Pessot, and
G. Mourou, IEEE J. Quantum Electron. QE-24, 398
(1988); M. Pessot, J. A. Squire, G. A. Mourou, and D. J.
Harter, Opt. Lett. 14, 797 (1989); M. Ferrary, L. A.
Lompre, O. Gobert, A. L’Huillier, G. Mainfray, C.
Manus, and A. Sanchez, Opt. Commun. 75, 278 (1990); M.
D. Perry, F. G. Patterson, and J. Weston, Opt. Lett. 15,
1400 (1990); C. Sauteret, D. Husson, G. Thiell, S. Seznec,
S. Gary, A. Migus, and G. Mourou, ibid. 16, 238 (1991).

[2] T. S. Luk, A. McPherson, G. Gibson, K. Boyer, and C. K.
Rhodes, Opt. Lett. 14, 1113 (1989); S. Watanabe, A. En-
doh, M. Watanabe, H. Sarukura, and K. Hata, J. Opt. Soc.
Am. B 6, 1870 (1989).

[3]W. L. Kruer, The Physics of Laser Plasma Interactions
(Addison-Wesley, Reading, MA, 1988).

[4] T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267
(1979); L. M. Gorbunov and V. I. Kirsanov, Zh. Eksp.
Teor. Fiz. 93, 509 (1987) [Sov. Phys. JETP 66, 290 (1987)];
V. N. Tsytovich, U. DeAngelis, and R. Bingham, Com-
ments Plasma Phys. Controlled Fusion 12, 249 (1989); V.
I. Berezhiani and 1. G. Murusidze, Phys. Lett. A 148, 338
(1990).

[5] P. Sprangle, E. Esarey, A. Ting, and G. Joyce, Appl. Phys.
Lett. 53, 2146 (1988); E. Esarey, A. Ting, P. Sprangle, and
G. Joyce, Comments Plasma Phys. Controlled Fusion 12,
191 (1989).

[6] P. Sprangle, E. Esarey, and A. Ting, Phys. Rev. Lett. 64,
2011 (1990); Phys. Rev. A 41, 4463 (1990); A. Ting, E.
Esarey, and P. Sprangle, Phys. Fluids B 2, 1390 (1990).

[7] C. Max, J. Arons, and A. B. Langdon, Phys. Rev. Lett. 33,
209 (1974); G. Schmidt and W. Horton, Comments Plasma
Phys. Controlled Fusion 9, 85 (1985); G. Z. Sun, E. Ott, Y.
C. Lee, and P. Guzdar, Phys. Fluids 30, 526 (1987); W. B.
Mori, C. Joshi, J. M. Dawson, D. W. Forslund, and J. M.
Kindel, Phys. Rev. Lett. 60, 1298 (1988); P. Gibbon and A.
R. Bell, ibid. 61, 1599 (1988); C. J. McKinstrie and D. A.
Russell, ibid. 61, 2929 (1988); T. Kurki-Suonio, P. J. Mor-
rison, and T. Tajima, Phys. Rev. A 40, 3230 (1989); A. B.
Borisov, A. V. Borovskiy, V. V. Korobkin, A. M. Pro-
khorov, C. K. Rhodes, and O. B. Shiryaev, Phys. Rev.
Lett. 65, 1753 (1990).

(8] P. Sprangle, C. M. Tang, and E. Esarey, IEEE Trans. Plas-
ma Sci. PS-15, 145 (1987); E. Esarey, A. Ting, and P.
Sprangle, Appl. Phys. Lett. 53, 1266 (1988); E. Esarey and
A. Ting, Phys. Rev. Lett. 65, 1961 (1990); P. Sprangle, A.
Zigler, and E. Esarey, Appl. Phys. Lett. 58, 346 (1991).

[9]S. C. Wilks, J. M. Dawson, and W. B. Mori, Phys. Rev.
Lett. 61, 337 (1988); S. C. Wilks, J. M. Dawson, W. B.
Mori, T. Katsouleas, and M. E. Jones, ibid. 62, 2600
(1989); F. Brunel, J. Opt. Soc. Am. B 7, 521 (1990); W. B.
Mori, Phys. Rev. A 44, 5118 (1991).

[10] E. Esarey, A. Ting, and P. Sprangle, Phys. Rev. A 42, 3526
(1990); E. Esarey, G. Joyce, and P. Sprangle, ibid. 44, 3908
(1991).

[11]P. Sprangle and E. Esarey, Phys. Rev. Lett. 67, 2021
(1991).

[12] P. Sprangle and R. A. Smith, Phys. Rev. A 21, 293 (1980);
C. Roberson and P. Sprangle, Phys. Fluids B 1, 3 (1989).

[13]R. H. Pantell, G. Soncini, and H. E. Puthoff, IEEE J.
Quantum Electron. QE-4, 905 (1968).

[14] A. Hasegawa, K. Mima, P. Sprangle, H. H. Szu, and V. L.
Granatstein, Appl. Phys. Lett. 29, 542 (1976); P. Sprangle
and A. T. Drobot, J. Appl. Phys. 50, 2652 (1979); L. R.
Elias, Phys. Rev. Lett. 42, 977 (1979).

[15] A. Gover, C. M. Tang, and P. Sprangle, J. Appl. Phys. 53,
124 (1982); Y. Carmel, V. L. Granatstein, and A. Gover,
Phys. Rev. Lett. 51, 566 (1983); 1. Kimel, L. Elias, and G.
Ramiar, Nucl. Instrum. Methods A250, 320 (1986).

[16] P. Dobiasch, P. Meystre, and M. O. Scully, IEEE J. Quan-
tum Electron. QE-19, 1812 (1985); J. Gea-Banacloche, R.
R. Schlicher, M. O. Scully, and H. Walther, ibid. QE-23,
1558 (1987); B. G. Danly, G. Bekefi, R. C. Davidson, R. J.
Tempkin, T. M. Tran, and J. S. Wurtele, ibid. QE-23, 103
(1987); T. M. Tran, B. G. Danly, and J. S. Wurtele, ibid.
QE-23, 1578 (1987); J. C. Gallardo, R. C. Fernow, R. Pal-
mer, and C. Pellegrini, ibid. QE-24, 1557 (1988).

[17] V. L. Bratman, G. G. Denisov, N. S. Ginzberg, A. V.
Smorgonsky, S. D. Korovin, S. D. Polevin, V. V. Rostov,
and M. L. Yalandin, Int. J. Electron. 59, 247 (1985); K.
Mima, Y. Kitawaga, T. Akiba, K. Imasaki, S. Kuruma, N.
Ohigashi, S. Miyamoto, S. Fujita, S. Nakayama, Y.
Tsunayaki, H. Motz, T. Taguchi, S. Nakai, and C. Yama-
naka, Nucl. Instrum. Methods A272, 106 (1988); Y. Seo,
Phys. Fluids B 3, 797 (1991).

[18]J. M. J. Madey and R. C. Taber, in Physics of Quantum
Electronics, edited by S. F. Jacobs et al. (Addison-Wesley,
Reading, MA, 1980), Chap. 30.

[19] W. B. Colson, IEEE J. Quantum Electron. QE-17, 1417
(1981); R. Coisson, ibid. QE-17, 1409 (1981); G. Dattoli, T.
Letardi, J. M. J. Madey, and A. Renieri, ibid. QE-20, 1003
(1984); W. B. Colson, G. Dattoli, and F. Ciocci, Phys. Rev.
A 31, 828 (1985).

[20] R. C. Davidson, Phys. Fluids 29, 267 (1986).

[21] F. De Martini, in Laser Handbook, Vol. 6: Free Electron
Lasers, edited by W. B. Colson, C. Pellegrini, and A.
Renieri (North-Holland, Amsterdam, 1990), pp. 195-220.

[22] See, for example, numerous papers in Proceedings of the
11th International FEL Conference, edited by L. R. Elias
and I. Kimel [Nucl. Instrum. Methods A296 (1990)]; and
in Proceedings of the 12th International FEL Conference,
edited by J. M. Buzzi and J. M. Ortega [ibid. A304 (1991)].

[23]J. F. Drake, P. K. Kaw, Y. C. Lee, G. Schmidt, C. S. Liu,
and M. N. Rosenbluth, Phys. Fluids 17, 778 (1974); D. W.



5882 ERIC ESAREY AND PHILLIP SPRANGLE 45

Forslund, J. M. Kindel, and E. L. Lindman, ibid. 18, 1002 [25] P. B. Corkum, N. H. Burnett, and F. Brunel, Phys. Rev.

(1975). Lett. 62, 1259 (1989); N. H. Burnett and P. B. Corkum, J.
[24]J. D. Jackson, Classical Electrodynamics (Wiley, New Opt. Soc. Am. B 6, 1195 (1989).

York, 1975), Chap. 13.



