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Low-pressure relativistic electron flow
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Most theories of electron flow have involved laminar flows or special flows of a single-orbital type. A
general theory of electron flow has been published [C. W. Mendel, Jr. , D. B. Seidel, and S. A. Slutz,
Phys. Fluids 26, 3628 (1983)j. This theory can be used to make some general statements about these
flows, but solutions to particular problems are complex and difticult. By constraining the general theory
to flows where the electron pressure normal to the flow direction is small compared to the electromag-
netic pressure, finite electron orbits can be taken into account in a general manner. An example of the
utility of the theory under this assumption is given.

PACS number(s): 52.25.Dg, 52.25.Wz, 52.60.+h, 52.65.+z

I. INTRODUCTION

There have been many theories of magnetically insulat-
ed electron flows. Most make assumptions about the
electron orbits to make the problem tractable. These
theories have been valuable for comparison to experiment
when line characteristics (i.e., line currents and voltages)
are considered. The primary models of this type are the
Brillouin theories [1—3], quasilaminar theories [4—6], and
laminar flows with constant ratio of plasma frequency to
gyrofrequency [7]. It is easily shown that the voltage-
current characteristics of these flows must be the same
within the accuracy of most experiments, because they
depend largely upon the pressure balance across the flow
[8]. For this reason these models are satisfactory for
comparison to experiment when voltage and current
characteristics are of interest.

A more general theory of these flows has been
developed [9—12] which depends upon a description in
terms of the density of electrons in (P, W) space, where P
is the canonical momentum along the flow and W is the
total energy of the electrons. In this theory the finite (i.e.,
nonzero) size of the electron orbits in the direction of the
electric field (normal to the electron-fiow direction) is tak-
en into account. This theory also applies to three-
dimensional flows if another canonical momentum com-
ponent is added [10]. This description of magnetically in-
sulated flows is a natural one for situations where the
canonical momentum P and total energy W of the elec-
trons change only slightly over a gyration, i.e., over a
gyroperiod or gyrolength. When changes in space or
time are slow, electrons move slowly in (P, W) space. In
addition, there is an action variable that is adiabatically
invariant and the electron dynamics can be described in
terms of that variable. This assumption of gradual
change applies to most experimental situations.

Ideally, this theory allows problems to be solved where
the nonzero height of the electron orbits is important.
For example, finite orbit height is important in wave
dispersion. Because of the finite height of the orbits, a
perturbation of an electron at one point in the electric-
field direction causes the charge density to be perturbed

over the entire extent of that electron's gyration. This re-
sults in dispersion relationships which involve integral
equations [11,13]. With few exceptions, studies of oscilla-
tions in these flows have been done with laminar flows
[14—20]. There has been some work done for finite orbits
in special situations [13].

The difficulty with the general theory is that it is in-
tractable for many problems. It has been used to write
general integral equations for eigenmodes and to prove
some general stability criteria in terms of the distribution
of electrons in (P, W) space [11],and there are other gen-
eralizations that can be proved. Among the latter are
statements about expected distributions and integral ex-
pressions for line parameters such as power-transmission
efficiency. However, when a quantitative solution is
desirable, problems arise. One reason for this is that the
electron distribution is specified in terms of P and W and
it is possible, and indeed likely, that one will specify elec-
trons that never show up in the solution because they
have been put in a region of (P, W) space where they can-
not possibly participate in the flow.

By specifying the distribution in terms of the
aforementioned adiabatic parameter and another related
parameter [11], this problem is overcome, but the
mathematics is still quite complicated. There is, howev-
er, a simplifying assumption, namely, that the electron
pressure is small, which is justified in many and perhaps
most situations. The pressure we refer to herein is the yy
component of the kinetic pressure tensor, where y is the
dimension in the electric-field direction. This assumption
will allow much simpler calculations and is the basis of
the following theory. Nonzero electron pressure implies
finite electron orbits and vice versa. However, since elec-
tron pressure is proportional to the square of orbital
height, a low-pressure theory is a higher-order approxi-
mation than small-orbital-height theory. The effect of
electron pressure on field profiles is shown as an example.

In Sec. IIA we briefly review the general theory and
discuss the two parameters mentioned above and their
effectiveness for describing the distribution of electrons in
(P, W) space. A number of fundamental properties of
magnetically insulated flows are discussed in Sec. IIB,
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and a simplifying field transformation is given in Sec.
IIC. Corresponding results from electromagnetic, rela-
tivistic particle-in-cell simulations suggest the validity of
assuming that the electron pressure is small when com-
pared to the electromagnetic pressure. The derivation of
the low-pressure electron-flow theory is given in Sec. III,
and Sec. III B provides an example.

II. RELATIONSHIP BETWEEN LOW-PRESSURE
FLOW AND PREVIOUS THEORY

A. Review of general theory

In Refs. [9] and [10] the integrals for the charge and
current densities in a magnetically insulated flow were de-
rived. In the following the momentum P will be normal-
ized to mc and the total energy W will be normalized to
mc . Defining E = eE /mc —(Fig 1),. 8 = —e8, /mc,
A =eA /mc, P=eV/mc, and J(P, W) as the distribu-
tion function [9,10], then

E'= f fdP dW(1+/+ W)Q '~zJ(P, W), p'=E,
(1)B'= —f fdPdW(A+P)Q ' J(P, W), A'=B,

where

Q =Q (y, P, W) = [ I +P(y ) + W] —1 —[ A (y ) +P]2 . (2)

The spatial variable y is not scaled; times are multiplied
by the speed of light, and so they also have dimensions of
meters. The primes in Eqs. (1) and in what follows will
always refer to derivatives with respect to y.

The relevance of Q is that an electron at y with total
energy W and canonical momentum P will have

~yu~ ~

=Q' if Q is non-negative. u„ is the ratio of the y
component of velocity to the speed of light, and
y= 1/(1 —u )' . Equation (2) is easily derived from the
definitions of the canonical momentum P =yu —A and
total energy W =y —1 —P, plus the relationship
(yu) =(yu„) +(yu~) . An electron with P, W cannot
reach any y where Q(y, P, W) is negative. Otherwise,
(yu„) would be larger than (yu ) .

We will write Maxwell s equations for one-dimensional
time-independent problems, but the integral source terms
in Eqs. (1) can be used in the full equations [10]. Oc-
casionally, variations in time or along the flow will be
mentioned. However, all field variations in time and in
the x direction (Fig. 1) must be gradual. There is no re-
striction on variations in y.

The manipulations of Q is central to the low-pressure
flow approximation. It is thus important to understand

+
E

FIG. 1. Schematic of a magnetically insulated electron flow.
A single orbit is shown. The minimum and maximum extents
across the flow are given by y and y+, respectively. The mag-
netic field is into the plane of the figure.
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FIG. 2. Function of Q(y, P, W) vs y for (a) a typical point in
(P, 8') space, (b) a point on the stable laminar line, (c) a point
near the cathode line where there are three zero crossings, and
(d) a point in the unstable laminar line. Above the Q =0 axis,
(yu~)'=Q. Electrons with P, W cannot reach any y where
Q(y, P, W) (0. Any electron which has P, W that gives
Q(y, P, W) such as the case in (b) is in a straight-line orbit at
y =y =y+. It cannot be at any other value of y since Q would
be less than zero. An electron with Q(y, P, W) such as that in
case (d) could be in a straight-line orbit at y =y =y+, but
since its y velocity would increase with distance from that posi-
tion, the orbit would be unstable.

how it behaves. Figure 2 shows four Q functions from
different regions of (P, W) space. Figure 2(a) is the typi-
cal situation. An electron with these P and W would os-
cillate with a sinusoidlike motion between the values y
and y+, which are the zeros of Q (y, P, W) in y.

For the Q function shown in Fig. 2(b), the electrons at
yI are in stable straight-line orbits. Because Q is quadra-
tic in y even when the maximum is at Q =0, electrons in
these stable straight-line orbits have well-defined gyro-
lengths and gyrofrequencies. If perturbed, these elec-
trons will have a sinusoidal orbit in the x,y plane. The
Q (y, P, W) shown in Fig. 2(c) has three zeros, but an elec-
tron can only stay in the system if it is between y and

y+, where Q is greater than zero. When the minimum in

Q occurs at Q =0, y and y, coincide [Fig. 2(d)]. In this
situation the straight-line orbits at y =yL are unstable. If
perturbed, these electrons move away from their original
position exponentially.

Generally, fiows will have only two zeros of Q, al-
though there may be a small region of (P, W) space where
there are three [10], as shown in Fig. 2(c). This occurs
when the density is sufficiently large at some part of the
line. In these situations the integrals in Eqs. (1) are be-
tweeny andy+ of Fig. 2(c).

We will write integrals such as those in Eqs. (1)
without stating the limits of the integral, but always as-
suming that they are done over the correct portion of
(P, W) space to include the distribution correctly, i.e., for
Q (y, P, W) )0 between y and y+.

The integrals in Eqs. (1) can be rewritten by integrating
by parts:
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E'= —f fZP dW Q', P'=E,aW'

a =+f frIP(fWQ'~2 aP'

(3a)

(3b)

Pl (y)= —A (y)+ &(y)
[&'(y)—E'( )]'~'

Wl (y) = —1 —P(y)+
& (y)

[g2(y) ~2( )]1/2

G(y) =f fdP d W JQ'~' .
(4)

G (y) is the yy component of the electron-pressure tensor.
The subscript c refers to values at the cathode, and the
cathode is assumed to be a space-charge-limited electron
emitter so that E,=0.

Figure 3 shows the region of (P, W) space which con-
tains all electrons in the Bow. The boundaries of this
space consist of the anode line A, given by
Q (y„P, W) =0, the cathode line C, given by
Q (y„P, W) =0, and the laminar line L, given by
Q(y, P, W)=0 and dQ(y, P, W)/dy =0 for all y between
y, and y, . Electrons above the cathode line will hit the
cathode in less than one gyration, and those above the
anode line will hit the anode in less than one gyration.
All electrons on the laminar line are in straight-line or-
bits, and the set of all of these electrons form a laminar
flow. Using Eq. (2) for Q, then, from Q =Q'=0,

-2

FIG. 3. Plot of (P, 8') space typical of a magnetically insulat-
ed transmission line. The inset shows the entire allowed region.
The cathode line (C), the anode line (A), and the laminar line

(L) are shown. Also shown are two constant-~ lines, K=O and
a= 1/B„and a constant-g line. Note the small section of un-

stable laminar line extending from the origin into the first qua-
drant. Positions in P, 8' space can also be specified in terms of
a =H (P, W) and an orthogonal variable g.

The boundary terms in these integrations are zero be-
cause either Q =0 or J =0 at the boundaries. These in-
tegrals are convenient because the only place where y ap-
pears in the integrand is in the Q function.

Multiplying Eq. (3a) by E and Eq. (3b) by 8, subtract-
ing, and integrating yields the pressure integral [9]

B2—E2

2
+G= +Gc

In Eqs. (5) and in what follows, an L subscript refers to
values on the laminar line.

The laminar line L commonly has two parts, the stable
part L, and the unstable part L„. These two parts can be
seen in Fig. 3. On L„ the orbitals of the individual elec-
trons are unstable because B Q/By is positive [Fig. 2(d)].

There can be difficulty with specifying the distribution
function J as a function of P, W as has already been men-
tioned. It is possible to specify electrons in a region of
(P, W) space that is outside of the allowed region shown
in Fig. 3. If this occurs, these electrons do not contribute
to the integrals in Eqs. (1) or (3) because Q (0 for all y.
It is better to specify the distribution using the function
H (P, W), given by

y+(,r, w)
H(P, W)= f dy Q' (y, P, W) .

The limits of the integral are specified by
Q(y+, P, W)=Q(y, P, W)=0, and Q(y, P, W))0 for
y &y &y+. H is also a function of x and t if the poten-
tials are a function of x and t. H(P, W) is an action in-
tegral of the electron motion.

In this theory the electrons have been replaced by a
line of charge extending for the full gyroheight in the y
direction. The charge density along this line varies with
the same density distribution as the average of the gyrat-
ing electrons. H(P, W, x, t) is the Hamiltonian of these
lines of charge [10]. It can be shown [10] that H is adia-
batically conserved along an electron path if spatial
changes along the How take place over many gyrolengths
and temporal changes take place over many gyroperiods.
Under the same restriction, the path of a line of charge is
constrained by an equation of motion

H(P, W, x, t) =a,
where ~ is a constant of motion. Henceforth we will refer
to these lines of charge as electrons, but the theory is al-
ways within the above approximation. H is actually the
Hamiltonian of the lines of charge, not the electrons.

The parameter ~ has several interesting features
[10,11]. An electron on L, has a=0. Figure 3 shows a
~)0 contour in the P, W plane. It is desirable to specify
an electron by its value of ~ and an orthogonal variable g.
From the definition of a,

d~= dP+ dW .
BW

Therefore g can be specified by

The function 8(g) is positive (or negative) definite. A
convenient 8(g) can be determined by requiring that
g=y when x=0. This will be the 8(g)that we will use,
and an expression for 8(g) will be derived later. An elec-
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tron on the laminar line has a straight-line orbit with

y =g. The Jacobian of the transformation from P, W to
~,g then gives

dP dW=h 8(g)d~dg,
where

(9)

2
BH BH
aP

+ ae

2

We will need the partial derivatives of P and 8' with
respect to ~ and rI. From Eqs. (7)—(9) it is easily found
that

h dW= de+ 8(r))de,aH aH

h dP = dz — 8(rI)dq .
dH dH

(10)

Therefore

a8'=h 'aH BP =h aH
a~

" aW' a~
"

aP '

BW
h P8( )BH dP

h 8( )
&H

aq
" aP' aq "aW'

Another function which will prove very useful is I'(q),
defined by

8 Q(y, PL (r)), WL (rj))
r(q)= ——

2 By

E'(r))B(rj) B'(g)E(r))—
[B (rj) —E (rj)]'~

(12)

where we have used Eqs. (2) and (5). On the stable lami-
nar line L„BQIBy &0 at y =rI, and so I') 0. In con-
trast, on the unstable laminar line L„,I & 0.

The relationship between the shape of Q(y) and the
stability of straight-line orbits can be understood by look-
ing at Fig. 2. Figure 2(b) corresponds to an electron on
L, and at y =y =y+. If that electron is instantly per-
turbed (i.e., it is given a change in velocity without a
change in position), the parabola moves upward a bit to
look more like Fig. 2(a). The electron is then moving in a
small sinusoid, with y and y+ close together on the y
axis. In a situation such as Fig. 2(d), an electron on L„ is
at y =y, =y . If that electron is instantly perturbed,
the Q curve also moves upward a bit, but it is still quad-
ratic upward, so that the electron moves more and more
rapidly as it moves away from its original position.

Note [Eq. (12)] that I,=B, E,' when E, =0.—At the
anode and in any vacuum region near the anode,
I =B,+2G, . Typically, G, is negligible, so that I,=B,.

As an example of the utility of I, the laminar lines
given by Eqs. (5) can be differentiated with respect to g to
get

Clearly, from Eq. (12), I can be negative if the electron
density is high enough. In such regions the laminar or-
bits will be unstable (Q =0, Q'=0 will occur at a
minimum in Q) and the laminar line will move up and to
the right in (P, W) space as g increases [Eqs. (13)]. Al-
though there may be regions in a flow where I & 0 (usual-

ly in a narrow band near the cathode), in what follows ex-
pressions involving I' will be used only in regions
where I ~0.

By looking at the motion of electrons so near the
cathode that B=B, and E'=E,'=B, —I „it is found
that electrons with zero total energy, corresponding to
electrons at rest on the cathode, cannot leave the cathode
[21] unless 1 & 0. This occurs because (in our normalized
units) u l2=E,'y l2 (from energy conservation) and
u„=B,y (from canonical momentum conservation), so
that if E,' were not greater than B„u„would be greater
than u in a region near the cathode. From this and Eq.
(12) we get Table I. Ordinarily, it is expected that elec-
trons will be emitted from the cathode with P, 8'=0; i.e.,
they will enter (P, W) space at the origin. On the other
hand, it can be argued [21] that electrons are near the
laminar line, and since there are electrons at the origin,
the stable laminar line must go through or near the ori-
gin. It is thus expected that I =0, E'=B, in some re-

gion around the cathode. In mks units this electron
charge density near the cathode is ed+„/m, which cor-
responds to 10' e /cm at 1 T.

B. Connecting general flow to low-pressure flow

The general theory discussed in Ref. [10] covers most
situations of interest, but is unwieldy when applied to
most problems where a numerical solution is desired. In
this paper it is shown that the theory can be simplified
greatly by including only flows where the electrons are
close to the ~=0 line. Restricting the theory to such
flows needs to be justified.

If the charge density near the cathode is given approxi-
mately by the value above (i.e., E,'=B, ), the unstable
laminar line will be short, and since all electrons leave the
cathode with P =8'=0, they leave the cathode with
small ~. Then, since ~ should be conserved, all electrons
should have small ~.

Time-dependent two-dimensional particle-in-cell simu-
lations have been valuable tools for studying these flows.
Figure 4 shows a simulation of a feed transition such as
those found at the input to a magnetically insulated
transmission line [22]. The simulation is essentially in an
equilibrium at the time of Fig. 4. The cell size is 0.2 cm
in the flow direction. The cell size is variable in the y

TABLE I. Determination of orbital stability and ability of
electrons to leave cathode relative to E,'/B, and I,.

dPL (rI)

dn

dWI (g)
dn

B(q)r(q)
B (rI) E(rI)—

E(g)I (g)
B (rI) E'(rI)—

(13)

E,'/B,

&1
=1
&1

&0
=0
&0

Unstable
orbits?

yes
no
no

P, 8'=0 electrons
can leave cathode?

yes
yes
no
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FIG. 4. Simulation line geometry with particles shown at a
time when the fiow extends over the entire simulation. The
transmission line is 15 cm long and 1 cm high in the uniform
section. The emission algorithm places "electrons" (actually
charges of the order of 10' electrons with the same mass-to-
charge ratio as an electron) with P = 8'=0 at random locations
in the cells next to the cathode.

24

20

16

cv 12
E
D

8

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ ~ ~ ~ ~

b

/ C~~~~~~~o~e~e~ ~~~~~~~~~~~~~~ ~~o~ ~~~~~~~
clr~/

-4
0

BC&

FIG. 5. Plots of I (y) for the four regions shown in Fig. 4.
The horizontal lines are the local values of B„and I ap-
proaches these lines near the anode, as expected.

direction, starting at 0.033 cm near the cathode and hav-
ing 20 cells across the 1-cm gap between the cathode and
anode. Four diagnostic locations along the line are
denoted by the letters a-d. The wave structure seen is
probably not an accurate portrayal of a real flow.
Changes in the cathode emission algorithm that are
unimportant within the accuracy of the code (due to cell-
size limits) can eliminate this feature.

The function I'(y) for locations a —d in Fig. 4 are
shown in Fig. S. In all cases I (y}=B, in a region near
the anode, as expected. The finite cell size at the cathode
forces I to go to a large negative value in the first cell
near the cathode. This occurs because the finite cell size
(and other numerical effects) leads to some spread in P, W
for the electrons near the emission point of P =0, 8'=0.
Since electrons can never be outside of the allowed region

on the laminar line side of that region, the laminar line
must pass at least a small distance from the origin, as
shown in Fig. 3. This requires at least a small unstable
laminar line and, therefore, a region of negative I near
the cathode (Table I).

The electrons for each location of Fig. 4 are shown in
(P, W} space in Fig. 6. The cathode line is the same for
all locations since the vector and scalar potentials are
zero at the cathode. The scalar potential at the anode is
also the same for all locations, but the vector potential at
the anode decreases from location a to d because of de-
creased line height and increased electron flow. As a re-
sult, the anode line moves toward positive P, going from
location a to d. The laminar line therefore must also
change.

There are several interesting features in Fig. 6. The
important feature for the theory to be presented here is
that the electrons are always near the laminar line, which
is to say that a =H(P, W, x, t) is small for the P, W values
of all electrons. This is true despite the large structure of
the flow seen in Fig. 4. The electrons at location d, which
appear to be to the right of the laminar line, are an ar-
tifact due to the finite width of the diagnostic band from
which these electrons are taken (five cells). Location d is
close to the load, and fields vary more rapidly in the flow
direction there. Another interesting feature is the pres-
ence of electrons above the cathode line. These will all be
captured by the cathode in less than one gyration unless
their P and 8'change in less than a gyration to get them
below the cathode line.

In a uniform (constant gap) section of the line, the elec-
tron cloud as a unit must conserve energy and canonical
momentum, except for energy and momentum that is
transferred to the cathode by electron loss. This can be
seen in Fig. 6(c), where the electrons above the cathode
line are in the P )0, 8'&0 quadrant. As electrons
spread along the laminar line, the cathode is heated and
"feels" a force in the forward direction. The electron
cloud is cooled and "feels" a drag in the backward direc-
tion. There is thus an evaporation of electrons to the
cathode and a viscous drag on the electron cloud, which
then requires further electron emission.

The extent of the electron spread along the laminar
line in the simulations (i.e., the spread in r)) is dependent
upon the cell size near the cathode and the particular
emission algorithm employed. This spread is determined
by numerical effects. Experiments indicate that the
spread in energy is less than l keV in some cases [23],
whereas the spread is of the order of 100 keV in the simu-
lations. Emission algorithms that add thermal spread in
a and g tend to reduce the numerically induced spread
along the laminar line and reduce the wave structure seen
in the envelope of the electron cloud (Fig. 4). Neverthe-
less, the simulation supports the value of a low-pressure-
flow assumption since numerical effects should not reduce
the spread in x.

Figure 7 is a plot of the simulation electron density
normalized to the critical value for cathode emission
(Table I). The high density near the cathode is necessary
because of cathode emission. Since the finite cell size is
observed to cause excessive spreading of the electron
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cloud along the laminar line, it must also cause more
electron recapture by the cathode and more subsequent
reemission. For this reason the thickness of the layer of
high density near the cathode in the simulations, which is
the same as the layer of I &0 discussed earlier, depends
upon the cell size. Outside this thin layer, the density
rises with distance from the cathode, except in the case of
the thin sheath in the very wide portion of the transmis-
sion line (location a). Nevertheless, Fig. 7 indicates that
the density profile can be approximated by a uniform
electron density of the proper width and equal to the crit-
ical value.

The tendency seen in simulations for electrons to be
near the laminar line should also occur in real flows
where conservation of ~ is expected. We are of the

opinion that electrons in experimental flows are near the
laminar line just as they are in the above simulations.

C. Field transformation

A simple transformation from 8,E simplifies the
theory and makes the relationship with zero pressure
more apparent. Defining two functions g (y) and f (y) by

8 =g (y)coshf (y), E =g (y)sinhf (y), g =B E—
the pressure relationship [Eqs. (4)] and the differential
Eqs. (3) become

0.4

(a)
0.4

0.0 0.0
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%.8
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FIG. 6. I', 8'plots for the same simulation at the same four locations as in Figs. 4 and 5. The tendency for particles to lie along the
laminar line is apparent. Particles above the cathode line will hit the cathode in less than one gyroperiod. Electrons to the right of
the laminar line are an artifact of the finite size of the (1 cm wide) band containing the particles. This is noticeable primarily in (d),
which is near the load (see Fig. 4) where the fields are varying appreciably over the diagnostic band.
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2.0

1.6

PL (g)= —A (g)+sinhf(g),

WI (r)) = —1 —P(g)+coshf(g),
(16)

LLJ
0.8

0.4

0.0

~~o~e~

b ic
'\

L

BcV

E'= Bc

for any flow. The function I [Eq. (12)] is easily found to
be

r(g) =g(g)l g (g) —f '(g) l

III. LOW-PRESSURE ELECTRON FLOW

There are several simplifications that can be made if it
is assumed that the electrons have low values of v, i.e., if
they are near to the laminar line (Fig. 3). Since the elec-
tron pressure G is zero when the electrons are all on the
laminar line, one approximation might be to assume
g =B„and from Eqs. (15) above then

FIG. 7. Plots of the electron density E' normalized to the lo-
cal critical value for cathode emission of B,. In mks units this
is p/(eoe8„/m ). The high value near the cathode must occur
so that electrons can leave the cathode. This layer is compara-
ble to a cell size in thickness. The density appears to be well ap-
proximated by a layer of the critical density of the proper thick-
ness.

B,f '(y) = —J J da dr) h 8 coshf (y)

+sinhf (y) Q'BJ

~2+G =LB2+G

G(y)= f J dP dW JQ' ',
g(y)f'(y)= —J fdPdW coshf +sinhfBJ . BJ

(14)

~g2+G = ~B2+G

G(y)= f fdvdgh BJQ'~ (y, a, g),

g (y)f '(y) = —f fdade h 6 coshf (y)

(15)

+sinhf (y} Q'BJ

In expressions such as these, functions in the integrand
will depend upon g unless dependence upon y is shown
explicitly.

From Eqs. (5),

XQ'~ (y, i~, g) .

In the limit of zero pressure (G =0), g =B, and

B =B,coshf, E =B,sinhf .

This is a general form for all planar laminar Bows, since
by differentiating both of these

B' E
,
=—=tanhf,E' B

which is to say that the electron drift velocity is equal to
E/B at all points in the flow.

We again transform from P, W to a, g, and so Eqs. (14)
above become

In this approximation the assumption is that electron
pressure is negligible. The situation is comparable to the
quasineutral model for plasmas where the electron and
ion charge densities are equal, and yet there may be
electric-field divergence. The example in Sec. IIIB will
show that this is a satisfactory approximation in some
cases. Under this approximation, then, we have a finite-
orbit theory with zero electron pressure. The example in
Sec. III B will indicate that the electron pressure is quite
small, even for fiows with y+ —y comparable to the
thickness of the electron sheath.

Small pressure is related to small orbital height. This
can be seen in the following way. The a value of an elec-
tron is approximately given by [Eq. (6}]

(y y —) lu I

ym
+ mc

ym eB, eB,
2'

(y+ —y-)'
mc ym

+ mc

where eB, /ym is the gyrofrequency. The average elec-
tron pressure ( G ) is

(y. —y, )(G)=f 'Gdy
C

= f fdPdWJH

eB,—f f dPdWJ '(y+ —y )
mc

from Eqs. (4) and (6). Therefore, for a given electron-
density profile, the importance of electron pressure is
determined by orbital size. In the example in Sec. III B,
it will be seen that orbital size can get fairly large before
the low-pressure approximation is violated.

We now look at two related approximations that will
allow us to calculate the function 0 from E, B, and I,
and allow us to reduce the number of integrals in the f '
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expression for many interesting distributions in (P, W)
space. Since electrons are assumed to be close to the
stable laminar line L„we will approximate

—'g +6 =—'8, +6, ,

G= fdna efdKJg'",
(18a)

(18b)

g(y)f'(y)= —f drihL 8f dK coshf (y)

+sinhf (y) Q'BJ
aP

= —fdri hi 'e coshf (y) f dK Q'i/2

BH BH
aP „„=aP, „' ""

i.e., we will use the derivatives on L, at the same g. Us-

ing this approximation, Eqs. (15) become

/'(&)K
Q (y, K, 2))= —I (7))by (20)

This expansion could have instead been done by expand-
ing P and A in by and keeping terms up through by .

The reader will not be surprised that the derivatives of
H with respect to P and 8'can now be found in the limit
of ~=0. The calculations are somewhat tedious, and for
that reason they have been put in the Appendix. Once
these derivatives are known, hL (rj), e(rl ), and the Jacobi-
an on the laminar line are known, as are the relationships
between derivatives of J with respect to P, R' to those
with respect to ~, g. Finally, in the Appendix, everything
is put into Eqs. (18) to get the field equations. The result
of this is

Q(y, K, rl) =K —I (2I)by= a
aK vo, g

where (ag/aK)iz o „is determined by putting Q into the
equation for H [Eq. (6)] and setting H =K. This yields

+sinhf (y) f dK Q'aJ 1/2

P
aH ~B(~)
aw , g(q)r'"(q)

n B,coshf(rl )

g (r) )r'/'(2) )
(21a)

(18c)

We need to get Q(y, K, q), hL (g), and e(2)) to replace
the dependence upon P, 8'. This will be accomplished by
expanding Q in a Taylor series and keeping the lowest-

order terms. This is our second approximation. The re-
sult will be a parabolic function of y. The Q(y, P, W} ex-

amples in Fig. 2 would be well approximated (when

Q )0) by a parabola, except when near the unstable lami-

nar line. On the unstable laminar line, one solution of
Q =0 occurs at y =y, =y and the parabolic approxi-
mation is not valid [Fig. 2(d)]. It will be seen that the
only time we need the parabolic approximation is on the
stable laminar line, and so there will not be a problem.

A. Transformation from P, 8' to ~, g at low pressure

n.B,sinhf (rl)
(21b)

g(ri)r' '(rl)
aH n.E(2) )

g(q)r'"(q)

h2 m (B +E ) lr cosh(2f)
(B'—E')r I'

~rl/2(B2+E2) arrl/2cosh(2f)
(B2 E)3/2 g

I 3/2

(22)

(23)

I 3/2

~(B2 E2)1/2hL e(2)) = (24)

It is also shown in the Appendix that the criterion
B,I7& 1, where F is the mean sc of the electrons, is general-

ly sufficient to assure good approximation. Often, this is
a stronger criterion than necessary.

The derivatives of Jwith respect to P and 8'become
The spatial variable y only occurs in the source in-

tegrals [Eqs. (3)] in the function Q. Since small K implies
small y+ —y, we expand Q (y, K, ri) in by =y —ri and K,

I.e.,

Q(y, K, r)) =Q(rI, O, g)+Q'(g, O, q)by

+ —,'Q "(g,O, g) yb+ .

ag 1 a'g
+a- ... +2 a-, ., +

a+ Kby+. . .
g, o, g

B«Q(rI, 0,2))=Q'(y, O, r))i~=„=0, and so the first two
terms are both zero and can be dropped. Since sc is of or-
der hy, the sc.hy term is of order hy . We therefore
keep the a and Ay terms and drop all others. Recalling
Eq. (12), Q becomes

and

(B E}E aJ-
(B2+E2)r

hf aJ
h(2f ) ari

aJ rrB aJ
aw (B —E )' r' aK

n coshf aJ g sin

aK rcos (25a)

21/2I 7/4= fdg 3 E(g,P)
p=7Tr hy /2

(26)

vrE aJ (B E)B a�-
(JB E2)1/2rl/2 aK (B2+.E2}r
m. sinhf aJ g coshf aJ

aK I cosh(2f) aq

The equations for G and f [Eqs. (18)] are then

I 3/2
G= fdg fdKJg'"
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g(y)f'(y)= —f dpi —cosh[f (y) —f]fda Q' —f dpi f da g'
Bs ~ cosh(2f ) Brj

21/2I 5/4 Bra(~,~)= —fdr), cosh[f (y) f]—
p

—
771 / gy /2

+ dg
2' I sinh[f (y)+f] BK(rj,p)

cosh(2f) B7) p=~I b,y /2
(27)

where

K(g, p)= J dvv'/ J(v+p, , r)) .
0

The integral expression for I( is simple, and the in-
tegral can be done analytically for many distributions.
Therefore many problems can be solved with a single in-
tegral over g.

Since we are only looking at small Ay, the hyperbolic
cosine term in the first part of Eq. (27) is near unity and
the sinh/cosh term in the second part is approximately
tanh(2f ), which is less than l. The ratio of the
remainder of the integrands is approximately

()J/()g
g BJ/Bg

Although I' /g is small near the cathode, so is
tanh(2f). We therefore should be able to neglect the
second term in many cases where the distribution varies
slowly along the laminar line (i.e., with rl) and quickly
normal to the laminar line (i.e., with a). This appears to
be the case with the simulations mentioned above, al-
though we do not know how much of this is due to nu-
merical effects.

If the distribution J(a, g) has a spread in a. at the
cathode, the integrals will have to include some electrons
above the cathode line. Otherwise, the charge density
would drop by one-half in a narrow interval near the
cathode. By including the electrons above the cathode
line, this will not occur. The problem will then include
some electrons being emitted from the cathode with
nonzero energy and a like number being recaptured by
the cathode. This also occurs in simulations (Fig. 6). In
the problem presented in Sec. III B, this will be handled
by assigning g (

—y) =g (y), f (
—y) = f (y), and in-—

tegrating from g = —ao.

B. Example: Equilibrium profiles

An example of the use of this theory shows the effect of
orbit height on field profiles and electron pressure. Look
at the particular distribution given by

(28)

where fo is the derivative of fo. We will see that A, is the
mean orbital half-height and that, in the limit of X=0,
f (y)=fo(y). Since A,(rl) is arbitrary thus far, the pri-
mary assumption is the exponential variation with ~. The

g(y)f'(y)= fdgg(g)fo(g)cosh[f (y) —f (rI)]

x (~y/1

1/2g

(29)

1.5

1

os—

0

2G/B
I /B

f0
f

-0.5

8 y

FIG. 8. Example. The function f, twice the electron pressure
(2G), and the function I for a flow with f =yosin(y/yo) and
yo= 1.5. The scale height of the fields [e.g., ~B/(dB/dy)~] is

comparable to the height (i.e., y+ —y ) of the typical orbit, yet
the electron pressure is still small when compared to field pres-
sure (2G «B, ). Also shown is the function fo.

reason for this formulation will soon be apparent. Distri-
butions varying with ~ in ways other than exponential
(e.g. , a square distribution) could be done as easily. We
will assume that the variation of fo is slow enough to
neglect the BE/Bg term in Eq. (27).

With this distribution function, typical electrons with

g have a of the order aI'/ (ri)A, (ri)/2. Replacing ~ by
m.l'/ A. /2 in Q(y, ~, r))=0 [Eq. (20)] gives ~Ay~ =A, , and
so the typical electron orbit will be twice this value in
height. The functional behavior of A, (rI) determines the
variation of the height of the typical orbits across the
flow. We will restrict ourselves to constant X, and so the
mean orbital height will be independent of position. Put-
ting this in Eqs. (26) and (27), the ~ integrals can be done
immediately. The lower limit of these integrals is 0 (i.e.,
on the laminar line), and the upper limit is taken to be
+ 00 since we restrict ourselves to cases where electrons
are close to the laminar line and, therefore, where the ex-
ponent in J in Eq. (28) is large on the anode line. Then

g =(B,+2G, )
—2G,

2G(»= J de~'g'(n)[g(n) —f'(n)]fo
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e /B
B/B
E /B
E/B

BcY
-2

-2

FIG. 9. Fields B,E normalized to B„for the example. Also
shown are the fields BO,Eo for the case where all electrons have
K=0, i.e., for a laminar flow. The spreading of the charge and
current densities due to nonzero gyroheight is evident.

FIG. 11. (P, W) space showing the cathode, anode, and lami-
nar lines for the flow of Figs. 8, 9, and 10. Also shown are the
lines B,x = 1.0 (dashed line) and a contour of constant low elec-
tron density in (P, W) space, J(P, W) =const (dot-dashed line).

Note that if the exponential and factor before it are re-
placed by a Dirac 5 function, the solution is

and in the limit of small A, , g =8,. That is to say, for
very small A, the solution goes to the zero-pressure solu-
tion presented in Sec. II C.

Equations (29) for g, 6, and f are integro-differential
equations for f and g . Given a pressure g(rl), the equa-
tion for f can be solved as a series, using care to assure
that the series converges. This solution can be put into
the integral expression for 6, which yields a new g (rl ) to
be put back into the equation for f. This was done for

yosin(y/yo), y (kayo/2
fo(y) =

yo, y )nyo/2,

1.5

CV 0
Q3

LU

0.5

B y

FIG. 10. Charge density for the flow in Figs. 8 and 9. There
is continual emission and reabsorption at the cathode in the
model, but since the electrons at the cathode are not cold (i.e., P
and W are not zero for all emitted electrons), there is no thin,
high-density layer.

for y0=1.5. This function was chosen because it gives a
similar charge distribution to the simulation data shown

in Fig. 7.
The solution is shown in Figs. 8 and 9. The function f,

twice the electron pressure (26, ), and the function I are

shown in Fig. 8. Note that the electron pressure never
exceeds about 0.07 of the total pressure (which is B, /2),
even though the electron orbits are fairly large. Note
also that the electron density extends about k further
across the transmission line than the A, =O (f =fo) case.
The fact that I is varying on a scale of about 2X indicates
that the approximation for Q, etc. , should be fairly good,
even at this large I,. Figure 9 shows the normalized fields

calculated from the data in Fig. 8, and the charge density
is shown in Fig. 10. The charge-density profile is qualita-
tively similar to that seen in the simulation (Fig. 7). Fig-
ure 11 shows (P, W) space for the How. Also shown are
the lines 8,~=1.0 and a contour of the electron density
in (P, W) space at e of the maximum value. The distri-
bution in (P, W) space is also qualitatively similar to the
simulation [Fig. 6(c)]. In the example the (normalized)
anode scalar and vector potentials are 10.3 and 11.8, re-

spectively.

IV. CONCLUSIONS

By specifying the distribution of electrons in (P, S')
space as a function of ~,g and by assuming that electrons
in relativistic electron flow are close to the laminar line,
we have been able to simplify the general theory of mag-
netically insulated relativistic electron flows. Theoretical
considerations and time-dependent particle-in-ce11 simu-

lations offer some justification for the assumption. The
resulting theory has made solutions practical for some
problems of interest. This theory might be helpful in

studying wave dispersion in these flows, flow characteris-
tics, and the effect of finite electron orbits on enhance-
ment in ion diodes.

A sample calculation has shown that finite orbits cause
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a fairly small change in the fields and that a finite-orbit
zero-pressure How is probably a good approximation for
many situations. In situations such as the calculation of
dispersion using the results of Ref. [11],a theory includ-
ing finite orbit size is desirable, because a disturbance in
the orbit at one value of y disturbs the electron density
over the entire interval from y to y+.

APPENDIX

To do the integrals of H, we use the approximate func-
tion Q [Eq. (20)]. The zeros of Q are then

y+ =rj+by+, by+ =+(2K/vrl ' )'/
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In the limit of K=0, the approximation for Q will give
the correct value for the integrals over y, and therefore
we can get the derivatives of H on the stable laminar line

L„i.e., on K=O. These are given by

aII f" (1+y+ W)
J y

dy
Q

1/2
L

'~+ y — g+Bg 8 g —E
[2I' (rj)K/77 r(7) g,y']'"

where Eqs. (5) have been used for PL, and WL. Changing
variables to y=(n I ' /2K)' by,

Using the Jacobian for the transformation from P, 8' to
K, r) on L, [see Eq. (9)],

(Ala)

Likewise,

dH B(rI) dg
[B2(2)) g2(ri)]1/21 1/2(2)) 1 (1 +2)1/2

lrB (2) )

[B2(2) )
—g 2( ri) ]1/21 1/2(r))

B(r)).
g(2))l' '(2))

I 3/2
h 8( )=L ~(B2 E2)1/2

I 3/2
(A4)

The higher derivatives of H on L, can be calculated in
a similar way, except that the derivatives of the limits of
the integrals (i.e., y+,y ) must be taken into account,
and the process must be done as a limit, to avoid diver-
gences. The derivatives all exist, and, for example,

aH
as

aE(2) )

[B2(7)) E2(2))]1/21 1/2(2))

nE(g).
g(2) )I'"(2))

Substituting these into Eq. (9),

„2 n(B +E ) m.. cosh(2f)
(B2—E2)l. 1

(A lb)

(A2}

BH dW aH dP
dq aw dq

Substituting Eqs. (13) and (21),

e= mE ( EI )— —
(B2 ~2)1/2I'1/2 B2 E2

mB (
—Br)

(B2 B2)1/21 1/2 B2 E2

I'/ (B +E ) farl' . cosh(2f)
(B2 E2}3/2 g

(A3)

If there is an unstable laminar line L„, these expres-
sions are only valid where I ~ 0, i.e., on L, . We can now
derive 8(2) ). From Eq. (8),

a H a H p~+ dy
gP2 J y Q

1/2

aH
awap, '

from which it can be shown that

dh

dK

2'
I'/ cosh(2f)

2I 1/2

hi .
n. cosh (2f)

By expanding h in a Taylor series in K and using the
above in the first term, we can estimate the accuracy of
the assumption of h =hz. In Aows with electrons only,I' (8, . Since I is small near the cathode and
cosh(2f) is large near the anode, B,K ( 1, where K is the
mean K of the electrons, is generally sufficient to assure a
good approximation. It can also be shown that Q(y)
given by Eq. (20) is a good approximation if the same in-

equality is satisfied. Often, this is a stronger criterion
than necessary.

Since the electron distribution in (P, W) space is going
to be stated as a function of K, g, we need to convert the
derivatives of J in Eqs. (18) to derivatives with respect to
K and g. Using Eqs. (7) and (8),
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aJ aJ aK aS a~
eK am+ Bq Om

BJ BH BJ,BH
aK an+ a~ a~ '

aJ aJ aK aJ aq
aI aK a~+ O~ a~

aJ aH Me, aH
aH aS a~e aW

Consistent with the sma11-K approximation, we use the
derivatives of H on L, :

n.E BJ (B E—)B BJ
(B2 E2)l/2I 1/2 tl~ (B2+E2)l
n sinhf t)J g coshf BJ

a~ r cosh(2f) a~
(Asb)

' 1/2

G= f fd~dt) —I hy' J(a., rI)
'ITg IT

Using the Jacobian on the laminar line [Eq. (A4)] and
Eqs. (18), the electron pressure G is given by

t)J rrB t)J
(B2 E2)1/2I'1/2

+ (B'—Z')'" ( ~Z)—
nl 1/2(B2+E2) (B2 E2)1/2I 1/2 ()ri

n B t)J (B E2)B —BJ
(B2 g2)1/2I 1/2 ()a (B2+E2)l ()rI

n. coshf t)J g sinhf t)J
Ba. I cosh(2f) Brj

and

(A5a)

21/2I 7/4 I 1/2

=fdic „, fd~ ~— Sy'
1/2

J(a, ri)

21/2I 7/4=fdri E(tl,p)

E(g,p)= f dvv' J(v+p, rI) .

711 1/2gy2/2
(A6)

By substituting Eqs. (20), (A2), (A3), (A5), and (A6) into
Eq. (18c), we get an equation for f:

1/2r aZ 2r'"K
g(y)f'(y)= —f dpi —cosh[f (y) —f)]f dir —I hy

g BK 77

1/2
1/2

+ I
d &, /z sinh[f (y)+f] t)J 2I'

2n. cosh(2f ) Btl
dgI dK —I hy

21/2I 5/4 are(~, l )= —fd ri cosh [f (y )
—f]1/2g t){tt

I / sinh[f (y)+f] r)K(ri, p, )+ der
cosh(2f ) t)rI

p=mI hy /2

p=7JI hy /2
(A7)
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