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A simple derivation in the Coulomb gauge of the nonlinear Schrodinger equation describing propaga-
tion of powerful ultrashort circularly polarized laser pulses in underdense cold inhomogeneous plasmas
is presented. Numerical solutions are given for the two-dimensional axisymmetric case for both initially
homogeneous plasmas and static preformed plasma columns. These solutions account for (i) diffraction,
(ii) refraction arising from variations in the refractive index due to the spatial profile of the electron den-
sity distribution, (iii) the relativistic electronic mass shift, and (iv) the charge displacement resulting from
the transverse ponderomotive force. The most important spatial modes of propagation corresponding to
(1) purely relativistic focusing and (2) the combined action of both the relativistic and charge-
displacement mechanisms are described. The latter leads to the formation of stable confined modes of
propagation having paraxially localized regions of high intensity and corresponding paraxially situated
cavitated channels in the electron density. It is further demonstrated that the dynamical solutions of the
propagation tend asymptotically to the lowest eigenmodes of the governing nonlinear Schrodinger equa-
tion. Finally, the calculations illustrate the dynamics of the propagation and show that the relativistic
mechanism promotes the initial concentration of the radiative energy and that the subsequent charge
displacement stabilizes this confinement and produces waveguidelike channels.

PACS number(s): 52.40.Nk, 42.65.Jx, 52.35.Mw, 52.40.Db

I. INTRODUCTION

The interaction of relativistically intense subpi-
cosecond laser pulses with gaseous media has been an
area of vigorous research for the past several years. For
ultraviolet wavelengths on the order of 200—300 nm, the
intensity region of interest, in which relativistic effects be-
come important, lies above —10' W/cm . The propaga-
tion of radiation in such media, for intensities greater
than —10' W/cm, naturally causes strong nonlinear
ionization in all matter. Hence, the pulse itself, even in
regions where the intensity is relatively low compared to
the peak value, removes many electrons [1,2] from the
atomic or molecular constituents creating a plasma
column in which the main high-intensity component of
the pulse propagates. Therefore, in a reasonable first ap-
proximation, the investigation of the resulting propaga-
tion can be divided into two separate and distinct areas.
They are (1) the atomic and plasma physics occurring in

the field of the intense electromagnetic wave leading to
the ionization and (2) the subsequent nonlinear propaga-
tion of the radiation in the plasma that is generated. The
work described below concerns the latter issue.

To our knowledge, Akhiezer and Polovin published the
first treatment of high-intensity electromagnetic waves in
a cold plasma [3]. They derived the equations describing
the propagation as a function of the single canonical ar-
gument (cot —kz) appropriate for one-dimensional wave
motion, reduced the problem to Lagrangian form with
two integrals of motion, and presented either exact or ap-
proximate solutions corresponding to particular sim-
plified special cases.

Several subsequent treatments have been devoted to
the acceleration of charged particles in either relativistic
beat waves or in the tail of a single relativistic pulse.
Specifically, Noble [4] applied the equations derived by
Akhiezer and Polovin to the study of single- and double-
wave propagation. In other work [5] beat waves in hot
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plasmas are described kinetically. The excitation of par-
ticles in cold plasmas occurring in the tail of a single in-
tense laser pulse has also been investigated [6].

Importantly, this previous work [6], which considered
the case of linear polarization, established that harmonics
of the fundamental frequency are not produced at a
significant power, if the plasma is underdense and the
group velocity of light is close to the speed of light.

Utilizing the quasistatic approximation for the Quid
equations of cold underdense plasmas, Sprangle, Esarey,
and Ting [7] derived the first nonlinear, fully self-
consistent set of equations describing the propagation of
relativistic laser pulses into plasmas for a one-
dimensional geometry. This formulation was used to ob-
tain insight into relativistic self-focusing, including the
self-consistent electron-density profiles, wake-field gen-
eration, optical guiding, and second-harmonic genera-
tion. However, since this treatment was one-dimensional,
the multidimensional case remained unsolved.

An important finding of Sprangle, Esarey, and Ting [7]
concerned the diffractional erosion of the leading edge of
a pulse propagating in the plasma. However, in the work
described below, we concentrate on the evolution of the
central portion of the pulse as it propagates in the plasma
and neglect the associated erosion of the leading edge.

Extensive literature exists on the motion of electrons in
radiation fields of certain explicitly given forms. The
solution for the case of plane monochromatic waves is
known [8], and this result has been considerably extended
in subsequent work [9,10]. Of course, the well-
established Volkov solution for the Dirac equation also
exists [11]. In particular, Bardsley, Penetrante, and Mit-
tleman [12] have numerically simulated the relativistic
dynamics of electrons in a one-electron picture that in-
cludes the effects of space charge and the spatial distribu-
tion of the radiation field.

The first treatment of the relativistic self-focusing in
plasmas was developed by Max, Arons, and Langdon
[13]. In addition, the general character of the elec-
tromagnetic propagation in plasmas has undergone con-
siderable analysis. Schmidt and Horton [14], Hora [15],
and Sprangle et al. [16,17] have evaluated the thresholds
for relativistic self-focusing using analytic methods.
Especially germane is the work of Sun et al. [18], who,
for initially homogeneous plasmas, derived the two-
dimensional (r, z) nonlinear Schrodinger equation govern-
ing propagation, including consideration of the combined
effect of the relativistic nonlinearity and charge displace-
ment. This work presented the lowest eigenmode of the
nonlinear Schrodinger equation and included numerical
evaluation of the threshold of relativistic self-focusing,
the value of which has been approximately estimated in
earlier work [14—17]. Finally, this analysis [18]presented
the (r,z) dynamics of the propagation for the perturbed
lowest eigenmode of the nonlinear Schrodinger equation
for cases not involving spatial cavitation of the electron
density. We note that Kurki-Suonio, Morrison, and Taji-
ma [19]have also developed the stationary analytic solu-
tions to this equation for a one-dimensional geometry.

Additional related works can be cited in this context.
Relativistic self-focusing and beat-wave phase-velocity

control in plasma accelerators are kindred subjects [20].
Computations involving particle simulations revealing
the initial process of self-focusing and subsequent pon-
deromotively driven electron motions have been per-
forrned [21]. Other calculations analyzing the plasma dy-
namics and self-focusing in heat-wave accelerators [22],
as well as the consideration of the nonlinear focusing of
coupled waves [23], have also appeared.

In prior publications, we have (1) investigated the gen-
eral behavior of two-dimensional (r, z) axisymmetric rela-
tivistic self-focusing, (2) presented results on the process
of stabilization of laser pulses in plasma columns [24], (3)
described, with the use of an analytical model [25], the
steady-state characteristics in cavitated channels having
overdense walls, (4) reported preliminary results of calcu-
lations that evaluated the combined action of the relativ-
istic and charge-displacement mechanisms and indicated
the formation of stable confined cavitated modes of prop-
agation [26], and (5) presented the experimental evidence
of relativistic and charge-displacement self-channeling of
intense subpicosecond ultraviolet radiation in plasmas
[27], including specific comparison with the results of
this computational model [27].

The current work presents a full description of the
theory of nonlinear propagation of intense axisymmetric
ultrashort laser pulses in cold underdense plasmas. In
this analysis we use the term ultrashort to indicate that
the duration of the pulses ~ satisfies the inequality
~; &&~&&~„with ~; and ~, designating the response
times of the ions and electrons, respectively. We consider
both homogeneous plasmas and preformed plasma
columns. In this study, no attempt is made to establish
consistency between the local ionization state and the lo-
cal laser intensity, the issue outlined in Sec. I. For
sufficiently-low-Z materials, such as hydrogen (H2), this
calculation would be unimportant, since full (maximal)
ionization would be achieved even in rather low intensity
( —10' —10' W/cm ) regions [28]. Since the main re-
gime of interest for this work involves intensities greater
than —10' W/cm, we believe that the plasma condi-
tions we have chosen for analysis are sufficiently close to
the true self-consistent state to be adequate for the in-
tended scope of this study.

The calculations discussed below have been performed
with the specific goal of exploring the characteristic dy-
namics and stability of the propagation, including partic-
ularly, the interplay of the relativistic and charge-
displacement processes. Therefore, in order to illustrate
this behavior, numerical results are presented that por-
tray the propagation and self-focusing action as a conse-
quence of (1) the purely relativistic nonlinearity and (2)
the combined action of the relativistic and charge-
displacement mechanisms. Although the relativistic
inAuence cannot be truly physically separated from the
charge-displacement process, it has been examined sepa-
rately because this comparison provides insight on the
dynamics of the focusing action, specifically the process
by which the charge-displacement and the confined prop-
agation in the electronically cavitated channel develop.
Since both the relativistic effect and the charge displace-
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ment tend to locally produce a reduction in the plasma
frequency (co&) that is more significant in the high-
intensity regions, both of these effects perturb the wave
fronts in a manner that encourages convergence of the
wave and the formation of localized high-intensity zones.
Furthermore, for both the purely relativistic and the
combined cases, we have calculated the stationary eigen-
modes of the nonlinear Schrodinger equation and show
their relationship to the modes of propagation dynami-
cally developed in the plasmas. In particular, it is shown
that the charge displacement, especially that resulting in
dynamical cavitation, has a very strong effect on the spa-
tial character of the propagation [26].

The calculations indicate that the efficiency of
confinement of the propagating energy is potentially
high, namely, that a large fraction of the incident power
can be trapped in a channeled mode by the combined ac-
tion of the relativistic and charge-displacement processes.
Furthermore, in the asymptotic regime, it is found that
the channel is characterized spatially by an intensity
profile and electron-density distribution corresponding to
the lowest z-independent eigenstate of the nonlinear
Schrodinger equation. Overall, the principal conclusion
of this work is that, under appropriate conditions, a new
dynamical mode of stable highly confined propagation
naturally evolves for the propagation of sufficiently short
(v; ))7 ))r, ) pulses of coherent radiation in plasmas. By
new dynamical modes, we mean the self-channeling of the
radiation through the formation of stabilized electroni-
cally cavitated paraxial modes, which result from the
combined action of the relativistic and charge-
displacement mechanisms. Interestingly, for ultraviolet
wavelengths in the (200—300)-nm range, the power densi-
ties naturally associated with these environments can ap-
proach thermonuclear values.

In Sec. II the underlying physical concepts are present-
ed and the governing nonlinear Schrodinger equation is
derived. Section III presents the analysis of the eigen-
modes of this equation. Representative results of numeri-
cal simulations of the two-dimensional axisymmetric
propagation are given in Sec. IV. Section IV also con-
tains a comparison with the purely relativistic case. Fi-
nally, the conclusions are summarized in Sec. V.

trons from the high-intensity zone. For sufficiently short
pulses, only the electrons are expelled from the laser
beam and the more massive ions, due to their substantial-
ly greater inertia, are regarded as motionless [17,18,25].
A third mechanism is the nonlinear response arising from
the induced dipoles of the ions, but this is generally small
and negligible [25].

(c) Defocusing mechanisms, caused by diffraction from
the finite aperture and refraction by the transverse inho-
mogeneities in the electron density.

(d) Dissipation of laser-beam energy by (i) motion of
the electrons, (ii) ionization of the gas atoms, (iii) genera-
tion of harmonic radiation, (iv) production of inverse
bremsstrahlung, (v) Compton scattering, and (vi) other
amplitudes of nonlinear scattering.

The present work incorporates four phenomena: (1)
the nonlinear response of the refractive index of the plas-
ma due to the relativistic increase in the mass of the free
electrons, (2) the refractive index variation due to the per-
turbation of the electron density by the ponderomotive
force, (3) the diffraction caused by the finite aperture of
the propagating energy, and (4) the refraction generated
by the transversely inhomogeneous plasma density associ-
ated with the formation of a plasma column. In these
calculations, preformed static plasma columns were used
in order to approximate the radial distribution of ioniza-
tion that is expected, if the incident laser pulses were pro-
ducing the ionization on their temporally leading edge.
Finally, the calculations were performed for a length of
propagation that is much shorter than the characteristic
length for dissipation of the energy of the pulse through
ionization or other modes of energy loss.

It should be noted that the relativistic intensities
characteristic of the phenomena examined in this work
can be currently obtained experimentally [30—32]. In
particular, the experimental parameters characteristic of
the ranges that would apply to the study of these phe-
nomena are presented in Table I. With the wavelength
and range of electron densities shown in Table I, the plas-
ma is always underdense, namely, (co /co) «1, where
co=2'/A, is the angular frequency of the laser radiation
and co =(4me X, /m, )' is the customary plasma fre-
quency.

II. GENERAL CONSIDERATIONS B. The propagation equation

A. Physical model

Several physical phenomena [1—7, 14—19,24 —26,29]
play a role in the nonlinear dynamics governing the prop-
agation of intense coherent radiation under the condi-
tions being examined in this study. They are the follow-
ing.

(a) The creation of a plasma column by ionization in
the temporally early region of the laser pulse.

(b) The influence of the spatial variation of the refrac-
tive index arising from the nonlinear response of the
dielectric properties of the medium. Two mechanisms
are related to the electronic component; specifically, the
relativistic shift in electron mass and the ponderomotive-
ly driven electron motion which tends to displace elec-

Consider the propagation of an intense ultrashort laser
pulse in a plasma with an initially radially inhomogene-
ous electron density, described by the function f (r), so

Peak intensity
Pulse length
Initial focal spot radius
Wavelength
Target gas densities
Initial unperturbed

electron density

I= 10' —10 W/cm
~=100—1000 fs
ro=1 —3 pm
A, =0.248 pm {KrF laser light)

p = 10' —10 cm
N =10' —10 ' cm

TABLE I. Experimental parameters characteristic of the
ranges that would apply for the study of relativistic and charge-
displacement self-focusing of laser pulses in plasmas.
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that N,' '=N, af(r), maxf(r)=1. We denote the vector
and the scalar potentials of the electromagnetic fields as
A and P, respectively, and the corresponding electric
field as E. Let the momentum of the electrons, the
current density, and the charge density be denoted as P„
j, and p, respectively. We assume, for the short timescale
of interest, that the ions are inertially frozen in space
[17,18,24,25]. Then,

A =c 'V —(4~/c) j,at

V P= —4',
(V A)=0,

(2)

(3)

—+(v, .V) p, = —e —c —VP
a, aA
at ' ' at

+c '[v, X(VX A)] (4)

j= eN, v„—p=e(N, ' ' N, ), —

e pe/ e~ e eoT

y= [1+lp, l /(m, c) ]'

(5)

(6)

A=(e/m, oc ) A, P=(e/m, oc )P,
E=(e/m, oc )E, p, =p, /m, oc,

In the set of statements above, Eqs. (1) and (2), are the
Maxwell equations, Eq. (3) is the Coulomb gauge condi-
tion, Eq. (4) is the equation of motion of the electrons,
Eqs. (5) are the definition of the current density and the
charge density (N,' ' is the initial charge density, while N,
is the dynamical charge density), and Eqs. (6) represent
the relativistic relation between the velocity v, and the
momentum of the electrons. In Eqs. (6), m, o is the rest
electron mass, CI=V —c 8 /Bt .

It is convenient to normalize the values in the equa-
tions presented above as follows:

both space and time is much greater than both the plas-
ma (2m.c/co o) and electromagnetic (A, ) wavelengths.
This leads to the validity of the inequalities

c ' ', &(Ikal, lk, al,at '
az

where k =ko —k, ko=m/c, and k =~ 0/c. We use
the notation to o=4m.e N, o/m, o specifically to denote
the unperturbed plasma frequency. With the assump-
tions and approximations stated above, Eqs. (1)—(8) be-
come

A=k Ny 'A,
V P=kp[N, —f (r)],
V(P —y)=0,
y=(1+lp, l')'", p, =A.

(10)

(12)

(13)

The term c dvy/dt is omitted in Eq. (10), since y and
P, according to Eqs. (9), (12), and (13), do not have a
high-frequency dependence. Equations (11) and (12) re-
sult in the expression for the electron density,

N, =max[0, f(r)+k V y] . (14)

l a a—+ a
U Bt Bz

+ (Vja+k I 1 y'max[0, f—(r)+k V~y]}a )
2k

The logical function max(0, ) provides for the physical-
ly obvious and necessary condition N, ~0. The analo-
gous expression for the electron density has been previ-
ously derived by Sun et al. [18] for the case f (r) = l. It-
should be noted that Eq. (12) states the condition for the
balance of the ponderomotive and the electrostatic forces
for the relativistic case. Through combining Eqs. (9),
(10), and (14), we establish the equation for the slowly
varying complex amplitude of the vector potential
a(r, z, t) as

v =v /c& Ne= e eo =0. (15)

with the understanding that, henceforth, the tilde sign
will be suppressed. Using the relations (p, V )p,
=Vip, '/2 —p, X(VXp, ) and Vy=Vlp, l'/2y, Eq. (4)
becomes

—(p, —A) —v, X[VX(p, —A)]=V(P —y) . (8)

Consistent with the statements made above, we em-
phasize the use of the assumption that the pulse length in

In the limit ~))2m/co, the expression p, = A is approxi-
mately valid. As we shall see below, this condition means
that the electron response can be regarded as adiabatic.
Furthermore, assuming the vector potential to be circu-
larly polarized, we write

A(r, z, t) =
—,
' [(e„+ie)a (r, z, t)exp[i(tot —kz)]+c.c. } .

In accord with the previous assumptions used in deriving
Eq. (15), we have neglected the second z and t derivatives
in this expression. In Eq. (15), vg =ceo is the group ve-
locity of light in unperturbed plasma, co= 1 —(to&0/cv)
is its corresponding dielectric constant, and
y=(1+ lal )' . It should also be noted that the electric
field vector E and the vector potential A are related
through the approximate relation

E(r,z, t) = iko A(r, z, t) .—

The calculation of the propagating wave form for the
central high-intensity region of the pulse is accomplished
by considering the solutions of Eqs. (15) along its charac-
teristics. Changing the variable t to q

= t —z/v~, Eq. (15)
becomes
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a+ (V~a+k [1—y 'max[0, f(r)+k Vh ]}a)Bz 2k

=0, (16)

for which we seek solutions of the form q =—const. We re-
call that certain solutions of Eq. (16) for the special case
f ( r ) = 1 have already been presented [18,19,33].

The results of the computations presented in this work
are given with respect to the variables (q, r, z}.
Specifically, the data presented in the figures below illus-
trate the propagation of the radiation along the z axis for
q—=const. Equation (16) describes the two-dimensional
(r, z) dynamics of propagation for coherent circularly po-
larized radiation in plasmas having an inhomogeneous
transverse (r-dependent) distribution of electron density.
The basic physical phenomena explicitly embodied in
these equations have been outlined in Sec. II A.

III. STATIONARY SELF-LOCALIZED MODES
OF PROPAGATION

ViU, „+[s+F(U,„)]U,„=0. (18)

In this discussion the dimensionless argument p=k r is
2

P
used and V~ in Eq. (18) denotes the Laplacian with the
derivatives designated with respect to this variable (p).

The nonlinear term in Eq. (18) is

F(U, „)=N, „/7,„,—

N, „=max(0, 1+V~@,„),
(1+U2 )1/2

(19)

The natural boundary conditions for Eq. (18) are

dU, „(0)=0, U, „(oo)=0.
dp

(20)

The first condition assures axial symmetry of the solu-
tions, while the second is necessary for the property of
finite energy for the solutions. We designate these solu-
tions as "eigenmodes" and their significance is explored
below.

Consider initially, however, the eigenmodes corre-
sponding to the purely relativistic case, functions which
are obtained from Eqs. (18) and (19) by neglecting the
term V~@,„.Since, we are explicitly eliminating the pon-
deromotive potential and its influence on the motion of
the electrons, in this situation the electron density will
not be self-consistent. In this restricted case, Eq. (18) can
be rewritten in the form

Equation (16), in the case of homogeneous plasmas
[f(r)—:1], has axisymmetric partial solutions of the form

a (r, z) = U, „(kr }exp[i(k /2k)(s —1)z ],
where s is a real-valued dimensionless parameter and the
real-valued function U, „obeys the ordinary differential
equation [18]

where V(U, „,s)=(s/2)U, „—(1+U, „)'+l.
The second boundary condition, stated in Eq. (20}, en-

sures finiteness of energy only in the situation where the
dynamical system defined by the last two expressions has
three rest points, one of them being zero, that is for the
case 0&s &1. Exactly as in the classic theory of cubic
media [34,35] for values of the parameter s belonging to
this interval, the localized eigenmodes constitute a count-
able set that is ordered by the number of zeros —n in each
of its members for finite values of p. Figure 1 illustrates
the first four eigenmodes for s =0.95.

Consider now the eigenmode corresponding to the
unrestricted situation that includes both the relativistic
and charge-displacement mechanisms, a case which is
found to be fully analogous. The eigenmodes of the equa-
tion describing the combined relativistic and charge-
displacement processes for the interval 0&s & 1 also
make a countable set that can be ordered in the same way
as the one associated with the purely relativistic case.
The zeroth (lowest) eigenmode U, o(p) with s =0.95,
along with the corresponding electron density N, o(p),
given by the second formula in Eq. (19), are depicted in
Fig. 2. These two functions have been developed in ear-
lier work [18]. The first and second relativistic and
charge-displacement eigenmodes for the value of the pa-
rameter s =0.95 and the corresponding electron-density
eigenmodes N, ,(p) and N, 2(p) are depicted in Figs. 3 and
4, respectively. These higher eigenmodes exhibit the im-
portant feature that cavitation may occur in the electron-
ic component of plasma [see Fig. (4)), even if it does not
occur in the case of the lower eigenmodes [see Figs. 2 and
3].

A prior study [18] treated the (r, z) dynamics of the
evolution of the perturbed lowest eigenmodes for the case
in which no cavitation of the electronic component of
plasma occurs. The lowest eigenmodes were perturbed
by multiplying them by constants in the neighborhood of
unity. In this case, the known regime involving oscillato-
ry propagation was observed. However, the instability of
the numerical method applied in that work [18] prevent-
ed the performance of similar computations for cases in-
volving cavitation. Our calculations show that the analo-
gously perturbed lowest eigenmodes V, o(p) also propa-
gate in the same oscillatory fashion when electronic cavi-
tation occurs, the corresponding density of which is given
by N, 0(p). It is also found that the same behavior devel-

2.0-

l.O—

/7~ 40 ~ 60
l

dp

dU,
„

dp

dU,
„+ V(U, „,s) = —

p
dp

2

FIG. 1. Stationary axially symmetric eigenmodes with
s =0.95 corresponding to purely relativistic self-focusing.
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i
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FIG. 2. The zeroth (lowest) axially symmetric stationary
eigenmode with s =0.95 corresponding to relativistic and
charge-displacement self-focusing: the normalized field ampli-
tude distribution U, o(p) and the normalized electron density
distribution N 0(p).

1.0—

0.0

—] p

40 50 60

FIG. 3. The first axially symmetric stationary eigenmode
with s =0.95 corresponding to relativistic and charge-
displacement propagation: the normalized amplitude distribu-
tion U, &(p) and the normalized electron-density distribution

N, , (p).

ops for the perturbed first eigenmodes, which have one or
two cavitated channels in the electronic density described
by N, &(p). The results of these simulations can be re-
garded as evidence of the (r,z) stability of axially sym-
metric lowest and first eigenmodes against small pertur-
bations in the amplitude. It should be noted, however,
that these higher eigenmodes are presumably unstable
against small azimuthal perturbations, the nature of
which violates the assumed axial symmetry of the distri-
butions.

The important consequence of the character of the
solutions discussed above is the fact that the power

P, =2m f U, o(p)pdp

contained in the intensity distribution corresponding to
the lowest eigenmode U, o(p), unlike the case of a cubic
medium, depends on the parameter s. Namely, this
power decreases as s increases.

The infimum of P, by s, in the internal 0(s &1, is

called the critical power (P„)of the relativistic and

charge-displacement self-focusing. This power equals the
critical power of the purely relativistic self-focusing
[18,36) and

P„=inf P, = lim P, .
pcs (1 s~l —0

—1.0—

FIG. 4. The second axially symmetric stationary eigenmode
with s =0.95 corresponding to relativistic and charge-
displacement propagation: the normalized amplitude distribu-
tion U, 2(p) and the normalized electron-density distribution
N, ,(p).

The explicit evaluation of this critical value is presented
below. As U, o(p)~0, N, o(p)~1 for s~1—0; we have

[18] therefore,

y, o' N, o 1=N, O—(1+U, o)
' —1

(1+U, O/2) ' —1 = —U, /02 .
s~l —0 s~l —0

Furthermore,

U, p(p) = Uo(p),s~l —0

where Uo(p) is the positive, monotonically decreasing
(reaching zero for no finite value of p) solution to the
boundary-value problem [18,36]

Vi Up —eUp+ —,
'

UQ =0,
dUQ

(0)=0, Uo( ~ ) =0,
dp

with a=1 —s. A change of the variables, which is a stan-
dard procedure for treating the case of the cubic non-
linearity [37], shows that [36]

Uo(p) = (2e)' "go(~' "p),
where gQ is the customary Townes mode, i.e., the posi-
tive, monotonically vanishing solution to the following
boundary-value problem:

~Jap gQ+gQ

dgp (0)=0, go( ~ )=0 .
dp

From the definition of P„and the relation between Uo(p)
and go(p), it follows that

P„=inf P, = lim P,
0&s (1 s~l —0

=2W Up P P dP

=4' f go(p)p dp=2P„, ,

where P„,:2~J 0 go—(p)p dp is the critical power of the
Kerr self-focusing in cubic media [34,37].

Using the resulting relation between the normalized
values of the critical power of the relativistic and charge-
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displacement self-focusing P«and the critical power of
the Kerr self-focusing P«, we have the elementary result
that

P« =2P„,.
Finally, by calculating go(p) numerically, we find the nor-
malized value of P„with high precision [36] to be

P«=2P«, =4m go p pdp=23. 4018 .

Hence, we establish the expression for the critical power
[36] as

P,„,=(m, oc /e ) f go(p)pdp(co/a!~0)

=1.6198X10' (co/coqo) W .

The constant factor involved in this statement improves
on that given previously [18].

The relation between Uo(p) and go(p) enables the de-
velopment of the asymptotic expressions (in the case
e~O) for both the peak value of the amplitude of the sta-
tionary eigenmode and for the radius of the eigenmode by
using the appropriate characteristics of the Townes
mode. The results are

F(f„g)=a, [1—(1+azg)

X max[0, f!(r)+a, ' V!(1+a&/)' ]],
(24)

and the dimensionless parameters a, , a2 are defined as

a!=—(rok~), a2:Ip/I Io:m, oa! c'aol(4~e ),
(25)

where Io is the peak intensity at the entrance plane
(z =0) of the medium. The parameterI„=m, Oco c /(4ne) is.known as the relativistic intensity
[15].

The ratio of the power of the beam Po and the critical
power of the relativistic and charge-displacement self-
focusing P„,defined in Sec. III, is an important parame-
ter characterizing Eqs. (21)—(24). In the notations of the
present section, the value of Po/P„can be expressed in
the following way [36]:

Po/P„=(a!az/B)f uo(r)~ r dr,
0

and

U, o(0) = (2e)' 'go(0)

r, =e '"r
O

with dimensionless constant B given by [36]

B=2f go(p)pdp=3. 72451 .
0

When the initial transverse-intensity distribution is
Gaussian, namely, ~uo(r)~ =exp( —r ), we have

for a~0.
Special computations were performed in order to

determine how close the values for U, 0(0) and
Uo(0)=(2e)' go(0) are in the case where e«1. The
calculations show that

~ U, o(0) —Uo(0)
~
/Uo(0) is

2.026X10 and 2.096X10 for @=10 and 10, re-
spectively.

IV. THE TWO-DIMENSIONAL CASE

It.!s convenient to? reat. ~~. .!16).numericany. using the
normalized coordinates

r!=rlro, z!=z/(2kro),

u(r„z,)=ao 'a(r, z),
where ro is a characteristic radius of the initial intensity
profile and ao =max~a (r, O)~ for the selected value of q.
For simplicity, we put f!(r, ) =f (r) and omit below the
subscript 1 of r, and z, for brevity. Thus, the mathemat-
ical statements can be expressed in the following set of
equations:

Po/P„=a, a 2/(2B) .

We note that in several other studies, the critical power
of the relativistic self-focusing is defined alternatively, ba-
sically with B =4.0. In the present discussion, the ex-
pression for Po/P« involves a value of B (4.0, so that
the corresponding ratio Po/P„ is raised. Therefore, a
pulse having a Gaussian initial transverse-intensity distri-
bution and a Qat initial wave front with the parameters
a

&
=248.6192 and a2 =0.031, undergoes self-focusing. In

this case, the ratio Po/P„, as defined above, evaluates to
1.0347, namely, Po )P,„.However, using the value
B =4.0 would give Po &P„,a statement contradicting
the results of the computations.

A. The initial conditions

In this section, we examine the self-focusing of
coherent radiation for pulses having Gaussian or hyper-
Gaussian transverse and longitudinal intensity distribu-
tions [24] of the form

Nl N~
I~, 0=ID(r, t) =I exp[ —(t/r) ' —(r/ro) '],

BQ +iV!u+iF(f, (r), ~u~ )u =0, z &0
az

u (r, O)=uo(r), max~uo
~

=1

BQ
(O, z)=0, u ( oo, z)=0 .

Br

The nonlinear term F is the real-valued operator

(21)

(22)

(23)

N! &2, N2&2 (26)

with r and t being dimensional. We assume [24] that
I =I, ))I*=10' Wcm with I' designating the ap-
proximate value of the threshold for rapid nonlinear ion-
ization [1,2]. The spatial amplitude distribution of the in-
cident radiation, defined by Eq. (26) for the case of a flat
incident phase front, is of the form
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N2
uo(r) =exp( —r /2), Nz & 2 . (27) where

az=IO(t)/I„=(I /I, }exp[ (tl—r) '] .Ni
(28)

The transverse profile of the plasma column, created by
the temporally leading edge of the pulse, is simulated by
the hyper-Gaussian function

N3f(r)=exp[ (rlr, —) '], N3&2, (29)

where r is the radial coordinate. The aperture of the
plasma column r, can be estimated [24] with the use of
the relation

N~Io(r„,to) =—Io(to)exp[ (r, lro—) ']=I* . (30)

For example, in the case of the Gaussian transverse inten-
sity distribution (Nz=2), the aperture of the plasma
column for I*=10' Wcm, I, =0.45X10 Wcm
and Io(to)=(0. 1)I„,gives r, =2.47ro. In this situation,
the homogeneous plasma approximation f (r) = 1 is valid
[24]. In contrast, it follows from Eq. (30) for plateaulike
incident-transverse-intensity distributions that the aper-
ture r, of the simulated plasma column tends to the
value of the beam aperture ro. Therefore, in the example
given above for N2=8, we have r, =1.25ro. Thus, de-
focusing of the beam, which is significant because of the
near coincidence of the apertures of the laser beam and
the plasma column, must be taken into account when the
evolution of a beam with a plateaulike incident-
transverse-intensity distribution is studied [24].

The dimensionless parameter az in Eq. (25), correspond-
ing to the incident pulse intensity on the axis (r =0) of
the beam Io(t), is

P(r, g)= f F(r, rt)de

=a, [g—(2/az)f, (r)[(1+azg)'i —1]] . (33)

Figure 5 illustrates the nature of the calculated solu-
tions corresponding to this purely relativistic case. The
parameters of the incident radiation and plasma, for the
examples presented in Fig. 5, are A, =0.248 pm,
I„=0.45X10 Wcm Io= —'I =3X10' Wcm
r0=3 pm, and N, 0=7.5X10 cm . The correspond-
ing values of the associated dimensionless parameters are
a& ——2.486192X10 and a2= 3.

Figure 5(a) presents the result for purely relativistic
propagation in a homogeneous plasma along the z axis
for a pulse having an incident Gaussian transverse inten-
sity distribution and a fiat wave front [Nz =2 in Eq. (27)]
for the value of q defined in Sec. IIB, corresponding to
Io= —', I„.Figure 5(b) presents the analogous graph for a
plateau like incident transverse intensity distribution
[Nz =8 in Eq. (27)]. We conclude from these results that
the solution is critically dependent upon the initial condi-
tion represented by the detailed character of the incident
transverse intensity distribution.

The ratio of the beam power (Po) to the critical power
(P„)of the relativistic self-focusing for the given values
of the parameters a, and az yields Po/P„=22.252 in the
case of the Gaussian initial transverse intensity distribu-
tion [Nz =2 in Eq. (27), Fig. 5(a)] and P~/P„=20.168 in
the latter example of the plateaulike [Nz =8 in Eq. (27),
Fig. 5(b)] initial transverse intensity distribution.

Note that for the values of the parameters a„a2and
incident wave forms studied, we have from Eq. (32)
P2 & 0. In this situation, the following inequality is valid:

B. Relativistic self-focusing max~ u (r, z)
~

& (4/a, az ) iPz ~ /P&, (34)

P, =f" 2
BQ

Br
—P(r, iud ) r dr, (32)

Consider the two-dimensional (r, z) solutions of the sys-
tem of equations embodied in Eqs. (21), (22), and (23) for
the purely relativistic nonlinear term, the form of which
can be obtained from Eq. (24) by disregarding the term
involving V'z. In this case, we find

F(f„g}=a,[1—f&(r)(1+azg) '
] .

The relativistic self-focusing mechanism prevails over the
charge-displacement mechanism outside of the focal spot
under the conditions a, »1, az-—1. (Discussion of the
conditions for the prevailing of the relativistic self-
focusing can also be found in Ref. [33]). The situation
represented by Eqs. (21), (22), and (23), with the above
nonlinear term, describes self-focusing with a nondissipa-
tive saturation of the nonlinearity. The properties of the
solutions for this case depend essentially on the values of
two conserved integrals given specifically by

P, = f lu (r) lzr dr (31)

and

namely, with respect to the radial coordinate r, the max-
imum beam intensity has a positive lower bound indepen-
dent of z. This conclusion can be established in the same
way that Zakharov, Sobolev, and Synakh [37] demon-
strated the analogous result in their earlier work on self-
focusing. Therefore, a powerful relativistic beam, which
self-focuses in a homogeneous nonabsorbing plasma
(p=0, Ref. [24]), results in a field distribution represent-
ing a pulsing waveguide when Pz(0. Figures 5(a) and
5(b) explicitly illustrate the formation of such a regime.
These pulsing waveguides consist of alternations of ring
structures and focal spots on the axis of the beam. The
power confined in these complex modes represents ap-
proximately 50% and 90% of the total incident power for
the cases depicted in Figs. 5(a) and 5(b), respectively. It
should be noted that oscillating periodic solutions of this
type have also been presented by other workers [17].

In the case Pz & 0, an inequality comparable to Eq. (34)
cannot be obtained. Following the method of Zakharov,
Sobolev, and Synakh [37], we simulate the case Pz &0 by
considering a beam initially focused or defocused by a
lens at the entrance plane (z =0) of the medium. Let the
focusing (or defocusing) length of this lens be R =kroR
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FIG. 5. Purelely relativistic propagation with Io = 3 X 10'~ ~

W/cm, ro=3 pm, A, =0.248 pm, and N, 0=7.5X10 cm ' a
the pulsing waveguide regime in the case of

f
the re ativistic self-focusing of a puls 'th flse wi a at incident wave

ront; Gaussian initial'tia! transverse-intensity distribution [N2 =2
in Eq. (27)], homogeneous plasma. (b) The formation of the
pu sing waveguide regime in the case of the rel
ocusing of a pulse with a flat incident wave front h er-

Gaussian initial tr
ve ront; yper-

27
transverse-intensity distributio &N = 8 E .

( 7)], homogeneous plasma. (c) Th
'

1 -f
tr -' ' '

n& 2= in q.
e sing e- ocus regime in the

case of the relativistic self-focusing of an initiall f
f — f o in q. (35)); Gaussian incident-transverse-intensit

distribution ~N =2 in E
e-in ensi y

n [ ~= in Eq. (35)], homogeneous plasma. (d) The
formation of thee quasistabilized regime in the case of the rela-
tivistic self-focusin of ag pulse with a flat incident wave front in
a plasma column [N3 8 1+ ro in Eq. (29)]; hyper-Gaussian
initial transverse-intense distribution [Nz =8 in Eq. (27)].

(R d'imensionless). The condition R )0f signi es that
the pulse is initially focused and R & 0 d'in icates that it is
initially defocused. Then, the corresponding initial con-
dition can be written as

uo(r)=exp[ —r 'l2+ir l(2RI)], N2 2 . (35)

Furthertnore, let P2=0 for ~R ~=R . We nF, 2= r f = f o. We note that the
a ig egree of thecase 2 & 0 corresponds physically to a hi h d

initial focusing or defocusing: R o) ~R )0.
h'n R Rfo f, I'2(0.

distributions for the case of relativistic self-focusing in
homogeneous plasma of beams 'th Gwi aussian incident-

an va ues o Rf giventransverse-intensity distributions d 1

y R& = ~ (fiat wave front) and R /2 res ecti 1 . A
more detailed study of the dynamics of tho e transition

sin le-focu
rom t e pu sing waveguide regime [see Fig. 5(a)] t h
'

g - cus regime [see Fig. 5(c) representin th
a, ote

ationg
'

n of an tmttally sufficiently sharply focused beam
can be found in Ref. [38]. Itnportantly, the computations
show that the value P2 =0 is not the threshold separating
t ese two regimes of relativistic self-focusing. This tran-
sition occurs as the first focus gains power and is shifted
closer to the entrance of the medium (z =0), while the
remaining foci are shifted in the opposite direction and,
in the limit of large displacement, become diff d N

sing e-focus regimes of propagation have also been
observed by Sprangle, Tang, and Esarey [17].

Defocused beams can evolve in a different fashion. Ini-
tially sufficiently sharply defocused pulses (R (0

f f o p 0 0 ' propagating in the relativistic re-
gime monotonically diffuse on th d 1e ra ia perip ery and
do not exhibit the phenomenon of self-focusing.

The detailed spatial character of the plasma column
can ave a strong influence on the evolution of the ro a-

in a
igure ( ) illustrates the relativistic propag t'

plasma column along the z axis for a pulse corre-
paga ion

spondin to N =8 ''

g o 2
= in Eq. (27). The transverse profile of

the plasma column is given by f (r) as defined by E . (29)

~
—ro. ~"e comparison between Figs.

h er-
5(b) and 5(d) demonstrates that th d fe e ocusing of a

yper-Gaussian beam in a plasma column, with an a er-
ture close to tho e radius of the beam, fundamentall alters

umn, wi an aper-

the s atial d nam'p
'

dynamics of the propagating energy [24]. The
a ya ers

e earn to spread awaydefocusing causes a fraction of the b t d
rom the column, but the remaining energy of the beam

resolves into a state that balances the relativistic self-

focusing, defocusing, and diffractio Th
in t is quasistabilized state so formed is approximately
25% of the incident power.

Prevtous analytical estimates [38] have shown that the
relativistic self-focusing length is minimal when the in-

cident pulse intensity on the axis of the beam satisfies the
condition I ( t )

=2I . "oreover, specific computations
also show that this inference remains valid for the case of

es wi at initialt e re ativistic self-focusing of pulse th fl

p ase fronts and Gaussian incident-transverse-intensity
distributions in homogeneous plasmas.

The locus of the first focus for the case of th 1e re ativis-
ic se — ocusing has been presented previously [24]. In
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that study, the beam initially had both a flat phase front
and a Gaussian transverse-intensity distribution. The pa-
rameters were the same as those applying to Fig. 5(a), and
the duration of the pulse corresponded to ~=0.5 X 10
s. The minimal z of the locus is reached when Io(t) =2I„.
If the maximum intensity on the axis of the beam is such
that I )2I„,then the trajectory of the first focus exe-
cutes a path that has three reversal points. Two of them,
corresponding to an identical value of z, are due to the
condition Io(t)=2I„Th.e central one, corresponding to
a greater value of z, arises when Io(t) =I . In principle,
this behavior makes it possible to distinguish the process
of relativistic self-focusing from that associated with the
Kerr nonlinearity, since the latter results in a locus of the
first focus having only a single reversal point.

the radiative energy are also revealed by the calculations.
As described above, after the formation of the first focus,
considerable power is transferred from the paraxial focal
zone to the ring-shaped feature, which, at this stage in
the evolution of the pulse, contains approximately 68%
of its total initial power. This intense ring, which spreads
away from the paraxial domain, produces a correspond-
ing ring-shaped cavity in the electronic distribution [see
Fig. 6(b)]. The refraction resulting from this strongly
perturbed electron-density profile, together with the rela-
tivistic self-focusing mechanism, causes the wave to re-
turn energy to the core of the beam. Thus, the charge
displacement produces a potent additional self-focusing
action, which leads to the formation of a confined paraxi-
al mode of high intensity stabilized along the axis of

C. Relativistic and charge-displacement self-channeling

This section is devoted to the description of the self-
channeling occurring when both the relativistic and
charge-displacement mechanisms are included in the in-
teraction. This situation is described by Eqs. (21)—(24)
and includes the important nonlinear term involving V~y
appearing in Eq. (24). The numerical results show that
sufficiently intense short duration (r; »r»r, ) axisym-
metric pulses readily undergo self-channeling in plasmas
over a rather broad range of conditions. Moreover, it is
found that a large fraction of the total incident power of
the beam can be trapped in a stabilized mode confined to
the axis of propagation.

A specific example is informative in representing the
general behavior exhibited by the propagation in the re-
gime in which the influence of relativity and charge dis-
placement are both significant. These results are exhibit-
ed in Fig. 6. In the case of propagation of an initially
Gaussian transverse wave form incident in a homogene-
ous plasma, with the parameters A, =0.248 pm,
Io =—', I„=3X 10' W cm, ro =3pm, and N o=7 5

X10 cm (a, =248.6192, a2= —'„Po/P„=22.252),
the numerical computations show that, as soon as the
first focus on the axis of propagation is formed, electronic
cavitation occurs. Specifically, this leads to complete ex-
pulsion of the electronic component of plasma from the
paraxial domain [Fig. 6(b)]. This process results in a
quasistabilized cavitated channel in the electron distribu-
tion which extends along the entire axis of propagation
past the location of the initial focus [26]. We note that
some of the lowest stationary solutions corresponding to
the relativistic and charge-displacement problem, includ-
ing cavitation, were developed by Sun et al. [18]. The
analysis shows that the first focus involves about 45% of
the total incident power of the propagating energy. A
fraction of the remaining power is dissipated through
diffraction on the periphery, while another component is
temporarily involved in the formation of a pulsing ring-
shaped structure [Fig. 6(a)]. Subsequent energy exchange
between the ringlike feature and the paraxial zone is ob-
served, and as a consequence of this interaction, a certain
part of the energy of the pulsing ring is diffracted away
while the remaining power joins the paraxial domain.

In finer detail, the following aspects of the evolution of
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FIG. 6. The self-channeling of a pulse with a Gaussian initial
transverse-intensity distribution [N2=2 in Eq. (27)] and a flat
incident wave front in initially homogeneous plasma in the case
of the relativistic and charge-displacement propagation with
Io =3 X 10' W/cm, ro =3 pm, A, =0.248 pm, and
NO=N, O=7. 5X10 cm . (a) The distribution of the normal-
ized intensity. (b) The distribution of the normalized electron
density. (c) Radial dependence of the asymptotic solutions for
the normalized amplitude [I,(r)/Io]'~ and the normalized elec-
tron density Nz(r)/No for s =0.554.
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propagation. This phenomenon of confined propagation
is designated as self-channeling. It should be noted that
the calculations of the electrostatic energy associated
with the charge displacement, which is given by the ex-

r
pression W'=4 'f o'E, r dr, with the electrostatic field

E, defined by the equation VE, = —4mp and r, designat-
ing the radial extent of the channel, show that this energy
can be relatively small. Specifically, for the conditions
represented in Fig. 6(b) [z =95.4 turn], the electrostatic
energy ( W) accounts for only 0.18% of the total energy
of the laser radiation per unit length.

The essential finding of these calculations is that the
combined action of the relativistic and charge-
displacement mechanisms produces a strong tendency for
the generation of spatially highly confined modes of prop-
agation which are stabilized along the axis of propaga-
tion. Furthermore, the study of a range of other cases in-
dicates that these modes are exceptionally stable and that
a considerable fraction of the incident power can be
confined in them. The result is the controlled generation
of a very high peak intensity in these channeled modes
with values reaching —10 ' W/cm for the range of con-
ditions studied.

Important characteristics of the asymptotic behavior
of these confined modes have also been established. It
has been shown that the distribution of the amplitude
u (r, z), for large values of z, tends asymptotically to the
lowest eigenmode of the nonlinear Schrodinger equation
(see Sec. III). Specifically, for the example discussed
above, the computations have demonstrated that the
asymptotic radial amplitude distribution corresponds to
the lowest eigenmode with s=0.554. In this case, the
asymptotic intensity distribution I,(r)=U, o(r) contains
46% of the total incident power.

The normalized asymptotic field amplitude
[I,(r)/Io]'~ and the corresponding normalized asymp-
totic plasma electron density N, (r)/No are depicted in
Fig. 6(c). It should be noted that the profiles of the inten-
sity I(r, z) and the electron density N(r, z), obtained as
the results of the dynamical calculations of the propaga-
tion for z =900 )ttm, ditfer from I,(r) and N, (r) for
s =0.554 by much less than 1%. In addition, we observe
that the energy of charge displacement for r, =2.5 pm in
the asymptotic state accounts for a fraction of
9.45X10 of the total energy of the beam per unit
length. We observe that this tendency for a solution of a
nonlinear Schrodinger equation involving a saturable
nonlinearity to converge to the lowest stationary solution
was originally discovered by Zakharov, Sobolev, and
Synakh [37].

For the range of parameters studied, the calculations
clearly show that the charge displacement has a very
strong influence on the character of the propagation after
the first focus is formed. The pulsing intensity structure,
consisting of alternating foci on the axis of propagation
and peripheral focal rings, which is the usual behavior for
the purely relativistic self-focusing [see Figs. 5(a) and
5(b)], is converted into a stabilized and uniform channel.
Collaterally, a stabilized cavitated channel in the electron
density is also formed. We remark that the periodic in-

tensity structure characteristic of the relativistic self-
focusing occurs for great values of z and, therefore, may
be regarded as the corresponding asymptotic solution of
the purely relativistic case. The charge displacement
leads to the formation of the asymptotic amplitude distri-
bution represented by the corresponding lowest eigen-
mode U, o(r) instead of this pulsing structure.

Computations have been also performed for the propa-
gation of incident plateaulike wave forms with flat in-
cident phase fronts in both homogeneous plasmas and
plasma columns. Additional calculations, have also ex-
amined the behavior of focused Gaussian and plateaulike
incident wave forms as well as defocused Gaussian in-
cident wave forms in homogeneous plasmas (see Figs.
7—11). It is found that the main features described
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FIG. 7. The self-channeling of a pulse with a hyper-Gaussian

incident-transverse-intensity distribution [Nz=8 in Eq. (27)]
and a Hat initial wave front in initially homogeneous plasma for
the case of a relativistic and charge-displacement propagation
with Ip =3X 10' W/cm, rp =3 pm, 1=0.248 pm, and

Np =N p
=7.5 X 10 cm . (a) The distribution of the normal-

7

ized intensity. (b) The distribution of the normalized electron
density. (c) Radial dependence of the asymptotic solutions for
the normalized amplitude [I,(r)/Io]' and the normalized elec-

tron density N, (r)/Np for s =0.515.
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above, namely (1) self-channeling, (2) stabilization of the
mode of propagation, (3) the confinement of a substantial
fraction of the incident power, and (4) the formation of
paraxial cavitated channels in the electron distribution
are common aspects of the dynamics over a wide range of
conditions.

The character of these findings is now illustrated with
five representative examples. For the propagation of a
beam with an incident plateaulike transverse-intensity
profile, given by Eq. (27) with N2 = 8, which has a flat ini-
tial wave front incident on an initially homogeneous plas-
ma {the values of the parameters have been adopted from
above and Po/P„=20.168), the asymptotic radial profile
of the intensity distribution contains approximately 77%
of the incident power [Fig. 7(a)]. The corresponding
asymptotic amplitude is the lowest eigenmode of the non-
linear Schrodinger equation with s =0.515. The propa-
gation of the same wave form in a plasma column, with
the initial electron distribution defined by Eq. (29) with

N3 8 and r, =ro, results in a quasistabilized intensity
distribution containing 34% of the incident power [Fig.
8(a)]. The purely relativistic propagation of incident pla-
teaulike pulses [N2=8 in Eq. (27)] in plasma columns

[N3 =8 and r, =ro in Eq. (29)] also results in the forma-
tion of quasistabilized regimes which, in this case, arise
dynamically from the defocusing action of the refraction

F00 (a)

00

00

generated by the transverse profiles of the electron densi-
ty [24]. For this situation, approximately 25% of the to-
tal incident power is confined [Fig. 5(d)]. The compar-
ison of these cases with the two examples discussed above
involving the charge-displacement mechanism indicates
that the increase in the value of the confined power stems
principally from the substantial additional focusing ac-
tion arising from the inhomogeneous electron distribu-
tion produced by the ponderomotive force.

Overall, the computations reveal that the charge dis-
placement, which generally results in electronic cavita-
tion, plays an important role in stabilizing the mode of
confined propagation that develops dynamically. This
stabilization naturally occurs by refraction of the radia-
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FIG. 8. The self-channeling of a pulse with a hyper-Gaussian
incident-transverse-intensity distribution [N2=8 in Eq. {27)]
and a flat initial wave front in a preformed column-shaped plas-
ma [N~=g, r» =ro in Eq. {29)]for the case of relativistic and
charge-displacement propagation with Ip

=3 X 10' W/cm,
rp =3 pm, A, =0.248 pm, and Xp =1V,p= 7.5 X 10 cm . (a)
The distribution of the normalized intensity. (b) The distribu-
tion of the normalized electron density.

FIG. 9. Self-channeling of an initially focused [Rf =Rf o/2
in Eq. {35)]pulse with a Gaussian incident-transverse-intensity
distribution [Nz =2 in Eq. {35)]in initially homogeneous plasma
for the case of relativistic and charge-displacement propagation
with Ip =3X 10' W/cm, rp =3 pm, A, =0.248 pm, and
Xp =X,p=7.5X 10 cm . (a) The distribution of the normal-
ized intensity. (b) The distribution of the normalized electron
density. (c) Radial dependence of the asymptotic solutions for
the normalized amplitude [I,{r)/Io]'~ and the normalized elec-
tron density N, (r) /Xp for s =0.566.
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tion into the central paraxial region. Indeed, the
influence of the charge displacement on the propagation
is so strong that self-channeling occurs even in the cases
of extremely focused and defocused incident v ave forms.
The results of the corresponding calculations for ex-
tremely focused incident wave forms, for R&=RIO/2
[Eq. (35)], with both Gaussian [Nz=2 in Eq. (35)] and
plateaulike [Nz =8 in Eq. (35)] incident-transverse-
intensity distributions, are depicted in Figs. 9 and 1O, re-
spectively (the parameters of beam and plasma being the
same as the other examples above). In these two cases,
the asymptotic transverse profiles of the amplitude and
the electron density are found to correspond to the lowest
eigenmodes of the nonlinear Schrodinger equation with
values of the parameter s =0.566 (Fig. 9) and s =0.505

(Fig. 10). Note, in strong contrast to the situation involv-
ing charge displacement, the analogously strongly fo-
cused incident wave forms for the purely relativistic case
propagate in the single-focus regime [Fig. 5(c)], and stable
confinement does not develop.

Figure 11 illustrates the relativistic and charge-
displacement propagation of an initially strongly de-
focused wave form [R~= —R~o/2 in Eq. (35)] having a
Gaussian initial transverse-intensity distribution [Nz=2
in Eq. (35)]. After the initial stage of the defocusing, this
pulse evolves into a paraxial structure that is analogous
to those described above. Furthermore, in this example
the asymptotic transverse profiles of the amplitude and
the electron density are found to correspond to the lowest
eigenmode of the nonlinear Schrodinger equation with
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FIG. 10. The self-channeling of an initially focused
[R/=R~o/2 in Eq. (35)] pulse with a hyper-Gaussian incident-
transverse-intensity distribution [Nz =8 in Eq. (35)] in initially
homogeneous plasma for the case of relativistic and charge-
displacement propagation with Ip =3X 10' W/cm, rp =3 pm,
A, =0.248 pm, and Np=N, p=7. 5X10 cm . (a) The distribu-
tion of the normalized intensity. (b} The distribution of the nor-
malized electron density. (c) Radial dependence of the asymp-
totic solutions for the normalized amplitude [I,(r)/I„]'~' and
the normalized electron density N, (r) /Np for s =0.505.
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FIG. 11. The self-channeling of an initially defocused

[R&=—RID/2 in Eq. (35}] pulse with a Gaussian incident-
transverse-intensity distribution [Nz=2 in Eq. (35)] in initially

homogeneous plasma for the case of relativistic and charge-
displacement propagation with Ip=3X10' W/cm, rp=3 pm,
A, =0.248 pm, and Np=N p=7. 5X10 cm . (a) The distribu-
tion of the normalized intensity. (b} The distribution of the nor-
malized electron density. (c) Radial dependence of the asymp-
totic solutions for the normalized amplitude [I,(r)/Io]'~ and

the normalized electron density N, (r) /Np for s =0.800.
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s =0.800.
For these values of the dimensionless parameters as-

sumed in these examples (Figs. 9—11) (a, =248.6192,
a2= —'„that is Po/P„=22.252 for Gaussian incident
wave form), the magnitude of the quantity Rf =Rf 0/2,
the factor determining the degree of the initial focusing
(defocusing), is 0.124. For A, =0.248 pm and ra=3 pm,
the focusing distance R =kroRf 0/2, used in the exam-
ples above, has a magnitude of 28.35 pm. The fact that
the self-channeling of such extremely focused or de-
focused distributions occurs (Figs. 9—11) means the self-
channeling should be expected to be nearly independent
of the initial conditions of focusing or defocusing.

A critical power P„for self-channeling arising from
the relativistic charge-displacement mechanism can be
defined. We now discuss this issue with a model
developed in an earlier study. The threshold power P„is
defined as the power that separates the asymptotic behav-
ior, with respect to large distance of propagation (z), into
two distinct classes. Since its definition rests on an
asymptotic property, it can only exist in the limiting case
of vanishing losses (@=0 in Ref. [24]). For a power
P &P„,the asymptotic transverse-intensity profile tends
to zero at large z. In contrast, for P &P„the asymptotic
profile of the intensity tends to the lowest eigenmode of
the governing nonlinear Schrodinger equation. Addition-

ally, the normalized value of this critical power is exactly
twice the corresponding normalized value of the critical
power for the Kerr effect self-focusing found in cubic
media for initially fiat wave forms [34,37]. The expres-
sion corresponding to this critical power [36] for the rela-
tivistic and charge-displacement mechanism is

P„=(m,oc /e )f go(p)pdp(co/co 0)

=1.6198X10' (co/co&0) W,

where go(p) is the Townes mode [34].
It has also been shown that the value of the relativistic

and charge-displacement self-channeling threshold
power, in cases involving initially focused or defocused
beams, exceeds P„and depends on the degree of the ini-
tial focusing or defocusing. For a given magnitude of the
curvature of the wave front, the value of the threshold
power for initially defocused beams is greater than that
for initially focused beams. Finally, it has been shown
both analytically and numerically that for self-channeling
of an arbitrary wave form to occur, it is sufficient that the
Hamiltonian of the purely relativistic case, considered as
a functional of the initial transverse amplitude distribu-
tion, should be negative [36]. The precise statement for
this condition is

2
dQo

P2(uo)= J —a&[luol' —(2/a2)[(1+a2luol')'" —I]] r dr &0. (37)

We now comment on the behavior of pulses having ini-
tial amplitude distributions Uo(r) close to higher eigen-
modes V, „(r),n & 1. These higher modes generally are
associated with electronically cavitated channels. The
self-channeling in these cases could result in asymptotic
distributions of intensity and electron density corre-
sponding to certain higher eigenfunctions
I, „(r)=V, „(r),N, „(r),n & l. In particular, this conjec-
ture has established an initial amplitude distribution
Uo(r), which is close to the first eigenmode V, &(r) with
s =0.544. Direct numerical calculations showed that the
asymptotic distributions of both intensity and electron
density that evolved in this case correspond to the first
eigenmode I, ,(r) = V, „(r),N, ,(r) with s essentially equal
to 0.544. It should be additionally noted, however, that
these higher eigenmodes (n & 1) are quite possibly unsta-
ble against small azimuthal perturbations that destroy
their axial symmetry.

The principal result of this section is the finding that
the combined action of the relativistic and charge-
displacement mechanisms can result in self-channeling
with the formation of stabilized paraxial modes over a
rather wide range of physical conditions. Moreover,
these spatially confined modes are generally associated
with corresponding cavitated channels in the electron
density. Finally, the characteristics of these channeled

modes have asymptotic behavior that is described by the
appropriate lowest eigenmodes of the governing non-
linear Schrodinger equation.

V. CONCLUSIONS

A theoretical approach suitable for the numerical in-
vestigation of the two-dimensional (r, z) dynamics of
propagation of coherent ultrashort (r; »r »r, ) relativ-
istic laser pulses in cold underdense plasmas has been
developed. Four basic physical phenomena are included
within the scope of this method. They are (1) the non-
linear dependence of the index of refraction due to the
relativistic increase in the mass of the electrons, (2) the
variation of the index of refraction resulting from the
perturbation of the electron density by the ponderomo-
tive force, (3) the diffraction of the radiation, and (4) the
refraction caused by nascent transversely inhomogeneous
electron-density distributions. The equations studied in
this work may be regarded as the generalization of those
treated previously in other studies [18,19,33] involving in-
itially inhomogeneous plasmas. Further studies are con-
tinuing with an extension of this analysis, which includes
the azimuthal coordinate in the description of the propa-
gation.
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The main conclusions stemming from the calculations
are the following.

(1) The cooperative effect of the relativistic and
charge-displacement mechanisms leads asymptotically to
stable high-intensity z-independent modes of self-
channeling, and a major fraction of the incident power
can be confined in these paraxial modes. Stable cavita-
tion of the electron density is a general feature of these
spatially confined modes.

(2) The z-independent modes, to which the solutions of
the equation describing the relativistic and charge-
displacement propagation tend asymptotically, are recog-
nized as the lowest eigenmodes of the governing nonlinear
Schrodinger equation.

(3) A separate study of purely relativistic propagation
shows that beams with Hat incident phase fronts exhibit a
pulsing behavior in homogeneous plasmas but can under-
go quasistabilization in suitably configured plasma
columns. However, sufficiently sharply initially focused

beams generally exhibit the development of only a single
focus. In significant contrast, the present study shows
that with both the relativistic and charge-displacement
mechanisms, initially focused beams also generally lead
to confined modes of propagation. Finally, it should be
noted that the equation for relativistic self-focusing can
be considered as a general model equation of propagation
in saturable nonlinear media.
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