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Considering the Selberg trace formula as an exact version of Gutzwiller s semiclassical periodic-orbit
theory in the case of the free motion on compact Riemann surfaces with constant negative curvature
{Hadamard-Gutzwiller model), we study two complementary basic problems in quantum chaology: the
computation of the classical staircase N(l ), the number of periodic orbits with length shorter than I, in
terms of the quantal energy spectrum [E„j;the computation of the spectral staircase JV(E), the number
of quantal energies below the energy E, in terms of the length spectrum [I„]of the classical periodic or-
bits. A formulation of the periodic-orbit theory is presented that is intrinsically unsmoothed, but for
which an effective smoothing arises from the limited "input data, "i.e., from the limited knowledge of the
periodic orbits in the case of JV'(E) and the limited knowledge of quantal energies in the case of X{l).
Based on the periodic-orbit formula for JV'(E), we propose a rule for quantizing chaos, which simply
states that the quantal energies are determined by the zeros of the function g, (E)=cos[trJV(E)]. The
formulas for N(l ) and JV(E) as well as the quantization condition are tested numerically. Furthermore,
it is shown that the staircase JV(E) computed from the length spectrum yields (up to a constant) a good
description of the spectral rigidity 53(L), and thus we are able to compute a statistical property of the
quantal energy spectrum of a chaotic system from classical periodic orbits.

PACS number(s): 05.45.+b, 03.65.—w

I. INTRODUCTION

In this paper we discuss as an application of
Gutzwiller s semiclassical periodic-orbit theory [1,2] the
computation of discontinuous staircase functions and of
the spectral rigidity. To this end we employ an
unsmoothed version of the periodic-orbit theory. Usual-
ly, the convergence of the periodic-orbit sums is enforced
by a suitable smoothing procedure. In the formulation
given here no explicit smoothing is needed, since the
smoothing of the periodic-orbit theory arises automati-
cally from the limited knowledge of the "input data. "

The periodic-orbit theory is applied to the Hadamard-
Gutzwiller model, a chaotic system which consists of a
point particle sliding freely on a compact Riemann sur-
face of genus g =2 and with constant negative curvature.
In this case Gutzwiller s periodic-orbit theory [1] is exact,
as Gutzwiller recognized [3] by comparing his semiclassi-
cal theory with the Selberg trace formula [4]. This sys-
tem is a conservative E system and possesses only a
discrete quantal energy spectrum t E„]
(O=Ec &E& &Ez & ). An introduction to this
strongly chaotic model can be found in [2,5] or in some of
our previous papers [6—8].

We discuss two complementary basic problems of
quantum chaology. On the one hand, the number N(I )
of primitive periodic orbits with lengths I„shorter than I
is computed from the quantal energy spectrum [E„].
According to Huber's law [9], this number is exponential-
ly growing, N(l)-e /I for i~ac, as it is typical for
chaotic systems. On the other hand, the periodic-orbit
theory allows the computation of the number JV(E) of
quantal energies E„ less than E from the length spectrum

[I„]of the classical periodic orbits. In our numerical ap-
plications we use the regular octagon, for which the
length spectrum [l„] is completely known [10] up to
n =1500 (l&5cc=18.092. . . ) and an asymmetric octagon,
for which the length spectrum is nearly completely
known up to l =12. Here the number n counts only the
periodic orbits of different lengths. Indeed, there are
more than 4,000000 periodic orbits up to n =1500 in the
case of the regular octagon.

Based on the periodic-orbit formula for $(E) we for-
mulate a quantization rule for chaotic systems. A suc-
cessful test of this quantization condition is performed in
the case of the two octagons. Finally, the spectral stair-
case is used to compute the spectral rigidity b,3(L) from a
knowledge of the classical periodic orbits.

The starting point is Selberg's trace formula [4]

g h(p„)= f dp p tanh(np)h (p)
A(V)

7T

QO I„+TV
, 2sinh(kl„/2)

where A is the area, p„=QE„——,
' are the momenta, and

h(p) is a (nearly) arbitrary even function that is holo-
morphic in the strip

~ Imp~ &
—,'+e, e)0, and vanishes

asymptotically for ~p~~ac faster than 1/p . The left-
hand side (lhs) of (1) can be viewed as of purely
quantum-mechanical origin, whereas the right-hand side
(rhs) is purely classical nature involving the so-called

45 583 1992 The American Physical Society



584 R. AURICH AND F. STEINER 45

zero-length term proportional to the area of the octagons,
A (9') =4m. , and the periodic-orbit sum over the classical
length spectrum Il„]. The Fourier transform of h(p) is

denoted by g (x),

II. THE CLASSICAL STAIRCASE N ( I)

In [7] we discussed the trace of the cosine-modulated
heat kernel, which is obtained from the Selberg trace for-
mula (1) by choosing

e)

g (x)=—f dp cos(px)h (p) .
7T 0

h (p) = cos(pL)e ', E=
—,'+p

(2)
The resulting sum rule reads

(3)

L —E f —t/4 2f
cosh —+ g cos(p„L)e " =2e '/ f dp p tanh(np ) cos(pL)e

2 0

(L —kl„) —/4t (L +—kl„) /4(

8v 77t ~( ) k ( sinh(kl„/2)
n

(4)

which is absolutely convergent for any t &0. The first
tertn on the lhs of Eq. (4) is due to the zero ground-state
energy Eo=0 (pa=i/2), while the second term
represents a sum over all eigenvalues E„&—,'. (The octa-

gons discussed in this paper possess no so-called "small"
eigenvalues with 0 &E„&—,'.) The last term on the rhs of
the sum rule (4) shows at fixed t &0 as a function of the
real variable L Gaussian peaks of width AL-2v'2t at
the lengths l„of the classical periodic orbits. In [7] we

presented an evaluation of (4) for t =0.01, resolving the
periodic orbits of short lengths. (A preliminary evalua-

I

f dL sinh ——
, 0&10&1,&1,4 . L

0
(5)

where I, is the length of the shortest periodic orbit, on
both sides of Eq. (4) and performing the limit t ~0+, in
which the Gaussian peaks degenerate to Dirac 5 func-
tions, yields

tion has been presented already in [11].)
Here we are interested in the unsmoothed staircase

function N(l), which can be obtained from (4) as follows.
Applying the operation

sinh(L /2) i. ( 4 sinh(L /2) cosh(L /2)
sinh( kl„ /2 ) L

4sinh(L/2) cos(p„L )+g dL
n=) L

+ f (d 4sinh(L/2) cosh(L/2)
'0 L 2sinh (L/2)

with ~(l)—:[1/1, ]. The lhs of (6) can be rewritten in
terms of the classical staircase N (1):

]c(1)

N —=F—(l),
, k k

(9)

which counts the number of periodic orbits up to the
length 1 including multiple traversals (k & 1) weighted by
1/k. Equation (9) can be solved for N(l) by using the
Mobius inversion formula [12],yielding

~( I)

N(l)= g F (10)
k k

sc(1) N—
, k k

(7)

If the rhs of (6) is denoted by F(l),

tt( 1) 1
oo

1
~(1) l oo Iy —y f, dLS(L kl„)= y —y—e 1„——

k=1 @=1 )k„, k

F(l) —= f (e —e )
lp

+4 g f, sinh —cos(p„L )
1 dL . L
lpL 2

+2 coth —,1 dL L
lp L 2

we arrive at the basic relation

(8)

where p(k) is the Mobius function [p(1)= 1, p(2) = —1,
p(3)= —1 p(4) =0, p(5) = —1, ((t(6)= 1, ]. Thus the
classical staircase function N(1) can be expressed exactly
by the function F(l), Eq. (8), which in turn is completely
determined by the quantal energy spectrum.

Equations (8)—(10) are very similar to the prime-
number formulas involving vr(x) published by Riemann
in his famous paper [13] in 1859 and proved by von Man-
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li(x)=Pf, x ) 1 .
0 lnt

' (12)

The prime-number theorem (11) was proved independent-
ly by Hadamard [15] and de la Vallee Poussin [16] in
1896. Notice that (11) is equivalent to

xn(x)-, x~oo .
lnx

(13)

That (11) gives a good approximation, was already no-
ticed empirically by Gauss. Riemann was the first to
write down an explicit expression for the remainder.
Riemann's formula reads [13,17]

( 1nx/1n2]

k

where the function f (x) has the explicit representation

f (x) =li(x) —g li(x ")+f —ln2 .
(t2 —1)t lnt

(15)

Here the sum over p„runs over all the nontrivial zeros of
the Riemann g function.

To compare with our relations (8)—(10), we make a
change of variables, x =e', which yields

li(e )=Pf e =Ei(l),~ I I dL
(16)

and the prime-number theorem now reads

1

m(e ) —Ei(1)——,1~oo .
e
l

(17)

Using the definition (16), the function F(l) in Eq. (8) can
be rewritten as

goldt [14] in 1895, where vr(x) is the number of prime
numbers not exceeding x. Riemann obtained for the
leading term for x ~ oo (prime number theorem)

vr(x) -li(x),
where the logarithmic integral is defined by the principal
value integral

cos(p„l —a„)
F(l) =Ei(l)+2 g +

l E„
and thus from Eq. (10)

(21)

in Eq. (18), where the sum over s„runs over all real
values —,

' &s„(1,E„=s„(1—s„).) A comparison of Eqs.
(20) and (17) shows that Huber's law (20) plays the role of
a "generalized prime-number theorem" for the "general-
ized primes" pr (sometimes called pseudoprimes} defined

1
by pr:—norm (y)=e ", where y denotes a primitive hy-
perbolic element of the group I associated with the
chosen octagon. Here I is a discrete subgroup of
PSL(2,R), —:SL(2,R)/[+1], and lr is the length of the
closed geodesic (=periodic orbit) uniquely associated
with a given hyperbolic element y. [Notice that the num-
bers l—:lnp, where p runs over all primes, play the role
of the lengths of fictitious periodic orbits in the case of
m.(x ).]

In Ref. [6] we have presented the first computation of a
length spectrum for a compact Riemann surface. A com-
plete enumeration of all periodic orbits not exceeding
1=18.092. . . has been given in the case of the regular
octagon in [10]. In Figs. 2 and 3 of Ref. [10] we have il-
lustrated that Huber's law (20) yields an excellent approx-
imation to the true staircase function N (1) in the range
l, l l »00 = 18.092. . . . These figures show that
Ei(l) —N(l) has a great number of sign changes, which
often characterizes a good approximation. This is in con-
trast to the approximation (11) in the case of prime num-
bers, where available tables [17] show that li(x) —m(x) is
always positive for x ~4X 10' and increasing. Indeed,
such a behavior is suggested by Eq. (14), which gives
li(x) —m.(x)-—,'li(&x ), if f (x) is approximated by the
first term in Eq. (15). Although no one so far has found
any specific example of li(x) —n(x) (0 [17], Littlewood
has shown [18] that li(x) —n.(x) changes sign infinitely
often. (For a discussion of the properties of primes, we
refer the reader to Riesel's book [17]and to the lecture by
Zagier [19].)

If the Ei function in the second term of Eq. (18) is ap-
proximated by its leading term, see Eq. (17), we obtain
[a„=arctan(2p„)]

F(l)=Ei(l)+ g Ei(s„l)+2lnl+O(1),
Is„ I

(18} et/2 et/2 cos(p 1—a )
N(l) =E'(1)— +2 g " +

1 1 „, QE

F(l)-Ei(l), I~ oo,

which yields with (10) the asymptotic behavior

N (I)—Ei(l ), 1~ oo

(19)

(20)

Equation (20) shows the well-known exponential prolifer-
ation of periodic orbits for chaotic systems in general,
which was first derived by Huber [9]. [Huber also derived
the corrections that are present if there exist small eigen-
values 0(E„—,'. The result is given by the second term

where the sum over s„runs over all pairs of nontrivial
zeros of the Selberg g function [4], i.e., s„=,'+ip„, p„—)0
(also see Sec. VII).

The leading term of Eq. (18) is given by

(22)

This formula shows explicitly how the fine structure of
the length spectrum of the classical periodic orbits is
determined by the quantal energies ("inverse quantum
chaology"), in the same way as the distribution of primes
is determined by the nontrivial Riemann zeros via Eq.
(15). If the sum in Eq. (22) is approximated by taking
into account all energies with E„~EN, one should get a
resolution of bl-m/+EN, i.e., b1-0.22 for Etc =200.
If more and more quantal energies are included in the
sum, one expects a kind of Gibbs phenomenon in analogy
with the well-known behavior for classical Fourier series.
In Ref. [20] a calculation of n.(x) has been presented by
using Riemann's prime-number formulas (14) and (15)
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N(1)
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JV(E) =2f dp'p' tanh(mp')
0

sin(pkl„)
+

2m ) k )
k sinh(kl„/2)

n

(24)

100

50

10
] 10

FIG. 1. The classical staircase N(l) is shown for the regular

octagon in comparison with the result obtained from (10) using

(8) for 10=1 and EN=201.4. . . . The asymptotic formula (22)
is represented by the dotted curve.

dN(l) e
l —+ oo

dl l
(25)

the remaining sum can be approximated by the following
integral (see also [21]):

At first sight the last relation, which is valid in the sense
of distributions, seems to be useless for a numerical appli-
cation, because for a =0 there is no suppression of the ex-
ponentially increasing number N ( I ) of periodic orbits
with increasing length I, and thus one expects numerical
instabilities.

As in [21] let us assume that the length spectrum [I„]
is completely known up to a given cutoff length X allow-

ing an exact evaluation of the periodic-orbit sum up to X.
Using Huber's law [9],Eq. (20),

and taking into account the first 29 Riemann zeros.
In Fig. 1 the exact staircase N(l) of the regular octa-

gon is shown for I ~ 10 together with the curve obtained
from (10) and (8), where only the first 200 quantal ener-
gies has been used, i.e., EN =201.4. . . . As the lower in-

tegration limit, la= 1 has been chosen. Remarkably, the
result should be independent of the choice of l0 as long as
0& 1, &l& is fulfilled. Numerically one observes a slight
dependence on lo because of the truncation of the series
over the quantal energies. This truncation smoothes the
discontinuities of the true N(l), and if lo is chosen too
near the shortest length, the curve lies slightly below the
true one. This is obvious, noticing that for l, & lo & l2 the
first length l, =3.057. . . would have been omitted in

N( I). Although (10) and (8) are unsmoothed, the restrict-
ed knowledge of the quantal energies leads to a smooth-
ing. Thus this smoothing is due only to the limited "in-
put data" and not to an explicitly smoothed formula.

2m. z I sinh(l /2)
[( 1/2 ) +ip]1

=—Im dl
7T l

1 I oo——Im dt
7T —[( 1/2))+ip Q

(26)

~/2
Im f dt = dx e "'"cos(R sinx)

R t 0

= —si(R ), (27}

which vanishes for R ~ oo because of lim„„si(R)=0.
Thus one can add

The following integral over the integration path C))
along the quarter circle from t = —iR to R parametrized
by t =Re'~, PE [—3n, 2n], yields

III. THE SPECTRAL STAIRCASE JV(E) 1
—t—Im dt + —si(R ) =0

R t n.
(28)

In [7] we have already obtained a smoothed version for
the spectral staircase A'(E) starting with the Gaussian
smoothed sum rule. For a given smoothing parameter
e & 0 we have derived the absolutely convergent relation

to the last integral in (26). In the limit R ~ oo one can
connect the two integration paths and arrive at the in-

tegral representation for E,(z),

4 a
A', (E)= — f dp "p" tanhmp"

v')re 0
E,(z}=f dt

Z

(29)

I II

X dp' cosh e

sin(pkl„) —(Ekl„/2)2

2m () } k ) k sinh(kl„/2)
(23)

where it is assumed that the path of integration excludes
the origin and does not cross the negative real axis. We
are thus lead to (p )0)

Here we are interested in the limit @~0 because of
lim, oft,(E)=IV(E). Performing the limit one arrives
at (p =+E—

—,
' &0) and

R ) (X }=—IrnE, ( ( '+ip }X)——1 (30)
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cal to Weyl's law. In Figs. 2 and 3 we show JV(E) for the
regular octagon in the energy range E 20 and E 200,
respectively. The dotted line corresponds to Weyl's law
and is seen to describe the average behavior of A'(E)
reasonably well. The second and third terms in Eq. (31)
are oscillating functions. For &EX~ao, the third term
behaves asymptotically as

1 X/2—ImE, ( ( —,' +—ip)X)—
nE

X [p cos(pX) —
—,
' sin(pL)] .

(33)

JV(E) =2f dp'p' tanh(~p')
0

sin(pkl„)+
2m. ~/ k~, k sinh(kl„/2)

II

+—ImE, ( —( —,'+ip)X) .
1

(31)

The first term in Eq. (31) gives for E~ ac

2f dp'p't ahn(mp')=E 3+O(&E—e — ), (32)

which is (apart from the exponentially small term) identi-

FIG. 2. The spectral staircase JV(E) (solid curve) is shown for
the regular octagon together with the curve obtained from {31)
(dashed curve) for X=18.092. Weyl's law JV(E)-E—

—,
' is

displayed as the dotted line.

Thus the energy resolution of the approximate formula
(31) is determined by the cutoff length
b,E-2m~E /X, and is getting worse with increasing en-

ergy for a fixed value ofX. In Figs. 2 and 3 we display as
the dashed curve the evaluation of relation (31) for
X=18.092. . . , which means that more than 4000000
periodic orbits have been taken into account in the
periodic-orbit sum in (31). One observes fluctuations
around the staircase similar to the classical Gibbs
phenomenon, and again the limited "input data" lead to
a smoothing.

Although formula (31} is not able to resolve the
higher-energy levels, it is seen from Fig. 3 that it gives an
important improvement of Weyl's law. In our evaluation
we have used the rest term in Eq. (31) in its form given
there, but we have checked that the asymptotic formula
(33} yields a sufficiently good approximation already for
E &6. Notice that this rest term is large in the energy
range considered, and that the good overall agreement
seen in Figs. 2 and 3 would have been completely spoiled

200

N(E)

150

100

50

50 150 E 200

FIG. 3. The same curves as in Fig. 2 are shown but in the larger energy range E &[0,200].
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been omitted. While the restif this rest term would have been om . '
t

term diverges orf X~ae it decreases for fixed i e
1/&E in the semiclassical limit E~ 00.

IV. A RULE FOR QUANTIZING CHAOS Relative error {%)

TABLE I. The first 19 quantal energiess E )0 of the regular
he "true" eigenvalues taken from [7],octagon. E„denotes t e rue

whereas E„denotes eth approximations obtained rom e
uantization rule (34). (E„) is defined in the text.

E„(E„)

(34)

or, equivalently, as zeros of the function

R tl several authors [21—26] have proposed
m rious uantizationan or numd/ merically investigated various q

ers the uanti-rues or c a1 f h otic systems. In all these papers q
namicalzation ru es ma e e1 k ssential use of the relevant dy

nsi eredfunctions, which in the case of the octagons considere
d in the case of Artin's billiard arein the present paper an in e

i en ica'd t' 1 to the Selberg g function [21,25 .
rule for uantiz-H would like to propose a new ru qere we w

h which is not based on the dynamica ~ical ~~ functioningc aos, w ic
of a functionaland thus does not require the validity o a

a ers. The new quantizationequation as in the previous papers.
ut here werule app ies o clies to chaotic systems in genera, u h

will only illustrate it in the case of the octagons.
Having derived the approximation (31) for the spectral

staircase 3/(E), it is natural to define approximate quan-
tal energies1

' E as solutions of the equation

JV(E„)=n+—,', n =0, 1,2, . . . ,

3.839
3.839
3.839

5.354
5.354
5.354
5.354

8.250
8.250

14.726
14.726
14.726
14.726

15.049
1S.049
15.049

3.56
3.81
4.11

5.01
5.31
5.52
5.74

7.85
8.40

14.24
14.47
14.66
14.84

15.02
15.23
15.49

3.83
3.83
3.83

5.40
5.40
5.40
5.40

8.13
8.13

14.55
14.55
14.55
14.55

15.25
15.25
15.25

—0.3

0.9

—1.5

—1.2

1.3

gt(E) =—cos[irJV(E)], (35)

where JV(E) denotes the expression on the q.n the rhs of Eq. (31).
A 1 k t Figs. 2 and 3 suggests that the quantizationA oo a

' '
n (34) should yield reasonable approxima

'

those energy regions where the unc ion
dashed curve in igs. anF' 2 and 3) does not show too large os-
cillations.

r ies E, 1(n (19,Table I ives the first quantal energies
f th re ular octagon, obtained from qm the uantization

uantal energies ob-rule (34) in comparison with the quanta g
1

'
the Schrodinger equation directly usingtained by so ving e c

the met o oh th d f finite elements (see Ref. [7]). n y in
the valuen =8 is the solution not unique, and thcase where n = is e s

'
us one' see Fig.Es=7.85 has been selected as the obvious

2.) The table s ows ah s that the quantization condition 34
yie s in ee

'
ld

'
d d reasonable approximations to t e uan a

As has been discussed in detail in oenergies. s as e
ossesses many sym-a ers [7,10], the regular octagon possesses

ha fl d b the twofold, threefold, andmetrics tha flhat are reflecte y e
of the uantal ener-fourfold degeneracies, respectively, o e q

eracies constitute a senous i c
wh theIn fact this was one of the reasons w y econdition. n ac,

Riemann-Siegel look-alike formula ~ &, w ic
of Ref. [21], was not able to generate

even the first nine energies. It is seen from t e a e
the mean values „cac(E ) calculated from the approximate

lues E for those n-values for which the true ei-
1 es are degenerate are ex pp o

1 E the relative error not larger t anthe true eigenva ues
.5%%uo. We thus conclude that the quantization con i ion
34) works even in the very delicate s'tsituation of a system

possessing high symmetries.
(34) wed t f the quantization condition, weAs a secon tes o

18.659
18.659
18.659

18.15
18.76
19.32

18.74
18.74
18.74

0.4

1.0

0.5

V)
O
C3

10 12 E 14

on cos rrlV(E)] is shown,FIG. 4. For an asymmetric octagon c
d b (31) with X=11.96242. . . . The

db h hdoflocations of the quantal energies computed by t e me o
finite elements are marked by bold dots.

cta on that was already dis-consider an asyrnmetnc oc ag
8 21 and which has t e nicecussed in our earlier papers

voided between t ehproperty athat near degeneracies are avoid
first seven energy levels (E„+,—
Fi . 6 b) of Ref. [21] we have shown an evaluation o t e

E &6. As in the case of the regular octagon, t e resu
onl two of six eigenvalueswas not satisfactory, since on y

of thewere roduce . n ig.a. I F 4 we show an evaluation o t e
un

' &, . f r E 14, using for the cutofffunction g, (E), Eq. (35), or, u
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length X in Eq. (31) X=11.96242. . . . {For this octa-
gon the length spectrum is not completely known for
l„~X, but a comparison of the computed length spec-
trum with Huber's law (20) indicates that only a few
periodic orbits are missing. The length spectrum has
been computed by using the algorithm described in [6],
where aH "words" consisting of maximal 12 "letters"
have been considered. } The "true" quantal energies com-
puted by the method of finite elements are shown as bold
dots in Fig. 4. It is seen that the zeros of the function
g](E} indeed constitute good approximations to the true
eigenvalues. Only in cases where two eigenvalues are
very close to each other do the zeros of g&(E) show a ten-
dency to be separated by a somewhat larger amount; see,
for example, near E =10.5. But since the energy resolu-
tion is proportional to 1/X, it is to be expected that the
energy resolution would improve if a length spectrum
could be used having a larger cutoff'.

V. THE SPECTRAL RIGIDITY 53(L)
FOR A TOY MODEL

Apart from the level-spacing statistics, the spectral ri-
gidity b3(L) introduced by Dyson and Mehta [27] has
played a major role in the study of statistical properties
of quantal energy spectra for systems whose classical
counterparts are chaotic. The statistics of these systems
seem to be in good agreement with the predictions of
random-matrix theory. The spectral rigidity is defined
[27] as the average of the mean-square deviation of the
staircase A(E) from the best-fitting straight line a + be:

(),(L)—:(min —j dE[N(E+E) —a be]—L/2 2

{a,b) L —L/2
(36)

—)2 J dmJV(E+F)L/2

—L/2
(37)

In [28] Berry derived a semiclassical theory for 63(L) for
integrable as well as for chaotic systems. This theory
predicts a saturation of b3(L) for L »L,„and a behav-
ior consistent with random-matrix theory below L

We have already discussed in [8] several statistics com-
puted directly from the quantal energies for 40 different
octagons. Here we want to test numerically whether the
approximation to JV(E) computed by (31) is suited for a
computation of b,3(L). As shown in Sec. III, this approx-
imation gives a smoothed version of the "true" staircase
and thus it is not obvious that one will obtain reasonable
results for a statistics measuring discontinuous deviations
from a best-fitting straight line.

To settle the question of what distinguishes the spectral
rigidity 63(L) of the true staircase from the smoothed
version, we first investigate a toy model spectrum that

where { ) denotes a local average. The constants a and b
can be eliminated, yielding the well-known expression

b,3(L)= —f de% (E+E)L/2

L —L/2
'2

—f de JV(E+e)
L/2

L —L/2

2

can be treated analytically. Consider the energy spec-
trum E„—=n+ —,', n =0, 1,2, . . . having the same leading

term in Weyl's law as the spectra of our Riemann sur-
faces. The staircase N(E) can then be expanded in a
Fourier series

A(E) =E+—g sin(2n. nE), E & 0 . (38)
1

"
( —1)"

n

If the Fourier series is truncated at N, a smoothed version
of the true staircase JV(E) is obtained in analogy to the
staircase of Sec. III. Inserting (38) into (37), all opera-
tions can be carried out, leading, after a tedious but
straightforward computation, to

b3 (L)=
N 1

277 n =1 7l

N

z g sin (mnL}
2~4L2 „=, n4,

sin(n. nL )

m.nL

—cos(mnL)

'2

(39)

with limN „b,~ (L)=b.3(L).
In the limit L ~ ()0 the second series in (39) vanishes,

and one obtains the following exact expressions for the
saturation values b, „and 6„,respectively:

1 1 ~~(2)

277 ~ —) 7g 277
(40)

Thus one immediately recognizes that the spectral rigidi-
ty b,3(L}, i.e., the Nth approximation to the true stair-
case, saturates as expected, but at a value that is smaller
than the true saturation value b „by a constant amount
given by:

&'z 2 X
277 ~ =) Pf

(41)

In the opposite limit L ~0, the approximation (39}can
be expanded in L, yielding (for fixed N)

N(N+1)(2N+1) Lg
3 90 6

+ ~ (42)

b3(L) =63 (L)+C

which should hold for L ))1/N.

(43)

This contrasts with the exact linear behavior 63(L)- —,', L,
L ~0. The difference is caused by the absence of discon-
tinuities in the smoothed version of the staircase. If the
limit N —+ ~ is carried out at fixed L, the coeScient of
the L term diverges. On the other hand, one sees that
(42) behaves for large N as (NL)3L, which shows that the
correct behavior for L ~0 is obtained if one considers
the "scaling limit" N~ ao, L ~0, but keeping NL fixed.
We thus obtain the approximation



590 R. AURICH AND F. STEINER 45

0.10

a,(L)

0.08

0.06

0.04

0.02

0.0
4. L 5

FIG. 5. The spectral rigidity 63(L) (solid curve) for the toy
model spectrum E„=n+

2
is shown in comparison with the ap-

proximation (39) for N =2 (dotted curve). The dashed curve is
obtained by shifting the dotted curve by the constant C given
in (41).

E =200 there are only a few quantal energies that are not
degenerate and thus the spectral staircase A'(E) has
exceedingly large steps, as seen in Fig. 2 and 3. On the
other hand, the asymmetric octagon has only parity sym-
metry, and its spectrum should therefore behave as a su-
perposition of two independent GOE spectra [dashed
curve in Fig. 6(b)] according to the random-matrix theory
(GOE refers to the Gaussian orthogonal ensemble of ran-
dom matrices). As expected, the approximation (31)
yields for 53(L) values that lie below the true rigidity.
But shifting the open circles in Figs. 6(a) and 6(b) by a
constant (1.004 in the case of the regular octagon; 0.385
for the asymmetric octagon), one observes that the result
represented by the closed circles agrees nicely with the
true rigidity for 10 & L & 150 (regular octagon) and
50&L & 150 (asymmetric octagon), respectively. For the
latter system, one gets agreement with the true curve
within 10% in the full range L & 15. As in the case of the
toy model, the approximation fails in a region near L =0,
which is caused by the fact that the sharp discontinuities
in the spectral staircase are smoothed. For both systems,

In Fig. 5 the spectral rigidity b,3(L) is shown in com-
parison with the second approximation [N=2 in (39)],
which is too low by a constant amount C =0.020. . . as
derived from Eq. (41). Shifting by this constant corrects
not only the saturation value, but also leads to a very
good description of b 3(L) for L ) —,

'. Only for L & —,
' does

the mentioned vanishing proportional to L cause an er-
ror in the description of b,3(L). In summary, one sees
that a truncation of the Fourier series (38) leads only to a
constant shift of the spectral rigidity if one excludes a
small region near L =0.

a,(L)

5

o o o o o o o o o 0 o I

VI. THE SPECTRAL RIGIDITY 63(L)
FOR TWO STRONGLY CHAOTIC SYSTEMS

After the discussion of the toy model presented in the
last section, let us now turn to the computation of the
spectral rigidity for two strongly chaotic systems defined

by the two octagons already considered in the previous
sections. Inserting the approximation (31) for JV(E) into
the general expression (37), we obtain a (very long) for-
mula, which will not be reproduced here, and which
expresses the rigidity in terms of the classical periodic or-
bits. Since the sum over the length spectrum has to be
cut off at a maximal length L, one cannot expect that the
resulting rigidity exactly reproduces the true rigidity cal-
culated directly from the quantal energies. Rather, one
expects, as in the case of the toy model [see Eq. (43)], that
for large L values the rigidity is shifted by a constant that
depends only on the cutoff X.

The numerical evaluation of b, 3(L ) is shown in Fig. 6(a)
for the regular octagon (using %=18.092) and in Fig.
6(b) for the asymmetric octagon already discussed in Sec.
IV (using %=11.96242). The solid curves represent the
"true" rigidity computed directly from the quantal ener-

gies, while the open circles are the approximations ob-
tained from Eq. (31). The larger values obtained for
lhI 3(L ) in the case of the regular octagon in comparison
with the asymmetric octagon are caused by the high sym-
metry the regular octagon possesses. Indeed, up to

100 L 150

0.8

0.6

0.4

~g+
~ ,8

0

/

0
o

o o o o o o o o o o o o o o o

0.0
50 100 L 150

FIG. 6. The solid curves represent b3(L) obtained directly
from the quantal energy spectrum up to E =200 for the regular
octagon (a) and for the asymmetric octagon (b). The open cir-
cles correspond to the approximation (31). The full circles
represent the theoretical prediction after adding a constant, as
discussed in the text. The dashed curve in (b) shows the predic-
tion of random-matrix theory for the superposition of two in-

dependent GOE spectra.
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the rigidity saturates nonuniversally at a finite value 6„
for L & 70, in agreement with the semiclassical theory of
Berry [28]. Notice, however, that the theory presented in
[28] does not apply directly to the present case, since the
two octagons have not been desymmetrized. There
remains the challenge to develop for the systems con-
sidered here a theory that expresses the saturation value
h„completely in terms of the periodic orbits. What is
required is a formula analogous to Eq. (41) for the con-
stant shift in dependence of the cutoff X.

VII. DISCUSSION

In this paper we have discussed several applications of
the Selberg trace formula, Eq. (1), which has for the
Hadamard-Gutzwiller model considered here exactly the
same form as Gutzwiller s semiclassical periodic-orbit
theory [1—3]. It is this analogy between Gutzwiller's and
Selberg's trace formulas that makes the motion on com-
pact Riemann surfaces so interesting and gives these par-
ticular chaotic systems the unique position as prototype
models for the study of quantum chaology. We antici-
pate that the results of this paper can be easily general-
ized to analogous semiclassical periodic-orbit formulas
for general chaotic systems.

Starting from the sum rule (4) for the trace of the
cosine-modulated heat kernel, we derived in Sec. II the
explicit formulas (8) and (10) for the classical staircase
Ã(1), which can be considered in analogy with Riemann s
prime-number formulas (14) and (15) as "generalized
prime-number formulas" for the "generalized primes"

1„
defined by e ". These formulas are interesting because
they show explicitly the striking duality that exists be-
tween the lengths of the classical periodic orbits and the
quantum-mechanical spectrum. From these formulas we
were able to derive immediately not only Huber's law
(20},which plays the role of a "generalized prime-number
theorem" in analogy with the famous prime-number
theorem (17), but also an explicit formula for the
remainder function Q (I) defined by

N(l)=Ei(1)+Q(l) . (44)

By approximating Q(l) by the first 200 quantal energies,
we obtained for the regular octagon the result shown in
Fig. 1, which reproduces nicely the main features of the
periodic-orbit staircase function in the short-length limit,
illustrating explicitly how the fine structure of the classi-
cal periodic orbits is determined by the quantal energies.
This approach, which we have called "inverse quantum
chaology, " can be characterized by the question "Can
one hear the periodic orbits of a compact Riemann sur-
face?", a variation of the famous question posed by Kac
[29].

Asymptotically, the remainder Q(1) is given by [see
Eq. (22)]

I /2
Q(i)=

l

cos(p„l —a„)
2 g + 0 ~ ~

n=1 E„
(45)

»nce E„-~(p„-&n, a„~m /2) for n ~ ~ according to
Weyl's law, there are obviously some serious questions

about convergence here that we have not discussed in this
paper. By analogy with the Riemann g function, one
would expect that Q(l) behaves as Q(l)=O(e "~ +'"),
since the Riemann hypothesis is valid for the Selberg g
function Z(s) defined by the Euler product

Z(s)= g Q (1—e "), Res» .
t1„1 k =0

(46)

[Notice that the nontrivial zeros of Z(s) are related to
the quantal energies via s„=,'+ip—„.] It is not difftcult to
obtain the estimate Q(l) =0(e ), but yet the best result
known today is only of the type Q(l)=O(e ' /1 ) with
a= —,

' [30] and 1 [31]. (Here we assume again that there
are no small eigenvalues. ) We may add that our numeri-
cal results are consistent with Q (l) =O(e' /l ), but this
is, of course, no proof.

In Sec. III we have studied the periodic-orbit formula
(24) for the spectral staircase JV(E). Although Eq. (24) is
an exact relation that is valid in the sense of distributions,
it is not obvious at all that this relation can be used for an
actual numerical calculation. If the integral term in (24)
having the meaning of a mean spectral staircase given
asymptotically by Weyl's law, see Eq. (32), is denoted by
Ã(E), relation (24) is equivalent to the exact formula

1
JV(E) =iV(E)+ —arg Z '+ip-

7T
2 (47)

where Z —,'+ip means here the analytic continuation of

the Selberg g function (46) to the critical line Res= —,'.
Thus our final equation (31) for A'(E) is essentially an ap-
proximate formula for the phase of the Selberg g function
on the critical line. It is crucial for this formula to be nu-
merically meaningful that we have truncated the series
over the periodic orbits at the cutoff X and that we have
found a good estimate for the remainder; see Eq. (30).
Notice that this remainder involves actually a "renormal-
ization procedure" that has been carried out in the last
step in (26). The numerical results presented in Figs. 2
and 3 seem to indicate that the approximation (31) is
indeed meaningful. There arises again the difficult prob-
lem of finding a good estimate similarly as for the
remainder Q (1). If the last term in Eq. (47) is denoted by
S(p), our numerical calculations are consistent with
S(p)=O(1), which is far beyond the best estimate ob-
tained rigorously up to now, which gives
S(p)=O(p/lnp) [30]. (This estimate, as well as the esti-
mate for Q(l), was first provided by Selberg around
1950—52 in an unpublished manuscript; see, e.g., [32].
The result for Q(l) with a =

—,
' was obtained independent-

ly by Huber [33].)
The rule for quantizing chaos proposed in Sec. IV re-

lies on the continuous approximation (31) to the discon-
tinuous spectral staircase A'(E), which takes positive
half-integer values if E is close to a quanta1 energy. Thus
the zeros of the function (35} should yield good estimates
for the quantal energies. Our numerical evaluations
presented in Table I and Fig. 4 give strong support to this
new rule. Based on the exact functional equation for the
Selberg g function, we have recently proposed [21] a
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different quantization rule, which defines the quantal en-

ergies by the zeros of the function

(48)

(For related quantization rules see also [22—26].) The
evaluation of Z{s) on the critical line using a truncated
Dirichlet series did not provide useful results for g(p) in
the case of the octagons, which could be explained by the
fact that the Dirichlet series was not even conditionally
convergent on the critical line. {The quantization condi-
tion based on (48) was, however, very successful in the
case of the hyperbola billiard [24] and of Artin's billiard

[25], where the corresponding Dirichlet series shows a
better behavior. ) Thus it appears that the new rule for
quantizing chaos is superior to the quantization condition
based on (48), since it works even in cases where the Dir-
ichlet series for Z (s) diverges on the critical line.

Finally, in Sec. VI we have used the approximation (31)
to calculate the spectral rigidity, which is an important
measure of the fluctuations of the energy spectrum. The
results presented in Figs. 6(a) and 6(b) show the expected
saturation for large L. Adding a constant led to a good
description of the rigidity in the whole range above
L =15. Extrapolating from the toy model studies in Sec.
V, it is obvious that a calculation of the constant mould

require a resumrnation of the long orbits, which will be
studied elsewhere.
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