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Pair-creation collective modes in an electron gas
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High-energy modes of oscillation in a zero-temperature relativistic electron gas in a strong back-
ground magnetic field are reported. The modes propagate parallel to the magnetic field and appear both
in a longitudinal and in two transverse polarizations. The underlying mechanism is the binding between
electrons near the Fermi surface and virtual positrons, which is enhanced by the presence of the filled
Fermi distribution, in a Cooper-pair-like phenomenon. The energy of the mode is of the order of the
pair energy (over 1.02 MeV), and the mode exists only for wave numbers k above a critical value, such
that the mode group velocity exceeds the velocity of an electron on the Fermi surface. Damping of the
mode is insignificant at the critical wave number and increases with k to a relatively small maximum

value.

PACS number(s): 52.25.Mq, 52.60.+h, 12.20.Ds, 97.60.Jd

I. INTRODUCTION

In this paper we report the investigation of relativistic
modes of collective excitation in a zero-temperature elec-
tron gas, propagating parallel to a strong background
magnetic field. This report arises from a more general in-
vestigation of wave propagation in such a system [1].
The high-frequency modes are connected with the pro-
cess of virtual pair production: The mode energy #iw is
very nearly the energy of an electron-positron pair creat-
ed with total momentum 7k and with the electron on the
Fermi surface; the modes are damped by real pair pro-
duction. There is a triplet of modes, for different polar-
izations, associated with each occupied Landau level (ex-
cept for the Oth level, which carries only two modes).
Each mode exists only above a critical wave number, of
order 2p,, where p; is the Fermi momentum associated
with level s. This critical wave number could be close to
zero, for a nearly empty level, or could be very large, for
a full level in a dense system. The critical wave number
marks the k value above which the group velocity of the
mode exceeds the electron Fermi-surface velocity; also, at
this critical value, the virtual electron and positron move
with equal velocities. Damping of the modes is nonzero,
due to vacuum polarization effects, but becomes vanish-
ingly small near the critical wave number. The damping
grows as the wave number increases from the critical
value (and the electron-positron relative velocity in-
creases), until a maximum is reached; thereafter, the
damping decreases with wave number (though this de-
crease may occur beyond the limits of the theory). For
the cases presented here, damping is not very significant.

The present analysis applies to a system consisting of a
degenerate electron gas, dense enough so that the Fermi
energy is at least a substantial fraction of the electron rest
mass. The system is immersed in a strong uniform mag-
netic field, so that the quantization of electron motion
transverse to the field is significant and the energy of the
Landau-level separation can be comparable to the elec-
tron rest-mass energy. Under these conditions the
motion of the electrons is quasi-one-dimensional and the
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singularities appearing in the response function are
stronger than in the three-dimensional case.

The physical mechanism responsible for the generation
of the modes can be viewed as the binding of virtual
electron-positron pairs from the vacuum, made possible
by the presence of the background high-density electron
gas. Normally, the virtual electrons and positrons emerg-
ing from the vacuum do not bind, despite their electro-
static attraction. One case where they do is in the pres-
ence of an “‘ultrastrong” magnetic field, B > 1.6 X 10'¢ G,
where a boson excitation in the form of a massive longitu-
dinal photon has been reported [2]. In the case described
here, the high-density degenerate electron background
enhances the binding of the virtual pair, making binding
possible for any value of the magnetic field, although the
strength of the resulting excitation is still a sensitive func-
tion of the magnetic-field strength. The electron-positron
binding is then the result of a Cooper-pair-like
phenomenon: The Coulomb interaction is enhanced by
virtue of a large portion of the momentum space being
unavailable to the electron. The scenario is similar to
that of Bethe and Goldstone [3], except that there both
interacting particles were within the Fermi sea, whereas
here, the electron is outside, on the Fermi surface, and
the positron is unaffected by the phase-space exclusion.
A more direct analogy is the formation of the Mahan ex-
citons [4] in metals, by creation of a deep-lying core hole
and the lifting of an electron above the Fermi surface.
The formal manifestation of these phenomena is the ap-
pearance of a sharp logarithmic peak in the response
function [3], which provides new solutions of the disper-
sion equation.

The results given here are derived from a kinetic study
of a relativistic degenerate electron gas [1], which uses
the linearized Vlasov equation for the Wigner distribu-
tion function to compute the current response to a per-
turbation in the electromagnetic four potential, and in
this way calculates the polarization tensor for the system.
The calculation is done in the random-phase approxima-
tion; as discussed below, the present theory should be at
least qualitatively valid for k <n!/? and r, << 1, where r,
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is the conventional coupling parameter, equal to the in-
terparticle distance divided by the Bohr radius; the pre-
cise condition on r; depends on the magnetic field and is
given below. Pair-production modes are most likely to
exist in astronomical objects such as neutron stars, which
are both highly degenerate and highly magnetized, but
conditions for their existence could also possibly be
satisfied on earth.

The plan of this paper is as follows. In Sec. II we
sketch the formalism used to describe the behavior of the
relativistic magnetized electron gas under disturbances of
arbitrary frequency and wavelength. Section III
discusses the dispersion relation in this system for waves
propagating along the magnetic field, and describes the
characteristics of the pair-creation modes. In Sec. IV we
estimate the validity of the approximations employed.

II. FORMALISM

Wave propagation and collective modes in a dense rela-
tivistic plasma have been studied by a number of authors,
usually by calculating a response function such as the
dielectric, conductivity, or polarization tensors. The
dispersion relation for collective modes w(k) is written in
terms of this response function. For the present work,
the Wigner-function kinetic equation method [1,5] was
employed; other response-function calculations have used
the Green-function [6—-8] or density-matrix [9,10] tech-
niques, or some variant of these [11]. Previous studies of
the full (k,w)-dependent response function have mostly
been restricted to the long-wavelength, low-frequency
(relative to the rest mass) regime. For calculating the rel-
ativistic response, a Green-function method has been ap-
plied [7,8], but explicit results were shown only for the
®=0 and k=0 situations. Our calculations [1], which
form the basis for this paper, have explicitly displayed
the full (k,w)-dependent response function for a relativis-
tic system.

The polarization tensor II,(k,©) is a response func-
tion that links the four current to the electromagnetic po-
tential:

T ko) =11,,(k0) 4"k o) . (1)

This expression is gauge invariant, because
[1*"k,, =11""k,=0. The polarization tensor is related to
the four-dimensional dielectric tensor e,“,(k,w) as follows:

4rll, (k, )

0)2

€nk,0)=1— (2)
The covariant dispersion relation determining wave prop-
agation in the plasma is

det|k %k o8, —k , k, +4mT1,,| =0, 3)

where g,,, is the Minkowskian metric tensor. When only
propagation parallel to the magnetic field is considered,
the wave vector becomes k*=(w,0,0,k), and Eq. (3)
simplifies.

The polarization tensor can be separated into two
parts, one depending on particle distribution functions
(the particle part) and one independent of particle distri-
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bution functions (the vacuum part). The vacuum part
sz( k,w) has been calculated for parallel propagation by
Bakshi, Cover and Kalman [7]. It has two independent
elements, I19; and I19,=113,, which are functions of the
relativistic invariant w>—k?2. The vacuum polarization is
a slowly changing function, small compared to unity ex-
cept for peaks at the frequencies w;, discussed below.

In order to see the qualitative features associated with
the particle part of I, (k,®), we will first discuss the
properties of the relativistic, strongly magnetized system,
particularly with regard to the kinematics of pair produc-
tion. We will then discuss the properties of the polariza-
tion tensor Huv( k,w) in the w-k plane, and consider the
high-frequency waves described by this response func-
tion, with their dispersion relation w(k) and damping.
Henceforth, we work in Gaussian units, with Ai=c=1. In
numerical formulas B is given in units of gauss and the
electron density n in cm™3; energies and momenta are
given in terms of the electron mass m.

In a strongly magnetized system, electron motion per-
pendicular to the field is quantized into Landau levels,
with integral quantum number s =0. The relativistic
electron energy is given by

eps=(as2+p2)‘/2 , (4)

where p is the momentum parallel to the field, and where
a,2=m(1+2s0,/m)'"? (5)

includes energy (or inertia) from both the rest mass, m,
and the quantized cyclotron motion perpendicular to the
field, . =eB/m. Electrons populate the system up to
the Fermi energy €, and each level is filled to a max-
imum value, p,, of the momentum parallel to the field:

p,=(et—a?)/? . ©)
The Fermi energy can be determined from the density n
by inverting the relation
3

P0+2 2 Ps

s=1

eB

n=—

2 : )
a

where the sum extends over all s for which p is real.

Magnetic-field effects are more important at higher
field strengths or at lower densities, where the magnetic-
field-dependent Landau-level spacing is wider relative to
the density-dependent Fermi energy. The scaling param-
eter for the magnetic field is B, =4.41X 108 G, the field
at which the cyclotron energy is equal to the electron
rest-mass energy (eB,=m?2, in our units). A characteris-
tic density for the highly magnetized equilibrium system
is the maximum density at which all electrons are in the
lowest (s=0) Landau level:

ny=1.244Xx10°(B/B,)*"? . (8)

In the presence of a magnetic field, a photon can decay
into an electron-positron pair. The electron and the posi-
tron in this pair can be created on the same or on
different Landau levels, depending on the angular
momentum (or polarization) of the initial photon. For
parallel propagation within the medium, three photon



5822

polarizations are possible: one longitudinal mode, which
decays into two particles on the same level; transverse
right-circular polarization, which decays into an electron
on level s and a positron on level s —1; and transverse
left-circular polarization, which decays into an electron
on level s and a positron on level s+ 1.

The photon frequency o and parallel momentum k are
related to the electron and positron energy and momen-
tum by energy and momentum conservation:

o=¢g,te o, 9)

where the electron has momentum p and is on level s, and
the positron has momentum k —p and is on level s’. Ina
vacuum, pair production is favored at values of the elec-
tron momentum p which minimize the pair energy in Eq.
(9). This is evident from the behavior of the polarization
tensor, described below. These minimum pair energies
are

oy =[(a,+a, P +k?]"2, (10)

min

where s and s’ are related by the photon polarization:

s +1 for left-circular polarization ,
s'= {s for longitudinal polarization , (11
s —1 for right-circular polarization .

The electron and positron momenta at the minimum en-
ergy are a.k /(a;+ag) and ayk /(a;+ag), and their ve-
locities, p /e, and (k —p) /e, _; . are equal. At the o33,
values, both real and imaginary parts of Hgv( k,w) devel-
op singularities. In a degenerate electron gas, however,
the Pauli principle inhibits pair production when the
electron momentum is less than the Fermi momentum for
a particular Landau level [the created positron has no
such restriction, and can be placed on any Landau level
that satisfies Eq. (11)]. Thus, if the minimizing electron
momentum is too low, it will not be possible to form a
pair with energy wS3, and the structure at @S, in the
vacuum polarization tensor is completely canceled by the
particle contribution to the polarization.

The energy of a pair [Eq. (9)] with the electron on the
Fermi surface is qualitatively shown in Fig. 1, which has
been drawn for s =s'=0 and chemical potential ez =1.7.
There are two possible configurations: the w® (k) curve
corresponds to electron momentum +p,, and the »* (k)
curve corresponds to electron momentum —p,. Pair en-
ergies for electron momenta within the Fermi sea lie un-
der the w’ curve; as the electron momentum increases
from —p,; to +p,, the pair energy decreases from w*
and, for small k, reaches a minimum of S, [Eq. (10)] be-
fore increasing again to w’ . For large k, however, the
Fermi sea includes only the area between ' and ®,.
Qualitatively, the same picture prevails for the transverse
modes (s’=s=t1) also. The minimum pair energy %%, is

'min
within the Fermi sea only for k <k .., where
a;+ay
ks,s’E - |Ps - (12)
aS
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Thus, only for k > k .. is pair production possible at oS5,
At k =k, the 0%}° and o}, (k) curves are tangent to
each other.

The derivation of the particle H,w( k,w) is sketched in
the Appendix [1]. For k||B, it has three independent ele-
ments, which at zero temperature are given by

Myko)=—ie S [ L
s © P wep—pk — (w0’ —k?)
(13)
M,(k,0)=1I,,+ill,,
=—ie2ff; — js;{k,_wl):tifik,:)) dp |
s s WE, — P Ho"—k%)tmo,
(14)

where x;, y;, and z, are analytic (k,w)-dependent func-
tions that are listed in the Appendix. This relativistic ex-
pression is similar to that of the more familiar classical
response function [12]. The important features in the
present context are the logarithmic divergences resulting
from the roots of the denominators at the Fermi momen-
tum, which are not found in the vacuum polarization.
The integrals in Egs. (13) and (14) have been evaluated

L
:
E

'S
o

T TR T T T T T T T T T T T
\

||]|||||lll||rl‘vr]vll!|lrvv]’1—lv||||||[vvv/|1 T
’
7

5.5

5.0

4.5

sl bl

e
o

s dag s laa sl

Frequency w/m

il alaea gl

1.0

0.5

™ 3
° o
v-vrvvn\

sl

[T NN ST F T T SN AN T S FU TR F NS TN FE TS NN UE RN

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Wave number k/m

FIG. 1. Wave energy o (in electron rest-mass units) vs wave
number K (in inverse Compton wavelength units). Broken
curves: Wave energy required to create an electron-positron
pair when the electron is on the Fermi surface and originally
moving with momentum p,, either along the direction of the
photon (the “+” curve) or opposite to the photon (the “—”
curve). See Eq. (9). Solid bottom curve is the minimum energy
required for an electron-positron pair. These curves are drawn
for longitudinal polarization with ¢z=1.7 and B =B,, corre-
sponding to a density of n =1.210X 10°® cm~3; curves for other
densities and for circular polarization will look similar. See Eq.
9.
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analytically [1].

As an illustration of the high-frequency behavior of the
polarization tensor, which is qualitatively the same for
both longitudinal and transverse components of Il(k,w),
the real part of 471l,;(k,)/e? is plotted [1] in Fig. 2 for
the case of B =B, and £, =1.7 (corresponding to a densi-
ty n=1.210X10*® c¢m~3 and p,=1.375), and for k=4,
which is greater than the critical ko ,=2.75. Evident in
this figure are the negative-going vacuum peaks at
0% =447, 0kl =529, and 0%2=6.00, as well as the
positive-going peak at w=4.51 which arises from the
denominator of Eq. (13), below. The imaginary part of
Il3;(k,) is plotted in Fig. 3, for the same parameters; it
is characterized by discontinuities at those points where
the real part is divergent.

II1. DISPERSION RELATION

The dispersion relation [Eq. (3)] separates into three
equations, with three different polarizations of the resul-
tant waves. Longitudinally polarized modes come from
the solution of

4l k,0)/0*=1 . (15)

There are also two transverse-mode solutions, which
come from the solutions of

4Tl’ni(k,(l))
— = (16)
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FIG. 2. Vacuum contribution (dashed line) and particle con-
tribution (solid line) to the left-hand side of Eq. (15),
41113k, ) /w* This curve is drawn for B =B, and e;=1.7,
corresponding to one occupied Landau level and a density of
n=1.210X10* cm™3. The wave vector k=4, which is greater
than the critical wave vector kgo; this large value has been
chosen for clarity of display. Total polarization (real part) is the
sum of vacuum and particle parts; a collective mode is predicted
when the sum of these curves equals unity. The transverse po-
larization gives rise to a similar high-frequency graph.
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These transcendental equations can be solved graphically
or numerically for the, in general complex, frequency .

For frequencies >2m (the domain of interest), the
amplitude of the left-hand side of Egs. (15) and (16) is
much smaller than one, except at isolated singularities
(see Fig. 2), since Il(k,w) decreases with increasing w as
»~ 2. The solutions to the dispersion equations are thus
found near these singularities, which are found at the
roots of the denominators of Egs. (13) and (14) when
p =p,. For a given s value there are up to four such root
frequencies ;, corresponding to different signs for the
momentum and energy of the positron and of the elec-
tron: These include two “low” frequencies:
wf'i ,cuf’i' <2m, and two “high” frequencies:
w0}’ >2m. The low frequencies are not considered
here. The high frequencies turn out to be just those given
by Eq. (9), and which are plotted in Fig. 1 for longitudi-
nal modes (therefore we shall henceforth drop the “h”
and refer to these as ©%*). At each root frequency there
is a singularity of the form *In(w—®}*) in the expres-
sion for I(k,w). If the logarithmic peak at w{* points
upwards, the real part of the dispersion relation will have
two solutions nearby, one at slightly less than w®* and
one at slightly greater than ©%*. The imaginary part of
the equation will generally only have one solution, which
then determines the frequency and damping of the disper-
sion solution.

The polarization peaks at both of ©%* point down-
wards at k=0, and so no mode exists there. However,
when k >k, the % peak switches direction and
points upwards. When both real and imaginary parts of
the dispersion equation are satisfied, a pair of propaga-
ting (but damped) modes are obtained, at a frequency
that is very close to the peak frequency,

411'“33(1(,&))/6)2
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FIG. 3. Vacuum contribution (dashed line) and particle con-
tribution (solid line) to the imaginary part of Il;;(k,w). Same
parameters were used as in Fig. 2. Discontinuities in
Im[II(k,w)] correspond to the divergences in Re[Il(k,w)].
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% =ep+[al+(p,—k)*]'2 . an
These are the pair modes that form the subject of this pa-
per.

A new set of pair modes appears with each filled Lan-
dau level, since each level independently gives rise to a
peak in the polarization tensor. In general, if s, levels
are occupied, there are sy longitudinal and left-circularly
polarized pairs and s; —1 right-circularly polarized pairs
of high-frequency solutions near the singularities at each
%’

The variation with k of the group velocity of the pair
mode dw%’ /dk can be seen from Fig. 1: Initially nega-
tive, the group velocity increases with increasing k, goes
through zero, and becomes positive. When k =k ., the
group velocity is just equal to the velocity of an electron
on the Fermi surface; it thereafter continues to increase
with k. The condition for wave propagation can thus
also be expressed as

dk Ep

(18)

The group velocity never exceeds the speed of light, al-
though the phase velocity »%° /k is always superluminal.

Numerically obtained high-frequency solutions to the
dispersion relations for longitudinal and left-circular po-
larizations are shown in Fig. 4 for the same parameters as
in Fig. 1: Electron density 1.210X 10** cm ~*® and B =B,,
for a Fermi energy €;=1.7 and Fermi-surface momen-
tum for the only occupied Landau level p,/m=1.37.
There is no mode with right-circular polarization when
only the lowest Landau level is occupied, because for this
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FIG. 4. Numerically determined dispersion relation (k) for
B =B, and electron density n =1.210X 10’ cm 3. Dashed line
is for left-circularly polarized modes, and solid curve is for lon-
gitudinally polarized modes. Units are the same as for Fig. 1.
Since only one Landau level is occupied, there is no right-
circularly polarized mode.
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polarization the positron in the pair must be created on a
lower Landau level than the electron, and the electron is
already on the lowest possible level. A right-circular po-
larized mode does appear when higher Landau levels are
occupied. Figure 5 illustrates this with a plot of the
dispersion relation for a system with electron density
45%10*° ¢cm™3 and B =B,; here, the Fermi energy is
ep=2.24, and there are three Landau levels occupied,
with Fermi momenta p,/m=2.004, p, /m=1.420, and
p,/m=0.133.

The peaks in the real part of II(k,w) which give rise to
these modes are extremely narrow, limiting frequency
shifting due to damping and indicating a sensitivity to
finite-temperature and collisional effects. The peak width
near the dispersion solution can be estimated by assuming
that, close to a singularity at wq(k),

o+,

(k,0)= A (»)ln R (19)

W Wy

where A (w)>0. This argument breaks down only for k
near k., where the peak is wider than predicted here
(see below). Except in that case, the width Aw=w—w, is
approximately

— w3 /4T A (@)

Ao=2wye (20)
For longitudinal modes, for example,
e’Bo, alo?

(271’)2 (wl_k2)3/2[(w2_k2)_4as2]l/2 ’

Alw)= 2n
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FIG. 5. Numerically determined dispersion relation w(k) for
B =B, and electron density n =4.5X10°** cm 3. Three Landau
levels are occupied, and so several modes are present for each
polarization: Dashed lines are for left circular polarization
(LCP), dotted lines are for right circular polarization, and longi-
tudinal polarization is shown by solid lines. The LCP mode
from the lowest Landau level turns on at k=5.48, ®=6.12 and
so is off the scale.



45 PAIR-CREATION COLLECTIVE MODES IN AN ELECTRON GAS

where
5 ifs=0,
o, =
* 1 otherwise . 22)
A similar expression holds for the transverse modes. Ex-
cept near k., where it diverges as (k —ksys,)_l,
A (w,) /w3 is very small, being proportional to e’B/B,.
The peaks are so narrow that the equation for the center
of the peak, Eq. (17), is effectively the dispersion relation.
Pair modes are strongest for k=k ., because the
mode-generating peak is broadest there and because, as
will be shown, damping is weakest there. The method of
Eq. (19) cannot be used near the critical wave number,
because w, approaches zero and 4 (w) diverges at k ;
instead, both A4 (w) and the argument of the logarithm
are expanded in the small quantity k=k —k; ,, and the
small-x limit is investigated. The result for longitudinal
modes and small but nonzero « is

Ao~— K. (23)

When k=0, the peak width is actually nonzero, but very
small. The width increases with « until it reaches a max-
imum value of

3

A _ e’Bo, 1
©,3,=0.1055 . (24)
6.00
5
g %/

-

REGION A

0.00
0.00
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— (25)
S

after which the peak rapidly narrows. The transverse

peaks exhibit similar behavior.

To study damping of the pair-production modes, the
behavior of the complex vacuum and particle polariza-
tion tensors must be known. We again use the longitudi-
nal mode as an example; the transversely polarized modes
are more complicated, but exhibit no new features. For
the longitudinal polarization, the k-w plane is divided
into different regions, as shown in Fig. 6. The boundaries
to these regions, at which there can be a discontinuous
change in Im[II(k,w)], are the Fermi-surface singularity
frequencies w%* and »**, the minimum pair-creation fre-
quency %5, and the =k line, below which is the low-
frequency regime [1] not considered here.

Region A4 in Fig. 6 is a transparency region, where
both particle and vacuum contributions to Im[II(k,w)]
are zero, since no value of electron momentum gives a
pair energy less than w};;,. There is also zero damping in
region B, where k <k and o <®?’, because the vacuum
peak at w}, is exactly cancelled by the particle contribu-
tion. In region C, partial cancellation occurs:
Im[II(k,w)] is reduced by the particle contribution to
half the vacuum level. In region D, where k >k, ., there
is no cancellation, the created pair lies outside the Fermi

' [REGION E

Low-frequency region

3.00 6.00

Wave number k/m

FIG. 6. Regions of different dispersion in the w-k plane. See text for discussion. The dividing lines are the Fermi surface and
minimum-energy lines shown in Fig. 1. The same parameters are used as for Fig. 1. For this figure, k, =2.75 and w(k,)=3.4.
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surface, and the full (weak) vacuum damping occurs.
This is also true in region E, where there is the full
(strong) vacuum damping. The pair modes discussed
here are located on either side of the boundary line %’
separating regions C and E.

Clearly, damping of the high-frequency modes is due to
the vacuum polarization. It is the nonzero imaginary
part of the vacuum-polarization tensor above the pair-
production threshold %3, which prevents the dispersion
equation from having an undamped solution, with a pure-
ly real w. The particle contribution partially cancels the
vacuum contribution above w%*, by eliminating one of
two possible channels of the pair-creation process, but
below w%* the particle contribution is zero, and nowhere
in the mode-propagation region can the particles elimi-
nate the vacuum damping. Thus, the damping mecha-
nism is just what it would have been in the absence of the
particles, although it is reduced: it is pair production,
which converts wave energy into a flux of particles. (This
is analogous to the description of low-frequency Landau
damping as a decay into electron-hole pairs [12].)

The damping coefficient ¥ = —Im(w) of the modes can
be calculated as
_ 3 A |
Y=om E w2 N (26)

where 0 =1 for Aw>0 and 0 =2 for Aw<0. It is given,
for longitudinal polarization, by
. oo,m?? g

Ys— W, FC

asz

w4 —k?

[1—4a?/(0* —KkH)]'?
1—3a? /(0% —k?)

27

An order-of-magnitude estimate of the damping can be
found from the limit of Eq. (27) for small p; and k :

mZ2e’Bo
2
2a/B,

_k

> (28)

Vs(ps <<ag)=

From this, it can be readily seen that y, is small for a
large range of k values, compared to % ~2¢j.

A plot of yy(k) is given in Fig. 7 for the same parame-
ters as in Fig. 5. Damping is close to zero at kK, in-
creases rapidly to a maximum value roughly proportional
to the Fermi momentum p,, and then slowly decreases.
At its maximum, the decay time is about 10~ '® sec in Fig.
7, or about 10* times the real part of 0 .

Additional damping would be expected from tempera-
ture and collisional effects not included in the model dis-
cussed here. These effects could prevent the propagation
of the mode if the temperature or collisional-damping
coefficient is comparable to or greater than the peak
width Aw.

Another way of assessing the importance of the pair
modes is by evaluating their contribution to the density
and current fluctuations. The contribution to the density
fluctuations can be estimated by considering the f-sum
rule, which requires that the integral of the imaginary
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part of the reciprocal of the dielectric function be con-
stant:

1
elk,w)

(In the nonrelativistic limit, this constant is (7/2)o},
where ©, =(4mne?/m)'/? is the plasma frequency.] The
portion which the integral on the right-hand of Eq. (29)
picks up by integration through the pair-mode pole
[where €(k,w) has a zero] can be estimated through sim-
ple algebra to be of the order wyAw. Using the results of
Eq. (24), the maximum value of the right-hand integral
can be found for longitudinal polarization, when only the
s=0 level is occupied; the maximum pair-mode contribu-
tion to the sum-rule integration is then

fowd(o o Im =const . (29)

2
e3B

ma

1
max fpair dwwlme(k’w) }=0.036 (30)

modes

By contrast, the plasma frequency is limited when only
the lowest level is occupied to be

2
w0} <2.83°(eB)*? . &30

The pair-mode contribution of Eq. (30) is small compared
to this maximum wf, value, except for ultrastrong mag-
netic fields (B > B, /e*). The pair-mode contribution is
not negligible, however, especially at densities below the
maximum level-filling density.

The formula (20) for Aw has the nonanalytic exponen-
tial dependence on A4 characteri}\s{tig of the Cooper
phenomenon [3,4] where Aw~e °7; here, the density
of states per unit volume at the Fermi surface, N, is
represented by eB, as is typical in a highly degenerate
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FIG. 7. Damping, in units of mc?/%=7.76X10% sec™ ', for
the same case as Fig. 5. One curve arises from each occupied
Landau level in the system, as noted.
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magnetized system, while the average interaction
strength V is of order e?/m?, with m ~! playing the role
of the “range” of the virtual electron-positron pair in-
teraction. This explains why Aw, the strength of the exci-
tation, becomes extremely small when B deviates substan-
tially from the ultrastrong value B,/e’=~604X10" G.
The situation, however, is quite different in the vicinity of
the critical point where k=k . and o~ob, where
A(w) has a (0> —0%52) 7172 singularity. In this case the
width reaches a maximum, given by Eq. (24), which
avoids the drastic collapse of the excitation strength away
from k.

IV. VALIDITY

The theory presented here is limited primarily by three
assumptions. First, as has been seen, the assumption of
low temperature places a lower limit on the electron den-
sity; if only the zero Landau level is occupied, this re-
striction can be expressed as

n>4.6X102(kT)*"? cm™3 (32)

with kT in eV. Higher Landau levels, with smaller Fermi
momenta, will be even more susceptible to thermal dis-
tortions. However, the most severe restriction on the
temperature comes from the condition that temperature
broadening may not be much larger than the peak width
Aw.

The density is limited by the assumption of weak inter-
particle interaction. For the random-phase approxima-
tion (RPA) to be valid, the correlation energy should be
much less than the Fermi kinetic energy; this places a
corresponding condition on the conventional coupling
parameter

re=(3/47n)"3/ay , (33)

where ap is the Bohr radius. While for a system of many
filled levels the condition r, <<1 is appropriate, for a
strongly magnetized system a stricter condition applies.
If only the lowest Landau level is occupied, then it must
be true that [from Eq. (8)]

r,>1.491/ag=1.49¢*/(B /B,)"?, 34)

where the magnetic length is / =1/V'eB. If in addition
the system is nonrelativistic (p, <<m), the weak-coupling
condition is

2/5
e4

1.62(1 5=1.
r,<1.62(1/ap) 62 B/,

(35a)

This nonrelativistic condition applies to all but ultramag-
netized systems (B >5X10B,); for these, the minimum
weak-coupling Fermi momentum p,>>m, and the ul-
trarelativistic condition

o2 172

B/B,

2.17 _
r, < (6_2)17(1/03)_2.17

(35b)

must be used. The various domains of relativistic correc-
tions and degree of coupling for electrons on the Fermi
surface are shown in Fig. 8 as a function of magnetic field
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and coupling parameter r,, together with the boundary of
the region where only the zero Landau level is occupied,
Eq. (34). If the density is higher than Eq. (8), so that
more levels are occupied, Egs. (35) are automatically
satisfied (assuming that r, <1), and the lowest level is cer-
tainly weakly coupled. The strongest coupling is experi-
enced by the highest Landau levels, which even in a dense
system can have near-zero parallel momentum p,. One
should note, however, that the condition of low correla-
tion energy is only a requirement for the validity of the
RPA, and not for the existence of the pair modes.
Indeed, the pair binding should be enhanced in higher-
order perturbation calculations, thus making the pair
modes actually more robust [4].

One expects the breakdown of the RPA to be nonuni-
form, and to occur first for short wavelengths. We have
assumed the perturbation wavelength to be no shorter
than the interparticle separation; this should limit the
mode wave number to k <n'/3. For large wave numbers,
the mode probably broadens and damps by higher-order
processes; the damping y is expected to increase with k
beyond the maximum value predicted by Eq. (27). The
limitation on k does not preclude the appearance of the
pair-production mode, since k can be as small as the criti-
cal wave number, K; ., and ks’ ¢ can be nearly zero for a
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FIG. 8. Degree of coupling and importance of relativity in
the dynamics of Fermi-surface electrons, as a function of mag-
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mean interparticle separation divided by the Bohr radius.
The three solid lines are Eq. (35a), below which the RPA
weak-coupling approximation is good; Eq. (34), above which
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=1.6765 e2/(B/B,)!3, below which the Fermi-surface elec-
trons are relativistic. Also shown as dashed horizontal lines are
the r; values solving Eq. (32) for temperatures of 0.1, 1.0, 10,
and 100 eV; the zero-temperature approximation for the zero
Landau level holds good only below these lines (for higher lev-
els, the temperature condition is stricter).
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sparsely filled level. Still, this limitation does mean that
the mode is most likely to be seen on the highest Landau
level.

V. CONCLUSIONS

In summary, we have seen that pair-production modes
with frequencies

0*(k)=~ep+[ak+(p, —k)?]'2 (36)

can propagate along the magnetic field in an electron gas,
if the parallel wave vector satisfies k >k . The modes
are damped by pair creation, but within the limits of the
present theory (the RPA), damping is not significant.
The pair-production mode can have any of the three po-
larizations permitted by the symmetry of the problem
(subject to momentum-conservation requirements).

The critical wave number k , defined in Eq. (12), is
the point above which the mode group velocity exceeds
the velocity of an electron on the Fermi surface of Lan-
dau level s, and is also the lowest mode momentum for
which an electron-positron pair can be created with the
minimizing energy %S, [see Eq. (10)]. When k =k, the
electron and positron of a created pair would have their
greatest degree of interaction: they would be stationary
with respect to each other.

Interaction between the virtual electron and positron
in the pair is enhanced by the Cooper phenomenon,
where the background degenerate electron gas reduces
the momentum space available for the electron. This sit-
uation resembles a Mahan exciton [4], where an electron
emerges above the Fermi surface from a deep-lying core
state, and binds to the hole that was left behind. In
Mahan’s calculation [4], a logarithmic singularity ap-
pears in the lowest-order evaluation of II(k,®); however,
summation of higher-order ladder diagrams leads to the
replacement of the logarithmic singularity by an inverse-
power singularity in the vicinity of the mode frequency.
One may speculate about the possibility of a similar
phenomenon in the present case, as a result of enhance-
ments to the pair binding from post-RPA-type contribu-
tions to the polarization which have been ignored in the
present calculations.

The results presented here include the presence of a
strong background magnetic field, but pair modes similar
to those described here might also be found in an unmag-
netized system. The very weak effective interaction de-
scribed here between the virtual electron and positron or-
dinarily mandates a very high density of states on the
Fermi surface, to avoid an exponentially low excitation
strength; and since the density of states is proportional to
B, an ultrastrong field strength, of order e‘ch, is nor-
mally required. The situation is different for k ~k; g,
however, where a strong and possibly even observable
effect can exist for lower magnetic-field values. As the
density is increased or the magnetic field is decreased, the
mode wavelength for lower Landau levels becomes small-
er than the interparticle spacing, and the mode probably
vanishes; at the same time, however, higher Landau lev-
els are populated, and the mode reappears from the
higher levels. If not for the short-wavelength limitations

on the theory, the discrete modes of Figs. 4 and 5 would
increase in number and decrease in separation at smaller
magnetic fields, perhaps merging into a propagation
band. In the magnetic-field-free situation, the kinematics
of electron-positron pair creation with a relativistic Fer-
mi sphere of electrons is similar to what has been de-
scribed here, as is demonstrated by the structure of the
relativistic (zero-field) II(k,) [13]. The density of states
on the Fermi surface is then of order p2, and can reach a
sufficiently high value for n~(e?)™3?m ~3, about 10°*
cm 3, which is not excessively high. The real question is
whether the logarithmic singularity generating the mode
survives for high wave numbers in the three-dimensional
case, as it does in the one-dimensional system. This can-
not be determined without further work.

The phenomenon we describe here, in addition to gen-
erating a mode of collective oscillation, affects the struc-
ture of the polarization tensor II,,(k,®), and so leads to
other physical effects. In particular, the optical proper-
ties of a relativistic, magnetized electron gas would be
strongly modified in the vicinity of the mode frequency
through the appearance of a sharp, magnetic-field- and
density-dependent absorption-emission edge. This may
prove to be the most promising observational conse-
quence of the phenomenon.
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APPENDIX: BRIEF DERIVATION
OF THE POLARIZATION TENSOR

A first-order quantum-relativistic kinetic theory [1,5]
was used to derive an expression for the polarization ten-
sor H#V(k,a)). This derivation is sketched here; the de-
tails have been given elsewhere [1]. The notation used
here is the same as in the text: The Minkowskian metric
tensor has the signature (1,—1,—1,—1), and the Ein-
stein summation convention is used. An electromagnetic
perturbation to the system is represented by the four-
potential 4,, and the system response is given by the
Wigner distribution function F, 5 (%, p), defined in terms of
the field operators of the system (the subscript indices on
F;; are spinor-matrix indices). Fortunately, it is not
necessary to find the complete matrix F;; to determine
the perturbed current and so the polarization tensor; the
current is given directly by the integral of the vector dis-
tribution function f,(x,p)=Tr[y F;(x,p)].

The vector distribution function is obtained from the
linearized quantum Vlasov equation, which is Fourier
transformed, assuming that the equilibrium distributions
are uniform in space. In the electron rest frame, where
there is no background electric field and the background
magnetic field is in the €; direction, the only nonzero
components of the field tensor are F,; = —F,=B, and
the vector distribution function obeys the differential
equation

2p Lf, +2eF,, f*=L%,, +2ap, , (A1)
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where

Lr=ikeeFon— (a2)

dp
and a and a, are terms from the spinor-space expansion
J
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of the Vlasov equation that depend on the equilibrium
distribution functions and are linearly dependent on A e
The equilibrium distribution functions for a uniform
highly magnetized electron gas are

—a2p2 8(po—¢,0) SFo(—1) 8(po—e,)
fo\p=-20e e | L R0y 5 LZIE PPOTSe (ot —L, 223 |, (A3)
(2m) €p0 "0 4 Zi & P TMyg
; —a2p2 8(po—e,g) SF(—1) 8(po—gy)
fho= o | L RS 5 ISR R Sy oatpt)+ L, 205 )] (Ad
(2m) €po om0 M4l S & TR
I
where B=(kT)~!, A2=1/leB|, L,(x) is the Laguerre po- M(ko)=—icS f x, iy, 4
lynomial, u is the chemical potential, and the four-vector = . (eps —w/2)o— p“k“ to,
P*=(p;,0,0,—p,y). At zero temperature, of course, each
term in the sums becomes_proportional to. O e,—¢,,),. (A6)
where ¢ is the Fermi energy. where
The differential equation for f s Eq. (A1), can be
solved by a relativistic analog of the nonrelativistic __le_ 4+ e _k, 0
“integral-over-unperturbed-orbits” procedure. The re- *s 2m @EpsSs 2m k |p3S; 2 D, isewD; , (A7)
sulting integral expression for f, is not easily evaluated, 2 as
but it may be further integrated to obtain the perturbed _le D3 + kD9 se’ b, s
current and so, by identifying coefficients of 4, the po- s 2 (@D 5:)F p? Pl ap, Ss | (A%)
larization tensor [cf. Eq. (1)]. The magnetic field actually
simplifies the procedure, for although an integrated ex- __ e S — e D — k
pression for f, can be easily found for the unmagnetized % 2m CEpsOs mP3 [P3%s 2 Se | (A9)

plasma, carrying out the integrations to obtain the un-
magnetized j, from this expression is quite difficult.

If only propagation parallel to the magnetic field is
considered, there are only three independent elements of
the polarization tensor, which can be taken to be
II33(k,0) and I1.(k,0)=1I1,(k,0)%ill,,(k,w). These are
given by the Vlasov theory outlined here as

Zs

H33(k,co)=—ie2f( dp, (A9

eps—co/Z)a)—p”k"

and S;, D, and DX, signify the sum (S) and difference
(D) of the sth term in the Landau-level expansion of the
equilibrium distribution functions:

SEf(O)(P+k/2)+f(o)(P_k/2) , (A10)
D=f(p—k/2)—fo(p+k/2),
D5 =150/ p —k/2)= fKo(p +k/2) . (A11)

The expressions of Egs. (A5) and (A6) are identical to
Egs. (13) and (14) in the main text.

“Present address: Radiation Hydrodynamics Branch,
Code 4720, Naval Research Laboratory, Washington, DC
20375.

[1] Peter Pulsifer, Ph.D. dissertation, Boston College (1987);
P. Pulsifer and G. Kalman, Bull. Am. Phys. Soc. 32, 1726
(1987).

[2] R. A. Cover and G. Kalman, Phys. Rev. Lett. 33, 1113
(1974).

[3]1 H. A. Bethe and J. Goldstone, Proc. R. Soc. London, Ser.
A 238, 551 (1957).

[4] G. D. Mahan, Phys. Rev. 152, 882 (1967); 163, 612 (1967).

[5] Horatio D. Sivak, Ann. Phys. (N.Y.) 159, 351 (1985).

[6] H. Perez-Rojas and A. E. Shabad, Ann. Phys. (N.Y.) 138,
1(1982).

[7] P. Bakshi, R. Cover, and G. Kalman, Phys. Rev. D 14,
2532 (1976).
[8] R. Cover, G. Kalman, and P. Bakshi, Phys. Rev. D 20,
3015 (1979).
[9] B. Jancovici, Nuovo Cimento 25, 428 (1962).
[10] A. E. Delsante and N. E. Frankel, Ann. Phys. (N.Y.) 125,
135 (1980).
[11] V. Kowalenko, N. E. Frankel, and K. C. Hines, Phys.
Rep. 126, 109 (1985).
[12] D. Pines and P. Nozieres, The Theory of Quantum Liquids
(Benjamin, New York, 1966).
[13] G. Kalman, Bull. Am. Phys. Soc. 12, 777 (1967); B. Prasad
and G. Kalman, ibid. 13, 309 (1968); G. Kalman and B.
Prasad, Bull. Am. Astron. Soc. 1, 195 (1969).



///////

////




