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Freezing transition of two-dimensional Lennard-Jones fluids
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We have investigated, employing the techniques of molecular-dynamics computer simulation, the on-
set of the freezing region of a two-dimensional fluid interacting with a Lennard-Jones potential. We
have studied the pair-distribution function g () and its Fourier transform S(q) for unique, qualitative,
and quantitative structural characteristics associated with the onset of freezing and for the validity of a
universal freezing criterion. We conclude that such a criterion exists, but its value is sensitive to even

slight changes in density and temperature.

PACS number(s): 68.15.+¢, 61.20.Ja, 64.70.Pf

I. INTRODUCTION

Molecular-dynamics (MD) simulation has been a very
useful tool in the study of atomic properties of fluids. In
this paper, we wish to study the onset of the glass transi-
tion in two-dimensional (2D) Lennard-Jones (LJ) fluids
through an investigation of the salient features of the
pair-distribution function (PDF) and of the structure fac-
tor.

A freezing criterion based on the structural properties
of three-dimensional dense fluids has been formulated [1]
and investigated [2]. The criterion is that the crystalliza-
tion should occur when S(q,), the first maximum of the
structure factor, reaches the value 2.85. Wendt and
Abraham [3] defined an empirical parameter R, which is
the ratio of the first minimum g, to the first maximum
Zmax Of the PDF to characterize the onset of the amor-
phous state. By employing Monte Carlo methods to
study the PDF of Lennard-Jones fluids, they stated the
criteria that the onset of freezing occurs when R is ap-
proximately equal to 0.14.

In two dimensions, equivalent freezing criteria have
not been adequately tested. Caillol et al. [4], comparing
the structure factor of the hard disk and of the one-
component plasma (OCP) with a Inr potential at their
respective freezing transitions, concluded that ‘““any clas-
sical 2D fluid with central pair interaction freezes when
S(q,) is approximately 4.4, provided of course the transi-
tion is of first order.” Gann et al. [5] studied 2D OCP
with a 1/r potential and, though they could not obtain a
good estimate of S(q,) at freezing, suggested that it is
larger than the 3D value. A MD study of 2D fluids with
an inverse-twelfth-power repulsive interaction [6],
showed a very rapid growth of S(q,) close to freezing
and a value of around 5.0 at the onset of freezing.

However, these studies involve repulsive potentials or a
OCP in which one parameter alone determines the transi-
tion. The onset of the glass-transition region as a func-
tion of both temperature and density has not received
significant attention. In this paper we report the results

45

of a two-dimensional MD simulation of the Lennard-
Jones (6-12 type) system near the freezing transition. Sec-
tion II describes some details of the MD method and the
thermodynamic states studied while Sec. III contains dis-
cussions of the pair-distribution function g(r) and its
Fourier transform, the structure factor S(q). Existence
of unique or distinctive structural features associated
with the liquid-to-glass transition region is then dis-
cussed. Concluding remarks are found in Sec. IV.

II. COMPUTATIONAL METHODS

MD calculations were performed for a system with 128
particles of mass m interacting with the Lennard-Jones
pair potential

u(r)¥4e[(a/r)12—(0/r)6] . (1)

The particles were confined to a square box of length
L =V'(128/n*)o, where n*=ng? is the dimensionless
density. The potential was cut off at half the box length,
which, for the densities under consideration, was approx-
imately 6.50 and periodic boundary conditions imposed
in the usual fashion. Other dimensionless units that are
being used in this paper are distance r*=r /o, wave vec-
tor ¢*=qo, time t*=t/7, where *=mo?/48¢, and
temperature T* =k T /e. Newton’s equations of motion
were integrated using Verlet’s algorithm. After establish-
ing an equilibrium configuration, a MD run was carried
out for 6000 time steps with Az*=0.032 that corre-
sponds to about 10~ '* sec using argon LJ parameters.
r(t) for these time steps were stored to facilitate the cal-
culation of g (7). One run with N =242 was made to see
the influence of the number of particles on the pair-
distribution function and the conclusion was that the
effect was negligible.

The thermodynamic states investigated were all close
to the freezing line as indicated in Fig. 1. This phase dia-
gram, which clearly indicates a first-order transition, was
obtained by Abraham [7]. In the first set, an isotherm
defined by T*=0.48 with densities n*=0.75, 0.78, 0.79,
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FIG. 1. Phase diagram for the two-dimensional Lennard- 4 f \J/
Jones system. The crosses indicate the (n*,T*) states (0.75, }
0.48) and (0.81, 0.58). ° 08 s 22 29 a6 43 50 57 64

and 0.80 was chosen, while in the second set an isochore
of n*=0.81 with temperatures of T*=0.58 and 0.59 was
chosen. Just for reference, the (n*,T*) states (0.75, 0.48)
and (0.81, 0.58) are shown in the figure by crosses.

III. POSITIONAL CORRELATIONS
The calculation of g (r) involves the relation
(n(r))=2marArng(r), (2)

where (n(r)) is the average number of particles in an an-
nulus of radius r and thickness Ar, centered at a given
particle. The step in r used to calculate g (r) was taken to
be 0.0050 and averages carried out over 6000 time steps
with every fourth time step as a new origin.

We have plotted the pair-distribution function for the
isotherm T*=0.48 in Fig. 2. Concentrating on the first
two peaks of the PDF, we note that two smooth peaks ex-
ist at n*=0.75 and as the density increases, the first peak
becomes more pronounced in magnitude and narrower in
width and the first minimum decreases in magnitude.
The second peak starts to show signs of a gradual flatten-
ing out at n*=0.79 and if the density were further in-
creased, an eventual bimodal splitting of the second peak
would have been seen. The splitting of the second peak is
the principal feature of the PDF of amorphous materials.
However, we are interested in looking for the “signature”
that the glass-transition region has been reached. The
start of the flattening of the second peak in g (7) then like-
ly indicates the freezing transition, which in our case is
definitely below n*=0.80 and probably closer to 0.79.
Applying then the Wendt and Abraham quantitative cri-
teria for identifying the onset of freezing, we find that

R =(gmin/8max)=0.07 . (3)

In Fig. 3, we have plotted the PDF at a constant densi-
ty of 0.81 at two different temperatures of 0.59 and 0.58.
Again it is seen that the second peak is smooth at the

FIG. 2. Pair-distribution function along the isotherm
T*=0.48 at various densities. The curves are displaced for
clarity.

higher temperature and the flattening is just starting to
show at the lower temperature. The value of R is again
approximately 0.07.

It is also instructive to look at the structure factor to
understand the phenomena. The structure factor is the
Fourier transform of the PDF, which in two dimensions
can be written as

S(g)=1+27n foerO(qr)[g(r)—l]dr , )

where J|, is the Bessel function of order 0. g(r) obtained
through MD calculations is valid only up to half the box
length and so it was extrapolated further by an empirical
formula, Ae ~ *"sin(fBr). We also calculated S (q) through
zero-time value of the intermediate scattering function
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FIG. 3. Pair-distribution
n*=0.81 at two temperatures.
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FIG. 4. Structure factor along the isotherm T*=0.48 at
various densities. The curves are displaced for clarity.

F(q,t). The two values were in reasonably close agree-
ment, but since the ¢ values allowed in MD calculations
are fixed and discrete, we have used Eq. (4) to determine
S(qo)- In Figs. 4 and 5 we have plotted the structure fac-
tor S (g) corresponding to the states in Figs. 2 and 3. Itis
to be noted that the height of the first peak of S'(g) grows
rapidly with the development of a prominent split second
peak as the freezing transition is neared. It is interesting
that S(q) reveals greater structure than is apparent in
g(r). For example, we can see a clear splitting of the
second peak of S(g) at n*=0.79 while the corresponding
g (r) barely shows the start of a flattening of its second
peak. The height of the first peak, S(g,) in the structure
factor at the onset of freezing from both the figures is ap-
proximately 4.6.

We have also determined the diffusion coefficient from
the slope of the mean-squared displacement {r%(¢)) at
long times. It is known that the velocity-correlation
function in two-dimensions exhibits a 1/¢ behavior for
long times [8] and hence the diffusion coefficient, as
defined by the Green-Kubo integral, does not exist.
However, {r%(t)) shows a well-established linear behav-
jor at long times. The diffusion coefficient D*=D7/0?
did not fall abruptly to zero as the transition was crossed.
Its value was found to be still quite appreciable around
the transition density and dropped from 0.0040 to 0.0020
as the density increased from n*=0.78 to 0.80. Similar
behavior was noted with inverse-twelfth-power repulsive
potential [6].

FIG. 5. Structure factor along the isochore n*=0.81 at two
temperatures.

IV. CONCLUSIONS

We have investigated behavior of the pair-distribution
function and the structure factor of a two-dimensional
Lennard-Jones system to look for distinctive structural
features associated with the onset of freezing. Based on
our analysis, the “signatures” that the glass transition has
been reached are the following: (a) the amplitude of the
main peak, S(q,) of the structure factor is approximately
4.6, (b) the parameter R =g .. /8., equals approximate-
ly 0.07, (c) the first appearance of a shoulder in the
second peak of the pair-distribution function, and (d) the
first appearance of the splitting of the second peak of the
structure factor. Of course, as we have seen, any one of
the above implies all the others. It is a little difficult to
state categorically whether a ‘“‘universal” freezing cri-
terion based on the amplitude of the main peak of the
structure factor exists for two-dimensional systems as it
seems to exist for three-dimensional systems. The rapid
increase of the value of the main peak and its sensitivity
to variations in density and temperature near the transi-
tion region do not readily yield precise numbers for the
freezing criteria. In our case, S(g,) increases from 3.8 to
4.8 as the density goes from 0.78 to 0.80, an increase of
27%. Similar rapid increases have been noted in other
two-dimensional systems [6]. However, when we consid-
er our work and those of others involving other two-
dimensional potentials and systems, a value of 4.7 for
S(qy) as the universal freezing criterion for a two-
dimensional classical fluid is most likely.
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