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Modulated structures in tilted chiral smectic films
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The structure of the modulated phases that can occur in systems like chiral tilted smectic films and
monolayers of tilted amphiphiles is studied numerically within the mean-field approximation. Two
types of modulated phases, uniaxial and hexagonal, are considered. The uniaxial phase is composed
of an array of nontopological line defects and is therefore different from modulated structures occur-
ring near ordinary commensurate-incommensurate phase transitions. The hexagonal phase displays
point defects and topological x line defects. We discuss the energetics of these structures and the
nature of the modulated-smectic-C phase transition.

PACS number(s): 64.70.Md, 61.30.Jf, 61.30.Gd, 68.10.—m

I. INTRODUCTION

Freely suspended thin films of tilted smectic liquid
crystals have been studied extensively in recent years
[1—6]. This system provides an easily accessible realiza-
tion of two-dimensional XY-type models. The free films
are prepared by drawing liquid-crystal material across
an opening in a thin Hat support. Stable films as thin as
two molecular layers can be obtained in this way, with the
smectic layers parallel to the surface of the resulting film.
In a series of experiments, two-dimensional melting, the
existence of a hexatic phase [3], and bond-orientational
order in the smectic-I phase [4] have been studied in these
systems.

When the liquid crystal is composed of a nonracemic
mixture of chiral molecules, a tilted smectic phase be-
comes ferroelectric [7], with polarization vector P ori-
ented parallel to the smectic layers and perpendicular
to the local director n. In describing the various struc-
tures and phase transitions in these systems, one may
use the polarization P= (P, P&) as an order parameter;
we assume the smectic layers to be parallel to the z-y
plane. It has been argued [8—15] that modulated struc-
tures may be induced by a P V . P term which exists in
the Landau-Ginzburg (LG) model associated with this
system. Experimental indications for the existence of
such structures have recently been reported [6].

We study these modulated structures in the mean-
field approximation, using the following LG model corre-
sponding to a chiral smectic-C layer:

d r 'H[P],

where the free-energy density is [16]

Vt' = a(1 —A)(V'. P) + a(l+ A)(V' x P)
+uP —PP V . P + 7P".

As usual we assume that only the Landau coefBcient o.

depends on temperature T. Some aspects of the phase
diagram associated with this model have been studied
previously. As shown in Fig. 1, the model exhibits a
smectic-A (Sm-A) phase with P=O, a smectic-C (Sm-C)
phase with uniform P, and modulated phases in which P
varies with position, forming a periodic structure. The
LG model of (1) and ('2) also describes phase transitions
in monolayers of tilted amphiphiles at the air-water in-
terface [17—19] and (with 4 = 0) in certain ferroelectric
crystals.
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FIG. 1. Phase diagram in the n-A plane for the model of
Eqs. (1) and (2) with 4 = 0; bere A = p/~pa. The smectic-A
(Sm-A), smectic-C (Sm-C), and modulated phases are stable
in the regions indicated; all transitions are second order. The
model is unstable for A ) 4 (see Ref. [15]). The modulated
state in the figure is the uniaxial state. For large E ) 0, the
hexagonal state described in Sec. III is the favored modulated
state in part of the phase diagram, but details of the uniaxial-
hexagonal and modulated-commensurate transitions have not
been worked out in this case.
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The transition from the smectic-A phase to the modu-
lated structure has been studied in detail [8—10,15]. It
has been argued [10,15] that this is a special kind of
second-order transition, of neither instability nor nucle-
ation type. The modulated structure in the model (1)-(2)
is induced (driven) by the P2V . P term which is cu-
bic in the order parameter. In contrast, the modulated
structure in typical instability transitions is induced by
a quadratic term, either a Lifshitz invariant of the form
(P BP&/Bz —P&BP /Oz) or a term such as —(7'rl)~ (for
a system with a one-component order parameter). The
order parameter vanishes as (T, —T)~~2 in all three cases,
but the different form of the driving term gives the Sm-
A-modulated transition and the modulated phase several
features quite different from those in typical instability
transitions. (1) The wave number q vanishes at the tran-
sition. (2) The harmonic content of the modulated struc-
ture is nontrivial even close to the transition point T, ;

explicitly, the ratios P(nq)/P(q), n ) 1, of the ampli-
tudes of the higher harmonics to that of the fundamen-
tal remain finite at the transition. (3) The modulated
structure near T, is universal, and in particular it does
not depend on the higher-order terms in the LG model
(though these terms, such as bP, change the structure
at low temperatures).

To reduce the number of parameters, and to demon-
strate the universal character, we scale the variables for
the polarization and the position as P = g—n/p o and
r = g—a/n x; the scaled energy density '8 = 'Rp/n is

'M = (1 —A)(V o) + (1+A)(V x o)2
—Acr V-a+02 2 4

where A = P/~pa. The Euler-Lagrange equation in the
ordered phase is

(1 —A)V(V . rr) —(1+h)V x (V x o.)
+ o. —A[V(o'-/2) —o (V . o.)] —2o'-o. = 0 . (4)

Note that the scaled density is independent of temper-
ature, and hence the modulated structure is universal,
depending on the two parameters A and A.

The structure of the modulated phase has been con-
sidered previously. It has been suggested [9,12—14] that
this phase is either uniaxial or hexagonal depending on
the parameter A. The uniaxial structure corresponding
to the model (1)-(2) with A = 0 has been studied numer-
ically in detail [15] and shown to be unlike other incom-
mensurate structures. Furthermore, some general consid-
erations concerning the nature of the modulated phase in
the vicinity of the transition to the smectic-C (commen-
surate) phase have been presented [12—14]. In these anal-
yses it was assumed that the modulated structure is ob-
tained by condensation of walls which have negative en-
ergy, as in ordinary commensurate-incommensurate (CI)
transitions. Several structures have been suggested, but
the precise nature of the defects (e.g. , whether they are
topological objects) has not been explicitly demonstrated
for the model (1)-(2); on the other hand, our previous
numerial studies [15] demonstrated that the defects are
nontopological in the uniaxial phase.

In the present paper, the modulated structures asso-

ciated with the Hamiltonian (1)-(2) are studied numeri-
cally within the mean-field approximation. We also con-
sider in some detail the nature of the transition from the
modulated phases to the commensurate (Sm-C) phase,
and study the scaling properties of the modulated struc-
ture near the transition. Our main result is that in the
vicinity of the transition to the smectic-C phase, the uni-
axial phase is composed of an array of nontopological
line defects, while the hexagonal phase displays point de-
fects and topological x line defects. The energetics of
these structures is also discussed. Section II describes
the uniaxial phase and the transition to the commensu-
rate phase, while Sec. III provides a similar analysis for
the hexagonal phase. These are idealized structures, as
we neglect macroscopic energy considerations, boundary
effects, and the effects of charged impurities; we neglect
also fiuctuations (which are especially import, ant for the
uniaxial phase, as discussed at the end of Sec. II).

II. UNIAXIAL STRUCTURE

The density of Eq. (3) is rotationally and translation-
ally invariant in the z-y plane, We consider uniaxial solu-
tions modulated in the y direction, with o and o„ func-
tions of y alone. Structures of period L = 2z /q were ob-
tained by solving the Euler-Lagrange equations (4); the
corresponding free energy was calculated and optimized
with respect to the wave number q. Figure 2 shows the
amplitude and the phase of the uniaxial structure for sev-
eral values of A, at A = 0, and Fig. 3 shows the vector
field at A = 3. These structures are ferroelectric, and
macroscopic energy considerations and boundary condi-
tions [12] may require domain walls.

In the following, we study the structure near the
commensurate-incommensurate transition, which takes
place at A = 2, in more detail. As can be seen from
Fig. 2, as A ~ 2 the amplitude of the order parameter
takes on its commensurate value cr, except in a narrow re-
gion (the core), in which the amplitude drops well below
a, ; in the same limit, the phase changes rapidly in the
core, reaching values +go, and then exhibits much slower
(algebraic) variation outside the core. Some aspects of
this behavior are similar to incommensurate structures
near conventional second-order CI transitions (which are
usually nucleation transitions). But there are major dif-

ferences. (i) In ordinary CI t, ransitions the defects are
topological, but here they are nontopological (since the
phase P has the same asymptotic value on both sides of
the core); therefore the structure can unwind and deform
continuously to restore the commensurate state. (ii) The
wave number q vanishes as the CI transition at A = 2 is
approached, not as the typical I/In(A —2) but rather lin-

early, as A —2. (iii) Even near the CI transition, there are
no regions where the order parameter is nearly commen-
surate: the approach of the phase to its limiting value is
algebraic rather than exponential as in a typical incom-
mensurate system.

The algebraic behavior of the phase is understood ana-
lytically as follows. We expand about the commensurate
state as
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FIG. 2. Amplitude o (relative to the commensurate value o, = 1/+2) and phase qI of the universal uniaxial structure as
functions of the scaled position variable II/I, (where I.= 2z/q) for six values of the parameter A; the parameter b, is zero. The
plots are given for the optimal values of the wave number q (1.6653, 0.7642, 0.4846, 0.1437, 0.0642, and 0.0175 for A= 3.9, 3.0,
2.5, 2.1, 2.04, and 2.01, respectively). Note that different scales are used in the frames for the amplitudes.

o (u) = o. + 5.(u),

ov(~) = bv(&)

the linearized Euler-Lagrange equations (for b, = 0) are

b."+(A/+2)b'„—26. = 0,

S„" —(A/&~)S.' = 0.
The solution for 6 has the form

8+ const forA ) 2
b = co+ c~y+ c2y for A = 2

8 + const for A ( 2

where $ and 8 represent sinusoidal and exponential
terms, respectively. A combination of this result with
the obvious solution for bs gives the algebraic behavior
of the phase. The above analysis shows also that pertur-
bations to the commensurate state decay exponentially
only for A ( 2, and so the commensurate state is unsta-
ble for A & 2. Generalizing to b. j 0, we find that the
commensurate state is unstable for A & 2/1 —A. The
same stability limit is obtained when one considers more
general nonuniaxial perturbations, where b~ and b& are
arbitrary functions of both z and y.

Obviously the conventional description of the incom-
mensurate state as negative-energy defects repelling ex-
ponentially is entirely inappropriate for the uniaxial
phase. But since this description is so appealing, it is
natural to seek the counterpart for the uniaxial phase
by examining the details of the energetics. Of course

the interpretation of the terms in the total free energy
is not unique, because different representations of the
free-energy density are possible; the model (1)-(2) is no
different from conventional models in this respect. For
example, if we modify the density of Eq. (3) by making
the replacement
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FIG. 3. Folarization of the uniaxial structure at A = 3
and 6 = 0; the wave number is optimal (q = 0.7642).

Ao (V o) ~ A(o —o, )(V o),

then the differential equations and the total free energy
are unchanged; more generally, because of the periodicity
we can add to the density the divergence of any function
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of a and o„. If the free-energy density of Eq. (3) is used,
the core energy (defined as the integral of the density
over the core region) is positive rather than negative; the
negative contribution to the total energy is a bulk term
which comes from the slow variation of the phase outside
the core. Qn the other hand, with the replacement of
Eq. (8), the core energy is negative. This said, the density
of Eq. (3) seems nonetheless the natural one, and we
use it to construct a qualitative expression for the total
energy (which is independent of the interpretation placed
on the terms).

Using the representation of Eq. (3), we find the follow-
ing expression for the energy per unit length E/L (here
E is the energy of the structure relative to the energy of
the commensurate phase, and L = 2z/q is the period):

I.O

0.8

0.6
b
b 04

0.2—

0

l. 2

E (a —bA) c
j2' (9) 0.8—

where the parameters a, 6, and c are positive. The core
contributes the positive energy a; the negative contribu-
tion —bA comes from the integral of —Ao~ V cr outside the
core; finally, the energy c/L is the elastic energy, corre-
sponding to the variation of the phase 4 outside the core.
Note the difference in the interpretation as compared to
the analysis of conventional incommensurate structures:
here the negative energy comes from the bulk, rather
than the core, while the positive energy comes from the
core, rather than the bulk. We assume that the width of
the core and the phase change Pu are independent of A

as the CI transition is approached; this implies that the
parameters a, b, and c are also independent of A in this
limit, and therefore the CI transition can be analyzed
using Eq. (9) with fixed a, b, and c. A form similar to
Eq. (9) was suggested previously [13,14].

Minimizing the energy per unit length with respect
to L, we find that the CI transition takes place when
(a —bA) = 0; stability analysis [see Ref. [9] and Eq. (7)]
suggests that the transition occurs at A = 2. Therefore
our analysis predicts that L diverges as 1/(A —2), and
that the energy per unit length vanishes as (A —2)2, in
agreement with our numerical results. Figure 4 shows
that indeed the width of the core and the phase change
Po are independent of A (in the limit A ~ 2), supporting
the assumptions made in obtaining Eq. (9).

Since this system may show a hexagonal structure, we

analyzed the linear stability of these uniaxial solutions to
the nonuniaxial perturbations

bo = e'" s (y),

b~w = e sw(y)

these are the forms appropriate for a system translation-
ally invariant in the x direction. Uniaxial solutions of
the differential equations were obtained for a wide range
of A and A values, including regions where the hexag-
onal phase is energetically favored. The eigenvalues of
the Hessian matrix were calculated for arbitrary p and
found to be all positive (apart from those corresponding
to translations and rotations). Hence the uniaxial solu-
tions are locally stable in all cases. As a further check on

04—

0 4—

-0.8—

—l. 2-2
y-L/2

the stability of the uniaxial solutions, we verified that x
domain walls have positive energy.

We conclude this section by commenting on the effect
of thermal fluctuations on the uniaxial structure. It has
been shown [20] that at finite temperatures, when both
phonon and dislocation excitations are present, the cor-
relations of the translational order parameter decay ex-
ponentially with distance in d = 2 dimensions. Although
the uniaxial phase is unstable, and the Bragg peaks as-
sociated with this phase will be replaced by Lorentzian
shapes, vestiges of the uniaxial phase may be observable;
the correlation length can be large, and it may not be
easy experimentally to distinguish true long-range order
from short-range order.

III. HEXAGONAL STRUCTURE

This section considers solutions with hexagonal sym-
metry [12—14]. Since the hexagonal structure is predom-
inantly radial, with small curl, while the uniaxial struc-
ture has large curl, one expects from Eq. (2) that the

FIG. 4. Amplitude 0 (relative to the commensurate value
e, ) and phase P in the core of the uniaxial structure, plotted
as functions of the unscaled distance from the center of the
core, for A = 2.10, 2.07, 2.04, and 2.01, and 6 = 0. It is
evident that the &width of the core and also the maximum
phase $0 are independent of A in the limit A ~ 2.
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FIG. 5. Polarization of the hexagonal structure at A = 2.4
and 6 = -'; the wave number is optimal (q = 0.349). The
filled circles denote the forced nodes of the order parame-
ter; other nodes occur at symmetry points like (x/q, 0) and

(0, 2x/~3q).
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FIG. 6. ir (x, 0) and o„(0,y), the x and y components of
the polarization o' in the hexagonal phase, along the x and

y axes respectively; the polarization is radial (along the axis)
in both cases. x„d and y„d are reduced coordinates defined
by (x„,d, y„z) = q(x, y)/+3x; the boundary of the Wigner-
Seitz cell crosses the x axis at x„q = 1/+3, and the y axis at
y„d = 3. The parameters are the same as in Fig. 5 (which
gives the full vector field).

hexagonal structure is favored at sufficiently large 4 [13,
14]. We have observed numerically the uniaxial to hexag-
onal transition (which is obviously first-order [13, 14])
with increasing 6, but have not constructed the phase
diagram in the A-6 plane. Figure 5 shows a typical
hexagonal structure [21] (at parameter values where it
has lower energy than the uniaxial phase), and Fig. 6
plots the order parameter along two symmetry directions.
The main feature of the structure (which is topologically
identical to that proposed previously [12—14]) is that the
order parameter cr is predominantly radial. The order
parameter vanishes at the center of the hexagon and at
symmetry points on the boundary of the hexagonal cell;
it is tangential on the boundaries, where its magnitude is
markedly reduced. These boundaries are vr line defects;
apart from the diferent topology, they correspond to the
core of the uniaxial phase.

We discuss next the energetics of the hexagonal struc-
ture for A ~ 2; in this limit, we expect the unit cell to
increase in area. We also expect the order parameter to
be radial in the bulk of the cell (with magnitude close
to the commensurate value), and to be small along the
boundary of the cell. Our numerical results are consis-
tent with these assumptions, but have not been obtained
close to the transition. From Eq. (3), such a structure
gives the following energy per unit area:

E' (a' —b'A) c' ln R
Q2 R R2

where a', 6', and c' are positive. The a' term gives the

contribution from the boundary of the hexagonal cell; the
b' term comes from the integral of —Ao V' cr over the
bulk of the cell, and the c' term comes from the elastic
energy. The contribution of the region near r = 0 is
negligible. A form similar to Eq. (11)has been suggested
previously [13,14].

We discuss finally the possibility of a direct transition
from the commensurate state to the hexagonal state. It
is clear that if both terms (a —bA) and (a' —b'A) vanish
at the same value of A then the transition from the com-
mensurate state is to the uniaxial state (since the elastic
term is much larger for the hexagonal state), as discussed
in Sec. II, and in Refs. [13] and [14]. It is not clear, how-
ever, that both terms vanish simultaneously: the defects
in the two cases have diA'erent character; they are topo-
logical vr line defects in the hexagonal case, but have no
topological nature in the uniaxial case. There is no ob-
vious reason that the two terms must vanish at the same
point, and in principle a direct commensurate to hexag-
onal transition is possible if (a' —O'A) vanishes at a A

smaller than does (a —bA).
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