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Diffusion and hydrodynamic dispersion with the lattice Boltzmann method
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A simple reinterpretation of the lattice Boltzmann equation is presented that allows it to track passive
scalar dynamics in grossly irregular geometries without adding any new ingredient to the basic hydro-
dynamic algorithm. The scheme is numerically demonstrated for two representative test cases: diffusion
in two-dimensional fractal media and Taylor hydrodynamic dispersion.
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INTRODUCTION PASSIVE SCALAR DYNAMICS WITH THE LBE

Diffusion and hydrodynamic dispersion in random
media is a subject of wide interdisciplinary concern, rang-
ing from electron transport in disordered media to pollu-
tant dispersion in subterranean flows to fluid injection in
oil reservoirs. This broad range of application motivates
the strong interest in the search for new and eScient nu-
merical methods to solve the dynamics of a passive sca-
lar, i.e., a quantity moving with the fluid flow except for
possibly the effect of diffusion in grossly irregular
geometries.

In this respect, a numerical tool, known as the lattice
Boltzmann equation (LBE), has been proposed recently,
which seems to be particularly well placed to handle the
aforementioned situations. The basic merits of this tech-
nique are an easily handling of complex boundary condi-
tions as well as its ideal amenability to parallel comput-
ing.

The LBE has already been proved effective in the cal-
culation of transport properties of three-dimensional ran-
dom media [1), such as the permeability of a bed of pe-
netrable spheres, as well as in the study of the complex
dynamics of multiphase flows in porus media [2].

In this paper, we show that a simple reinterpretation of
the LBE permits an extension of its range of applicability
ta problems of tracer diffusion and hydrodynamic disper-
sian in grossly irregular geometries. Since the original
hydrodynamic algorithm is left practically untauched,
this opens up a set of important applications which can
be handled within this framework of a unique computa-
tional tool.

The lattice Boltzmann equation is a finite-difference
equation governing the evolution of a discrete set of mean
populations f;(x, t) i =l, b, representing the probability
of finding a particle with speed c; at node I at time t. Al-

though originally derived upon ensemble averaging of an
underlying lattice-gas automaton dynamics, it has been
recognized that LBE can be viewed as a self-standing ki-
netic model, which converges to the Navier-Stokes equa-
tions in the hydrodynamical limit. Formally, the LBE
takes the following from:

f;(x+c;,t+1)—f;(x, t)= g A; (f f' ' )—
where A,. is the scattering matrix mediating collisions
between populations f; and f, and f'q' is the equilibri-
um distribution function expanded up to second-order
terms in the macroscopic flow field in order to retain ad-
jective effects:

2 2
eq2 P D

Gf, '= (p) c c& 5& u u. ~, —
16 2c

where

2 1 —p/12
3 1 —p/24

is a factor due ta the lack of Galilean invariance and p is
the density. The discrete speeds c, are chosen ta belong
to a 4D face-centered hypercube (FCHC), which is
known ta ensure the correct symmetries needed in order
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for Eq. (1) to converge to the Navier-Stokes equations in
the hydrodynamical limit [3]. In the FCHC lattice, each
node is surrounded by 24 neighbors defined by the cyclic
permutation of the quadruplet (a,a, o,o) with a=+1 (see
Fig. 1).

The convergence of Eq. (1) to the Navier-Stokes equa-
tion is best highlighted by projection upon the eigenvec-
tors of the collision matrix 3," [4]. This yields a set of
partial differential equations for the hydrodynamical
fields, i.e., the fluid density p =g;f;, current
J =g;f;c;, and momentum flux tensor

C2
S t3= gf; c; c;tt

— 6 t3
j

which take the following form:

a,p+ag. =o,

a,J.+a.&+ay.,=O, a,P=1,4,
2

a,s.,+ay, +ay. =x(s., sg, ), —
(3)

where S'g=pG(p)[u utt
—(u /4)5 &]. It is readily

checked that in the adiabatic limit (a, «A, ), these equa-
tions reduce to the Navier-Stokes equations with a viscos-
ity v= —

—,'( I/A, —1/2), —2 & A, &0, being the leading
nonzero eigenvalue of the collision matrix A;~.

It should be noted that these equations have been ob-
tained by starting from the difFerential form of Eq. (1).
This implies that their validity is restricted to those situa-
tions where hydrodynamic quantities do not vary appre-
ciably over a few lattice spacing units.

Projection upon three-dimensional space results in the
quenching of the self-transport of the fourth component
of the current, i.e., J4i3J4/Bx4 =0, so that J4 is convected
as a passive scalar by the three-dimensional flow, with a
diffusivity D =v, i.e., at a unit Schmidt number.

Thus, the 24-speed FCHC model can be used to track a
passive scalar in a three-dimensional flow with no further
addition of degrees of freedom. The same reasoning, re-
ported in two dimensions, leads to two passive scalars, J3
and J4, conveyed by the two-dimensional flow
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FIG. 1. Three-dimensional projection of the 4D face-
centered-hypercube. Direct links (1,2,3,4,5,6) carry two
degenerate populations, while diagonal links

(7,8,9,10,11,12,13,14,15,16,17,18) carry only one.

J=(J„J,).
In the following we shall restrict our attention to the

case of a single passive scalar in 2D, so that we impose
J3%0 and J4 =0. The most natural way to impose J4 =0
is to assume the same values for the populations propaga-
ting along opposite directions with respect to x4. It is
readily checked that this leaves us with only 18 distinct
populations, six becoming degenerate (those along thick
links in Fig. 1). The current field is then defined as

18

J = gp;c;J';, a=1,3,

where p, is the number of populations propagating along
the direction c;, i.e., p; =1 for diagonal links and p, =2
for nearest-neighbor communications. From the point of
view of the practical implementation, the collision step
stays exactly the same as for 3D hydrodynamics (with no
tracers), while the streaming phase reduces to 18 propa-
gations along 9 distinct directions. As a result, the in-
clusion of the tracer dynamics requires only few minor
changes in the streaming and reflection sections of the
code.

APPLICATIONS

We will now exhibit two applications, anomalous
diffusion in fractal media and Taylor hydrodynamic
dispersion in a two-dimensional channel, which are par-
ticularly meaningful in terms of proving the validity of
the LBE method as a numerical tracker of passive scalars
in complex geometries. All the numerical simulations
have been performed on the IBM 3090 vector multipro-
cessor at IBM ECSEC.

Diffusion in self-similar structures is known to be
anomalous; the mean-squared displacement from the ori-
gin R of a point particle walking inside the fractal does
not scale linearly with time (as in the case of normal
diffusion). Instead, a power law R —t ", with an ex-
ponent v smaller than 0.5, is found. Anomalous diffusion
is tantamount to a scale-dependent diffusion coefficient D.
In fact, according to the definition of D as the limit at
large t of the ratio R /t, one readily obtains D -R
It is then clear that an accurate evaluation of the anoma-
lous exponent is highly prized in terms of assessing the
transport properties of random media.

Unfortunately, the exact computation of v by analyti-
cal means can only be performed in a very limited num-
ber of cases. One such case is provided by the Sierpinski
gasket, the fractal obtained by repeatedly cutting a trian-
gle in four subtriangles of halved side and leaving the
central one off (see Fig. 2). For this structure, an exact
decimation procedure leads to the following result (in
two-dimensions) [5]: v= ln2/ ln5. This exact result can
then be used as a test case for the LBE code. A set of nu-
merical simulations has been performed with two
different resolutions: 128 and 256, corresponding to six
and seven generations, respectively.

For each of these cases, five runs have been performed
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first generation second generation

FIG. 2. One step of the recursive procedure generating the
Sierpinski gasket.
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by varying the initial position (xo,yo) of the tracer
C (x y t =0)=Cp5(x xp )5(g pp ). The flow setup is
as follows. The fluid density is p=7. 87, corresponding to
a fluid viscosity v =0.032, the macroscopic flow speed is
zero, and the tracer mass is CO=0. 4. The mean-square
displacement is then computed as

R = f [(x —xo) +(y —yo) ]C(x,y)dx dy, (5)
1

0

where

18

C(x,y)—:J3= g p, c,.3f,

is provided by the numerical simulation. The results,
displayed in Figs. 3 and 4 clearly show that despite some
statistical fluctuations, the exact exponent is well
recovered on the average.

This result was not granted a priori because of lack of
convergence to a continuum fluid limit can be expected in
the neighborhood of the corners of the fluid triangles.
These points represent a sort of geometrical singularity
where communication between fluid regions is inhibited.
In practice, this singularity is handled by treating the
corners as fluid sites, thereby allowing tracer particles to
diffuse throughout the whole fluid medium. More pre-
cisely, for a better compatibility with the FCHC topolo-
gy, the Sierpinski lattice used in the simulations is con-

FIG. 4. The same as Fig. 3, with a doubled resolution
(256X256) grid.

structed by cutting squares into four subsquares of half-
side length and tagging the lower left as the solid one.
Communication between fluid subregions is then ensured
by particle flights proceeding along the diagonal links.
The present results indicate that the gross transport
coefficients are insensitive to these microgeometrical de-
tails, as witnessed by the fact that the two resolutions,
128 and 256, yield essentially the same result.

As a second test case we address the case of Taylor hy-
drodynamic dispersion. In this case, in addition to
diffusing, the tracer is also convected by the fluid flow (a
parabolic Poiseuille profile between two parallel plates).
The asymptotic analysis of Taylor hydrodynamic disper-
sion in a two-dimensional channel of width H leads to the
following formula for the longitudinal diffusion
coefftcient ([6] and references therein):

H U pe2

210

where U =—', U,
„

is the average flow speed and
Pe=HU /D is the flow Peclet number. This formula is
based on the assumption that diffusion across the channel
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FIG. 3. Mean-square displacement in square lattice units in
the 128X128 grid Sierpinski gasket as a function of time in
simulation unit steps. The straight line represents the exact re-
sult, while the others refer to numerical simulations with 6ve
distinct initial conditions.

FIG. 5. Longitudinal di5'usion coeScient as a function of the
square flow speed. The solid line corresponds to Eq. (6), while
the dots refer to the numerical results. The measure was taken
after 5000 time steps. Channel grid 16X 1024.
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has come to an equilibrium. In addition, this equilibrium
must be such that concentration C does not display any
appreciable variation along the vertical coordinate y.
More precisely, by defining

a
C(x)=—f C(x,y)dy, b C(x,y) =C(x,y) —C(x)

0
(7)

the formula (6) holds in the limit b, C/C « 1. This condi-
tion is better and better fulfilled as the Peclet number
tends to zero.

The LBE code has been tested against Eq. (6) for a
number of different values of the diffusion coefficient D,
the channel width H, and length L. The tracer is initial-
ized as C(x,y, t =0)=Co5(x L/2—) with Co=0. 5. The
other parameters are p=7. 87 and v=0. 063.

A typical result, referring to the case D =0.0632,
0 = 16, I. = 1024 is displayed in Fig. 5, in which the ratio
Dl —= ((g ) —(g) )/(2t), where g=x L/2, —has been
computed with the code. As a first remark, we see that

the quadratic dependence on the flow speed is perfectly
recovered, as well as the value of the molecular diffusion
coefficient D =0.063 in the limit of vanishing flow speed.

The numerical values of Dl appear slightly smaller (a
few percent) than the theoretical ones. This slight
discrepancy may be attributed to the fact that the as-
sumption on which Eq. (6) is based is less and less valid as
the Peclet number increases.

In summary, the present results indicate that the LBE
is a suitable computational tool for tracking passive sca-
lar dynamics in hydrodynamics flows taking place in
grossly irregular geometries.
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