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The structural-mapping approximation introduced by Lutsko and Baus [Phys. Rev. A 41, 6647 (1990)]
in the generalized effective-liquid approximation is extended to include a local thermodynamic mapping
based on a spatially dependent effective density for approximating the solid phase in terms of the uni-
form liquid. This latter approximation, called the local generalized effective-liquid approximation
(LGELA) yields excellent predictions for the free energy of hard-sphere solids and for the conditions of
coexistence of a hard-sphere fcc solid with a liquid. Moreover, the predicted free energy remains single
valued for calculations with more loosely packed crystalline structures, such as the diamond lattice. The
spatial dependence of the weighted density makes the LGELA useful in the study of inhomogeneous

solids.

PACS number(s): 61.20.Gy, 64.70.Dv, 64.60.Cn

I. INTRODUCTION

The accurate description of the structure and the ther-
modynamic properties of inhomogeneous liquids and
solids has been the goal of density-functional methods of
classical systems that have been developed in the last de-
cade. The progress made by this research and its applica-
tion to the study of a variety of systems has been de-
scribed in several review articles [1-3].

The most recent developments are approximations to
the local or global excess free energy constructed from a
thermodynamic mapping of the excess free energy per
particle of the inhomogeneous system to that of a uni-
form liquid with an effective weighted density. Spatially
uniform or global thermodynamic-mapping methods
have been introduced in the modified weighted-density
approximation (MWDA) of Denton and Ashcroft [4] and
the generalized effective-liquid approximation (GELA) of
Lutsko and Baus [5], and provide computationally
efficient and accurate descriptions of uniformly spatially
periodic hard-sphere solids. The application of the
MWDA and the GELA to systems with more realistic in-
teratomic potentials is hindered by shortcomings of the
global thermodynamic mapping, which are discussed in
detail in Ref. [6]. It is not clear, however, how useful
these methods are in the description of inhomogeneous
solid regions, such as the melt-solid interface, where the
system’s symmetries vary from the periodic solid struc-
ture to the uniform liquid. These details of the interfacial
region are lost with the global thermodynamic mapping.
The need is evident for accurate spatially dependent or
local thermodynamic-mapping approximations.

The most recent class of local thermodynamic-
mapping approximations is based on nonlocal density ap-
proximations for the excess free energy formed by intro-
ducing spatially varying weighted densities. The approxi-
mation of Tarazona [7] and the weighted-density approxi-
mation (WDA) of Curtin and Ashcroft [8] are widely
known, and have yielded accurate predictions in the
study of wetting transitions near hard walls [9] and the
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melt-solid interfaces of hard-sphere and Lennard-Jones
systems [10].

In this paper, we present an extension of the GELA of
Lutsko and Baus [5] that incorporates a spatially varying
weighted density. This extension, called the local gen-
eralized effective-liquid approximation (LGELA), is
demonstrated to predict very accurately the free energies
of hard-sphere solids. This is not surprising, since it
reproduces the structural mapping of GELA. Our aim is
to study the melt-solid interface of diamond crystal ma-
terials like silicon. Therefore, the effect of this lattice
structure on the weighted density is also investigated. An
accurate description of the structure of the melt-solid in-
terface requires a flexible, multiparameter functional ap-
proximation of the density variation. It is important that
this functional predict a unique value of free energy as a
function of the weighted density. It is shown that LGE-
LA has this property but that WDA does not.

II. LOCAL GENERALIZED
EFFECTIVE-LIQUID APPROXIMATION

The objective of density-functional theories of inhomo-
geneous liquids is to predict the Helmholtz free energy F
of the system at an inverse temperature B=1/kT and
density p=N /V. The free energy is decomposed as

F=Fy+F,+F, , (1)

where F,4 is the ideal-gas free energy, F,, is the excess
free energy, and F,, is the contribution due to the pres-
ence of an external potential. For uniform systems, each
contribution is a function of the density p. For inhomo-
geneous systems there is a functional dependence on the
spatially varying density p(r), as is evident in the expres-
sion for the ideal-gas contribution

Filpl=B"" [drp(r)[InA’p(r)—1], 7))

where A is the thermal wavelength.
The excess free energy is easily found, for a uniform
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liquid, from an equation of state. For inhomogeneous
systems the excess free energy has to be approximated,
and this is typically done by assuming that

Folpl= [ drp(ryr;[p]) (3)

where Y(r;[p]) is an as yet unspecified functional of the
density p(r). In most approaches for the description of
solids, the effects of the external field are assumed to be
incorporated in the symmetries that are inherent in the
functional representation of p(r), and are neglected in the
thermodynamic limit [5].

Typically, the unknown functional ¢(r;[p]) is approxi-
mated by a local thermodynamic mapping of the form

Y(r;[p])=fo(p(r;[p])) )

that transforms the approximate free energy per particle
of the inhomogeneous system to the excess free energy
per particle f, of a uniform system with an effective
weighted density p(r). The excess free energy of the inho-
mogeneous system is

Fo= [drp(r)fo(pir;[p]) . (5)

A closure approximation is necessary for the evalua-
tion of the unknown local effective density p(r). Several
approximations have been used that have varying degrees
of complexity [7,8]. The most accurate closure approxi-
mation has been the WDA, introduced by Curtin and
Ashcroft [8]. In the WDA the weighted density p(r) is
computed by requiring that the structure of a uniform
liquid be represented exactly by the theory in the limit of
this uniform state. This requires

8°F[p]
O(p—1'lp.)= —B lim —— 27
¢ r=rlipo)=—F lim 5 e e ©
where ¢?(r) is the direct-correlation function of a uni-
form liquid.

Lutsko and Baus have shown recently [5] that because
F.[p] is the generating functional of the successive
direct-correlation functions, an exact expression for
F_ [p] may be derived by functional integration in densi-
ty space of the two-body direct-correlation function
(DCF). This approach is valuable because the two-body
DCF is relatively well characterized. Because of the
uniqueness of the free-energy functional [11], any path in
density space should yield the same result. Using a linear
path linking the inhomogeneous system to a reference
system of zero density, Lutsko and Baus derived the ex-
pression

3Fex,s=—fdrfdr’fold)»(l—-)»)p(r)p(r’)
XcPr,r';[Ap]) , ™

where ¢®(r,r’) is the unknown DCF of the inhomogene-
ous system. In the GELA, Lutsko and Baus approximat-
ed the density-weighted DCF of the inhomogeneous sys-
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tem by the density-weighted DCF of a homogeneous sys-
tem with effective density p’. They also later assumed
that p’ was the same effective density required by the glo-
bal thermodynamic mapping. We adopt the approach of
Lutsko and Baus and introduce the same closure approxi-
mation for the spatially varying weighted density 5(r):

fdrfdr’p(r)p(r’)c(z’(r,r';[p])
=fdrfdr’p(r)p(r’)c},z’(Ir—r’|;ﬁ(r)) . (8
Using Eq. (8), Eq. (7) is reduced to
1
F,, . =— ! - !
BF e, == [dr [dr' [ 'dA(1=M)p(r)p(r)
XcP(le—r'l;p(r;[Ap]) . (9)

Comparing Eq. (9) to the local thermodynamic-mapping
expression, Eq. (5) leads to the integral equation for the
local effective density p(r)

Bfo(ﬁ(r;[p]>)=—fdr'foldx(l—x)p(r'>

XcP[e—r'[;p(r; [ Ap]) .
lr—r'[;p(r;[Ap])) 0
Equation (10) is the spatially varying extension of GELA
that we refer to as LGELA.

LGELA is more flexible than GELA because it can be
applied to both homogeneous and inhomogeneous solid
systems. However, for the study of idealized solids it is
computationally more demanding because Eq. (10) must
be solved many times within the unit cell of the crystal-

line lattice.
III. RESULTS

A. Application to solids

The solid is described as a sum of Gaussian functions
centered on the lattice sites
3/2
S exp[—alr—R/|’], (11)
R

plr)=

where a is the inverse width of the Gaussian function and
is a measure of the localization of the solid structure.
The density is conveniently written in the Fourier-series
representation

p(r)=§2ﬁk exp(ik-r)[1+ exp(—ik-t)], (12)
k

where {k} is the set of reciprocal-lattice vectors (RLV’s)
of the fcc crystal lattice, and py = exp(—k?/4a). The
parametrization (12) is convenient because it describes
both the fcc and the diamond lattice. For the fcc lattice
t=0. The diamond lattice is a superposition of two inter-
penetrating fcc lattices separated by t=(a /4)(X+§+2),
where X, ¥, and Z are the unit vectors and « is the side of
the cubic unit cell. Substituting Eq. (12) into Eq. (10)
yields the residual equation for LGELA,

RPN =0=Bfo(p(r) — £ 3 e~ +*/4a) exp(ik-r)[ 1+ expl —ik-t)]fO‘dM 1—)e P(k;p(r;[Ap])) . (13)
k
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TABLE 1. Comparison of fcc hard-sphere solid free energies per particle predicted by several
density-functional approximations to MC results at various solid densities.

po’ WDA [10] MWDA [4] GELA [5] LGELA (PY) LGELA (CS) MC [8]
1.000 4.449 4.412 4.544 4.599 4572 4.661
1.025 4.674 4.629 4.809 4.865 4.840 4.868
1.050 4.908 4.853 5.083 5.139 5.115 5.099
1.075 5.155 5.090 5.368 5.425 5.401 5.354
1.100 5.422 5.347 5.666 5.724 5.701 5.663

Calculations are performed using a total of 1067 RLV’s.
The properties of the uniform hard-sphere liquid are eval-
uated using the Percus-Yevick (PY) approximation [12].
In some computations the Carnahan-Starling (CS) equa-
tion of state [12] and a direct-correlation function based
on it [13] are applied. All uniform-liquid free energies
are calculated from the CS equation of state [12].

The nonlinear integral equation (13) is solved using the
technique described by Lutsko and Baus [5] to transform
it to a set of algebraic equations, and using Newton’s
method, at a given solid density p and degree of localiza-
tion a. The derivatives of the residual equations with
respect to p(r) required at each Newton’s iteration are
computed by finite differences. Convergence is usually
obtained within 3 to 5 iterations.

All integrals over the unit cell have been computed us-
ing Gaussian quadrature. For the fcc lattice, symmetry
arguments allow us to truncate the domain of integration
as 0<x=<a/2,05y<a/2,and 0=z <a /2. Between 12
and 16 Gauss points per spatial dimension are necessary
for convergence of the integrals in the fcc lattice. For the
diamond lattice these symmetry arguments do not hold,
and integration over the entire unit cell is required; in the
cases studied here, 25 Gauss points per dimension were
used.

The spatial variations of the weighted densities predict-
ed by the LGELA and the WDA along the [100] direc-
tion of a unit cell of a hard-sphere solid with density
po3=1.0 are compared in Fig. 1 for various localizations.
Both calculations exhibit the same behavior: lower
values occur at the lattice sites, and higher values occur
in the interstitial regions. The LGELA predicts larger
values of p(r) than the WDA in the interstitial regions,
but this has no effect on the accuracy of the free-energy
predictions because the local free energies per particle in
Eq. (5) are weighted by the density.

At each density p the total free energy is computed
from Eq. (1) and is minimized with respect to the locali-

zation parameter a. The free energies per particle pre-
dicted from the LGELA for fcc hard-sphere solids with
density in the range 1.0<pg><1.1 are listed in Table I.
Results are shown for the LGELA using both the
Percus-Yevick and the Carnahan-Starling equations of
state. These results are compared to the predictions of
WDA, MWDA, and GELA and to the results of Monte
Carlo (MC) simulations. Overall, the LGELA (CS) yields
the best predictions over this range of densities. The
maximum deviation between the LGELA (CS) and the
MC calculations is about —2% at the density po’=1.0.
Both the WDA and the MWDA underpredict the solid
free energies by approximately 5%. It is interesting to
note that both approximations (WDA and LGELA)
based on a local thermodynamic mapping predict higher
free energies than the methods (MWDA and GELA) that
are based on a global thermodynamic mapping.

B. Solid-liquid coexistence

The free energies of both phases as a function of densi-
ty are given by the canonical-ensemble calculations de-
scribed in the previous section. The variation with densi-
ty of the fcc solid free energy per unit volume predicted
by the LGELA and the GELA is compared to the varia-
tion for a hard-sphere liquid in Fig. 2. The solid becomes
stable with respect to the liquid at densities p;o°>1.0.
The conditions of thermodynamic coexistence of a fcc
hard-sphere solid and a hard-sphere liquid are

(14a)
(14b)

:u'sol(ps )z:u']iq(pl ),

wso](ps )Zwliq(pl ),

where p is the chemical potential and w is the grand po-

TABLE II. Comparison of coexistence properties predicted by the LGELA and GELA to MC simu-
lations [5], where Ap=p, —p,;, L =(3/aa?)!/? is the Lindemann factor, P=fBpo’ is the pressure, and

As,=(s;—s,)/k is the entropy change per particle.

Model pso’ pio? Ap/p; L P As;
MC [5] 1.04 0.94 0.094 0.126 11.7 1.16
LGELA (PY) 1.054 0.956 0.093 0.091 12.5 1.21
LGELA (CS) 1.047 0.952 0.091 0.097 12.2 1.17
GELA [5] 1.041 0.945 0.092 0.100 11.9 1.15
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FIG. 1. Comparison of LGELA ( ) and WDA (— — —) weighted density profiles along the [100] direction in the unit cell of

fcc hard spheres (po?=1.0) at various degrees of localization ao

tential per unit volume.

The study of coexistence is performed in terms of the
grand canonical ensemble, where the chemical potential
and the grand potential are computed from the free ener-
gies as
(15a)

’

Hp=5 1y

F
=——pu . 15b
y TPH (15b)

o(p)
The conditions of fcc solid-liquid coexistence predicted
by the LGELA and the GELA are presented in Table II
and compared to MC-simulation predictions. The LGE-
LA does not perform as well as the GELA in this com-
parison. It overpredicts the solid and liquid densities at
coexistence, the pressure P, and the entropy change per
particle As;. Also, it underpredicts the value of the Lin-
demann parameter L. Introducing the CS equation of
state significantly improves the predictions. Moreover,
the overall performance of the LGELA is a dramatic im-
provement over the WDA, which was the most accurate
approximation based on a local thermodynamic mapping.

C. Diamond-lattice predictions

As we discussed in Ref. [6], the hard-sphere system can
be used as a reference state in thermodynamic perturba-
tion expansion for materials modeled by more realistic
potentials. These materials do not necessarily crystallize
in the densely packed fcc structure. In particular, silicon
crystallizes in the diamond lattice. Even though we do
not expect the diamond lattice to be either a relatively or
globally stable structure for hard spheres, it is important

2

to be able to predict values of the “free energy” at solid-
like values of the localization parameter a in a variational
calculation. In this context the values of the functional
F[p] are not global minima and hence are not true free
energies [11]. We demonstrated in [6] using computa-
tional nonlinear analysis techniques that MWDA intro-
duces folds in the values of F[p] in parameter space,
which lead to loss of existence of the weighted density for
loosely packed hard-sphere solids.

The variations of the LGELA and the WDA
weighted-densities along the [100] direction of the unit
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FIG. 2. Helmholtz free energy per unit volume (BFo>/V) vs
density (po?) for locally stable solid and liquid hard spheres.
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FIG. 3. Comparison of LGELA (

) and WDA (— — —) weighted density profiles along the [100] direction in the unit cell of

diamond-lattice hard spheres (po>=0.4) at various degrees of localization ao?.

cell of the diamond lattice are presented in Fig. 3 for
various values of the localization parameter a. In con-
trast with the results for the fcc lattice, the predictions of
the two approximations for the diamond structure differ
dramatically. In particular, for ao?>20 the WDA does
not predict bounded values for p(r). The LGELA con-
tinues to predict single-valued and bounded results for
plr), even for very localized solid structures. The predic-
tions of the “free energy” of a diamond-lattice hard-
sphere solid with density po®=0.4 given by the GELA
and the LGELA are compared in Fig. 4 to the “free ener-
gies” of an fcc crystal at the same density. Both approxi-
mations yield similar predictions that are consistently
higher than the fcc free energies. Of course, at this low
density, the entropic cost of the solid structure is very
large, and the uniform liquid is always the stable state.
Unfortunately, the accuracy of these predictions cannot
be tested because there are no known MC simulations for
diamond-lattice hard spheres. Even if such simulations
were available, it would be very hard to compute free en-
ergies since there is no locally stable hard-sphere solid
with the diamond-lattice structure. The accuracy of the
predictions will be tested indirectly when they are used to
predict solid free energies for silicon in a thermodynamic
perturbation calculation.

IV. SUMMARY

Excellent predictions for the free energy of hard-sphere
solids have been obtained by implementing the structural
mapping introduced by Lutsko and Baus [5] in a local
thermodynamic-mapping density-functional approxima-
tion. The predictions of the LGELA free energy of uni-

form hard-sphere solids approximately reproduce MC
predictions over a broad range of densities. The LGELA
extension of the GELA provides a framework for the
study of inhomogeneous solids, where hopefully the func-
tional will retain its accuracy. The LGELA functional is
an improvement over the WDA, since it remains single
valued and well behaved in all cases studied, particularly
in the case of loosely packed crystalline structures such
as the diamond lattice. These calculations are reference

3 T . T T

BF /N

—— LGELA (diamond)

-~~~ LGELA (fcc) 7

® GELA (diamond)

1 . L A

0 20 40 60

[ee) g
FIG. 4. Comparison of predictions of the GELA and the
LGELA for the “free energy” per particle of a diamond-lattice
hard-sphere solid of density po*=0.4 as a function of acg®. The
dashed line corresponds to the LGELA predictions for fcc hard
spheres at the same density.
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states for thermodynamic perturbation expansions used
to predict the free energies of other solids with more real-
istic potentials. This good behavior makes the LGELA a
promising free-energy functional for the investigation of
generalized inhomogeneous solid parametrizations.
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