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Simulations are performed for a fluid whose atoms interact with the Lennard-Jones pair potential and
the Axilrod-Teller three-body potential, and results are tabulated for the internal energy and for the viri-
al pressure. The triple dipole potential is effectively repulsive, as is well known, making the internal en-
ergy less negative and the pressure more positive than for the underlying Lennard-Jones fluid. For the
relatively low polarizabilities examined, v/3€0°~0.03, the perturbation approximation of Barker, Fish-
er, and Watts [Mol. Phys. 21, 657 (1971)] is shown to be essentially exact, and the hypernetted-chain ap-
proximation of Attard [Phys. Rev. A 45, 3659 (1992)] is quantitatively accurate at low densities, but only

qualitatively correct for the liquid state.

PACS number(s): 61.20.Gy, 61.20.Ja, 61.20.Ne

I. INTRODUCTION

This paper is concerned with establishing some bench-
mark results for a fluid that interacts with a three-body
potential. Most studies of the macroscopic properties of
matter assume that the microscopic interaction potentials
are pairwise additive, and that higher-order many-body
contributions can be neglected. In an important series of
papers, Barker and co-workers [1-3] showed that a pair
potential plus the Axilrod-Teller triple dipole potential
were necessary and sufficient to describe argon. Their
conclusions were based on a perturbation approximation,
which, although plausible for the parameters used, has
not been tested against exact calculations. Since the form
of the intermolecular potential is crucial to a statistical-
mechanical description of matter, it seems desirable to
quantitatively assess the validity of the perturbation ap-
proximation. Further, the data may be used to test fu-
ture approximations for fluids with three-body potentials.

Simulation results for the internal energy and for the
virial pressure are reported for a Lennard-Jones plus
Axilrod-Teller fluid. This model potential is sufficient for
testing theoretical approximations. Although the choice
was certainly motivated by reality, it is not intended to
apply the results to any real fluid since it is too simple to
describe an actual intermolecular potential over the
whole range of separations. The choice of potential pa-
rameters approximately reflect the properties of argon,
but again the highly idealized model serves only to estab-
lish some benchmark results against which approximate
theories may be tested. Two such approximations are ex-
amined here: the perturbation approach used by Barker
and co-workers [1-3], and the hypernetted-chain closure
for fluids with three-body potentials recently given by At-
tard [4]. For the relatively low polarizability
v/3€0°~0.03, which is essentially the ratio of the
strengths of the three- and two-body potentials, it is
shown that the perturbation approximation [1-3] is very
accurate, and that the closure approximation of Attard
[4] is most reliable at low densities.

II. THEORY
A. Model fluid

The Hamiltonian for the fluid consists of two- and
three-body terms,
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The Lennard-Jones pair potential is
u,(r)=4€e[(o /r)?— (o /r)°], )
and the Axilrod-Teller triple dipole potential is [5]
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To be definite, values of the parameters that effectively
describe the properties of argon may be chosen, even
though the Lennard-Jones potential is too simple to
represent the interaction potential between a pair of ar-
gon atoms over the whole range of separations [6]. As
mentioned above, the results for this model fluid are only
to be used to test approximate theories, and they have lit-
tle relevance to any experiment performed on argon.
However, since one would like to test a theory in a region
near its eventual application, there is some motivation for
choosing this model potential with the following pa-
rameters. In this work a core diameter of o =3.405 A,
and a well depth of € /kz =120 K are used for most cases.
These correspond to the measured position and depth of
the argon potential well, but they overestimate the van
der Waals dispersion contribution at long range [6]. The
same core and a value of €/kz=75.3 K give the exact
asymptote at long range, and some results are also
presented for this case. The Axilrod-Teller triple dipole
potential is the leading many-body correction to the pair
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potential at long range, and for argon v=7.32X 10719 J

m® [2,7]. At small separations the intermolecular poten-
tial is likely dominated by the repulsion between pairs of
atoms, and so other triplet contributions [8] besides the
Axilrod-Teller asymptote are not considered here.

B. Monte Carlo

The simulation was performed with the Hamiltonian,
Eq. (1), using the standard metropolis algorithm. A cubic
box was used, with periodic boundary conditions,
minimum image convention, and a potential cutoff of half
the box length. The minimum-image convention has to
be modified slightly for the case of a three-body potential
(and also to calculate the three-particle distribution func-
tion [9]), because an ambiguity that leads to physically
unrealizable triangles can occur; the distance between the
closest images of particles j and k with respect to particle
i is not necessarily the minimum-image distance of j to k.
The situation can be resolved generally by defining the x
component of the lattice translation vectors,

tl}:[(x,—x])/L]L 5 t,’k:[(xl-_xk)/L]L ’ (4)

where [ is the box length and [x] means the closest in-
teger to x. One takes the x component of the separation
vectors to be

X=X, —Xx;—1; ,

Xjg =X; =X —ly (5

Xj =X; Xy +t,-j —ti »
and similarly for the y and z components. For most cases
X j is the same as given by the standard minimum-image
convention, but for those times when the usual approach
corresponds to an unrealizable triangle, this method gives
an acceptable result.

The cutoff convention sets the triplet potential to zero
if any side of the triangle has a length greater than L /2
(and similarly for the pair potential). Configurations with
ambiguous nearest images do not contribute to the
three-body part of the Hamiltonian because the actual
triangle yielded in this case by the minimum-image algo-
rithm above has at least one side greater than L /2.

The internal energy and the pressure were evaluated as
ensemble averages of the Hamiltonian and of the virial,
respectively, apart from the three-body pressure term
which was found from the energy via Euler’s theorem for
homogeneous functions [2]. A tail correction for the L /2
cutoff was added to the two-body term. No tail correc-
tion was added to the three-body term, although a
method for this has been suggested [2]. Most of the simu-
lations were carried out with 108 particles. At a density
of p=0.50 "3, this corresponded to a potential cutoff of
L/2=3¢. After equilibration, some two million
configurations were generated, and statistics were collect-
ed every four moves per particle. The entire simulation
was divided into 20 blocks, and the standard deviation of
these blocks was estimated. The statistical uncertainty
quoted in the tables is this number divided by the square
root of 20.
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C. Perturbation approximation

The perturbation approach used by Barker, Fisher, and
Watts [2] consists of the linearization of the exponential
of the Hamiltonian with respect to the three-body poten-
tial. This procedure is arguably valid when the strength
of the Axilrod-Teller triple dipole potential is small com-
pared to the well depth of the pair potential. For the
present fluids, v/e0®~0.1, and one expects the approxi-
mation to be accurate.

In the perturbation theory [2], the internal energy is
written as an ensemble average of the pair and of the trip-
let potential and of their product in the reference fluid,
which interacts only with the pair potential, and similarly
for the virial pressure. In the present case the reference
system is the pure Lennard-Jones fluid. Simulations were
performed using the metropolis algorithm, with 108 par-
ticles in a cubic box, periodic boundary conditions, the
standard minimum-image convention, and a potential
cutoff of half the box length. For the ensemble averages,
the three-body minimum-image convention described
above was used. A tail correction for the two-body term
was added. After equilibration, some seven million
configurations were generated, and the ensemble averages
were collected every ten moves per particle. The statisti-
cal error was estimated as described above, from the fluc-
tuations in 20 subaverages.

D. Closure approximation

A hypernetted-chain (HNC) closure for fluids with
three-body potentials has been given by Attard [4]. Here
the three-body potential is reduced to a state-dependent
effective pair potential,

Bi(r)= —pf { —1+exp[ —Bu;(ry,13,)]}

Xg(ryglry)drs , (6)

where B=1/kgT, kp being Boltzmann’s constant and T
the absolute temperature, where p is the number density,
and where g(r)=h(r)+1=exp[ —Bw(r)] is the radial
distribution function. The effective pair potential is the
leading three-body contribution to the pair potential of
mean force w(r). Consequently, one can make the ap-
proximate closure

BLU(rlz):BuZ(rlz)+Bl7(r12)—h(r12)+c(r12)_d(r12) )
(7)

where the total, h(r), and the direct, c(r), pair-
correlation functions are related by the Ornstein-Zernike
equation

h(rp)=c(rip)+p [ hr;)e(ry)dr, . (8)

The HNC approximation neglects the bridge function en-
tirely,

d(r)=0, ©)

while the reference hypernetted-chain closure approxi-
mates it by the bridge function of some reference fluid.
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In this paper a hard-sphere fluid of the same density and
core diameter was chosen, and the HNCP bridge func-
tion [10], which is the Padé approximant formed from
the first two terms of the density expansion, is used to
form the reference hypernetted-chain (RHNC) approxi-
mation

pzd (2)( r)
1—pd ¥ (r)/d ¥ (r) ~
Finally, the internal energy and the virial pressure re-
quire an integral over the three-particle distribution func-

tion, and the Kirkwood superposition approximation is
used for this

d(r)=

(10)

83(ry,15,13)=g(r;)8(r 3)g(ry; Jexp[ —Bu;(ry,1y15)] .
(11)

The numerical details of the calculations were as de-
scribed previously [4]. The number of grid points used
was 2!2, and the mesh in real space was Ar =0.0l0, giv-
ing a cutoff of 40c0. The integrals for the pressure, the
energy, and the effective pair potential were evaluated us-
ing Gaussian quadratures with 75 nodes for the angular
coordinate, and 250 nodes for the radial coordinate, and
with a radial cutoff of 80. These multidimensional in-
tegrals were evaluated once every 20-100 iterations of
the Ornstein-Zernike equation and closure. Up to five
such cycles were sufficient for six-figure convergence of
the various thermodynamic properties.

III. RESULTS

The various approximations are compared with simu-
lation results for the energy and pressure of the fluid in
Table I. The parenthetical quantity is the estimated error
in the last digit, the standard deviation obtained as de-
scribed above. The most exact approaches, the Monte
Carlo (MC) and the molecular-dynamics (MD) [11] simu-
lations, are in precise agreement for the internal energy
per particle, and in reasonable agreement for the some-
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FIG. 1. The internal energy (A) and the virial pressure (B) of
the fluids (o =3.405 A, €/ky =120 K, and v/ec®=0.072 or
v=0) at a reduced temperature of kzT/€=1.333. The
Axilrod-Teller fluid is described by the Monte Carlo simulations
(solid symbols), the HNC (solid curve), and the RHNC (short-
dashed curve). The Lennard-Jones fluid is described by the
Monte Carlo simulations (open symbols), the HNC (dotted
curve), and the RHNC (long-dashed curve).

TABLE 1. The pressure and the igternal energy of a fluid that interacts with the Lennard-Jones pair
potential (e/kz =120 K, 0 =3.405 A) and the Axilrod-Teller triple dipole potential (v/€0°=0.072) at
two state points, as predicted by various theories. (pert. denotes perturbation.)

ks T /€=1.033, po*=0.65

kpT/e=0.746, po*=0.817

U®/Ne P/pkgT U*/Ne P/pkpT

MC —4.366(2) 0.15(1) —5.644(5) 0.56(4)
MD? —4.36 0.10 —5.64 0.38
pert. —4.363(1) 0.138(5) —5.636(2) 0.62(1)
HNC —4.2933 0.7723 —5.3944 2.6548

RHNC —4.3573 —0.0253 —5.5845 0.8054
Lennard-Jones (v=0)

MC —4.523(1) —0.201(6) —5.900(2) —0.34(1)
MD? —4.52 —0.11 —5.90 —0.20
HNC —4.4678 0.6510 —5.6704 2.2619

RHNC —4.5188 —0.1851 —5.8540 0.3568

*Reference [11].
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what more sensitive virial pressure. A potential cutoff of
2.50 was used in the molecular-dynamics simulations
[11]. The perturbation approximation lies within the sta-
tistical uncertainty of the Monte Carlo simulations. This
is an encouraging result considering that the fluid is a
liquid at these high densities and low temperatures. The
HNC approximation underestimates the magnitude of
the internal energy, but is greatly improved by the in-
clusion of the hard-sphere bridge function in the RHNC
approach. A similar improvement is seen in the case of
the virial pressure.

Comparison with the Lennard-Jones fluid shows that
the Axilrod-Teller triple dipole potential increases the
internal energy and the pressure, as has been found previ-
ously [1-4]. One can see that a significant part of the er-
ror in the HNC approximations for the full fluid is al-
ready apparent at the pair level.

Table II contains simulation and perturbation results
for the Axilrod-Teller fluid, and simulation results for the
Lennard-Jones (LJ) fluid. Again, one sees that since the
Axilrod-Teller triple dipole potential gives rise to an ex-
tra repulsion between the atoms via the effective pair po-
tential [4], the energy and the pressure are increased with
respect to the Lennard-Jones fluid [1-4]. The perturba-
tion approximation agrees with the Monte Carlo simula-
tion to within the statistical error, even for the relatively
larger three-body contribution, v/€o®=0.115.

One simulation was performed with 256 atoms in order
to test for finite-size effects. At the density of 0.650 3,
this corresponded to increasing the potential cutoff from
2.80 to 3.70. For the pure Lennard-Jones fluid, the
internal energy was unaffected, but the pressure showed a
statistically significant increase. The most obvious con-
clusion is that the tail correction to the pair terms works
very well for the internal energy, but does not completely

correct for the finite-size cutoff of the more sensitive viri-
al pressure. For the Axilrod-Teller fluid, both the energy
and the pressure were significantly more positive. Hence
it appears that the neglect of the tails of the three-body
terms is too crude an approximation, and that the super-
position correction of Barker, Fisher, and Watts [2] may
be well worth exploring. The limitation on the exact re-
sults reported here is probably the systematic errors due
to finite-size effects, rather than statistical errors due to
the finite number of configurations generated.

Figure 1 shows the internal energy and the virial pres-
sure for the Axilrod-Teller fluid and for the Lennard-
Jones fluid at a reduced temperature of kzT /e=1.333.
The RHNC approximation is almost quantitatively
correct for the internal energy, but for the pressure un-
derestimates the additional repulsion due to the triple di-
pole potential. But the HNC and the RHNC theories in-
dicate that this is a subcritical isotherm for the Lennard-
Jones fluid, but a supercritical one for the Axilrod-Teller
fluid. At low densities one can see that the effect of the
triple dipole potential is small, as also follows from Eq.
(6) which is linear in density to leading order. In this re-
gime the HNC and the RHNC are exact.

IV. CONCLUSION

This paper reports some exact benchmarks for a fluid
whose intermolecular potential includes a three-body
term. The total potential employed here is a gross
simplification of any real intermolecular potential, includ-
ing the ones used previously to accurately describe argon
[1-3,6]. However, it shares enough similarities with real-
ity that any theory which describes this model accurately
will be equally reliable when applied to the experimental
system using more sophisticated potentials. In this paper

TABLE II. The pressure and the internal energy of the fluids (o =3.405 A).

MC pert. LI ( v=0)
po’ U*/Ne P/pksT U*/Ne P/pksT U*/Ne P/pksT
€/ky=120 K, v/€0°=0.072, k,T/e=1.333
0.10 —0.764(3) 0.72503) —0.763(1) 0.723(1) —0.775(1) 0.716(1)
0.50 —327709) 0.38(1) —3.274(1) 0.402(6) —3.375(1) 0.267(6)
0.65 —4.203(2) 1.03(1) —4.201(1) 1.028(6) —4.357(1) 0.751(6)
0.80 —5.0104) 2.85(2) —5.014(2) 2.830(8) —5.267(2) 2.314(8)
e/ky=120 K, v/€0°=0.072, kT /e=1.166
0.50 —3.349(4) 0.06(1) —3.342(1) 0.063(5) —3.454(1) —0.084(5)
0.65 —42922) 0.60(1) —4.287(1) 0.605(5) —4.444(1) 0.299(5)
0.80 —5.146(4) 2.54(2) —5.152(2) 2.423(9) —5.404(2) 1.841(9)
€/ky=75.3 K, v/€0®=0.115,k; T /€=1.860
0.50 —3.047(2) 1.083(7) —3.041(D) 1.105) —3.185(1) 0.943(4)
0.65 —3.856(2) 1.931(7) —3.853(2) 1.931(6) —4.099(2) 1.604(6)
0.65° —3.8453) 1.968(9) —3.844(1) 1.965(4) —4.0992(9) 1.622(4)
0.80 —4.451(5) 3.7502) —4.458(3) 3.72909) —4.865(3) 3.133(9)

2256 atoms.
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the perturbation approximation used by Barker and co-
workers [1-3] was tested and found to be virtually exact
for this highly idealized model of argon. By the above ar-
gument, this observation lends some weight to the
specific conclusions of those workers regarding the neces-
sity and the sufficiency of the Axilrod-Teller triple dipole
potential for calculating the macroscopic properties of ar-
gon. The accuracy of the perturbation approach for ar-
gon likely pertains to other fluids [12], at least those with
low polarizabilities, v/3ec®. Since the simulation of the
three-body fluid is one or two orders of magnitude more
computationally demanding than that of a fluid which in-
teracts only with pair potentials, the perturbation ap-
proach offers significant savings.

Complementary approaches for fluids that interact
with three-body potentials are based on the Ornstein-
Zernike integral equation. The HNC theory of Attard

[4] was tested here and found to be accurate at low densi-
ties, but less reliable for the liquid state. The RHNC
theory offered worthwhile improvements, even using the
simplest prescription for the reference fluid. It is possible
that procedures could be developed to optimize this
choice. Alternatively, the methods developed to calcu-
late the three-particle distribution function, such as the
binodal chain approximation [13], could be adapted for
fluids with three-body potentials, and tested against the
benchmark results established here.
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