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A combination of static and quasielastic light scattering and the theory of scaling solutions to
Smoluchowski’s equation was used to determine the absolute coagulation rate K ; and kernel homogenei-
ty A of a coagulating liquid-drop aerosol. Droplet sizes ranged from 0.23 to 0.42 um, implying Knudsen
numbers in the range 0.26 and 0.14. The temporal evolution of the number concentration M, and the
modal radius ry, of an assumed zeroth-order log-normal distribution showed near-power-law behavior
similar to that predicted by the scaling theory. From the temporal scaling behavior of M(¢) and r,(?),
the absolute coagulation rate was calculated. The coagulation rates from each method were in good
agreement. The rate also agreed well with theory that corrected the Brownian rate, good for the contin-
uum regime, by the average Cunningham correction factor. In addition, the time dependence of the mo-
ments M, and r,;, hence the determination of K, was in good agreement with a real-time numerical
solution of Smoluchowski’s equation for initial conditions analogous to our experimental ones.

PACS number(s): 82.70.Rr, 82.70.Kj, 82.20.—w

I. INTRODUCTION

The past decade has witnessed a renaissance of interest
in fundamental coagulation phenomena. Our ability to
describe and quantify random aggregates as fractal [1,2]
as well as the further developments, since the pioneering
work of Friedlander and Lushnikov [3-6], of dynamic
scaling concepts used to describe the real-time evolution
of particle-size distributions [7] has largely accounted for
the revival. This enhanced interest has led to a deeper
and more general understanding of the dynamic nature of
coagulation processes.

The majority of recent experimental coagulation stud-
ies have involved the colloidal phase of matter. These
studies [8-12] have used quasielastic and static light-
scattering techniques as experimental probes and pri-
marily concerned themselves with cluster morphologies
and relative growth rates. For the most part, the studies
were directed towards characterizing scaling properties
such as (1) the static, length-scale invariant nature of the
aggregate via the fractal dimension D, and (2) the dy-
namic scaling nature of the aggregate-size distribution.
Additional studies [13,14] have further identified the ex-
ponential shape of the large-radius end of some of these
scaling distributions. No effort, however, has been
directed toward applying recent scaling concepts to mea-
sure absolute quantities such as coagulation-rate con-
stants for particulate systems.

Particulate systems can be characterized by a Knudsen
number Kn which is defined as the ratio of the mean free
path of the solvent molecules / to the particle radius r.
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For colloidal systems, one has Kn=0. These relatively
dense systems generally harbor complex particle-particle
and particle-solvent interactions which are not well un-
derstood. The coagulation process in these systems is
usually initiated by the addition of a suitable coagulant so
to reduce stabilizing interparticle forces. The coagulant,
however, further complicates particle-particle interac-
tions within the colloid and the role of the coagulant dur-
ing the coagulation process is also poorly understood.

Gas-phase systems, or aerosols, represent another type
of particulate system of great importance and common
occurrence. Less effort, however, has been directed to-
ward understanding coagulation processes inherent in
aerosols using the recently advanced scaling concepts.
Owing to the different physical situations that aerosols
provide, aerosols offer a simpler system in which to study
coagulation than do colloids. In particular, particle-
solvent interactions are absent. Furthermore, foreign
coagulants need not be introduced and, therefore,
particle-particle interactions can differ significantly from
those found in colloids. Aerosols, moreover, are not con-
strained to the hydrodynamic regime and can offer a
variety of Knudsen numbers where only a limited number
of coagulation studies have been carried out. These re-
gimes, beyond Kn~0, offer potentially fertile fields of ex-
ploration.

In this paper, we have chosen to investigate the coagu-
lation dynamics of a liquid-drop aerosol system just out-
side of the continuum limit, where Kn is significantly
larger than zero. The average Knudsen numbers range
from Kn=0.26 to 0.14 at the completion of the experi-
ment. We have chosen a liquid-drop system where the
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aggregates retain their spherical symmetry during
growth. Therefore we did not have to incorporate the
fractal nature of the aggregate into our data analysis.

Our experimental method employs both static and dy-
namic light-scattering (DLS) techniques. The DLS al-
lows us to measure the model radius r;, of an assumed
zeroth-order lognormal distribution (ZOLD). Absolute
static-light-scattering measurements from the aerosol are
achieved by calibrating against liquids with known Ray-
leigh ratios. The measured intensity combined with the
assumed ZOLD and the DLS measured modal radius al-
lows us to determine the aerosol number concentration
M,. Others have measured rate constants for similar
aerosol systems [15-19]. Our method, however, makes
an absolute rate constant measurement solely by optical
means. Therefore our technique is not subject to the er-
rors that were endemic to the previous methods.

As a check of our results, we have numerically solved,
using a finite-difference technique, Smoluchowski’s
coagulation-rate equation for a system having initial con-
ditions closely resembling our experimental ones. We
have found good agreement between the numerical
coagulation rate and those measured from five experi-
mental runs. Our numerical results describing (r(¢)) are
also in agreement with the scaling behavior of r,,(¢) from
an assumed ZOLD and experiment.

II. BACKGROUND

The fundamental description of irreversible coagula-
tion dynamics is given by the Smoluchowski equation
[20,21]

on(u,t)

5 = %fOuK(u —v,v)n(u —v,t)n (v,t)dv

-n(u,t)f0wK(v,t)n(v,t)dv " (1)

where n (u,t) is the number concentration of particles of
volume u at time z. The integrals describe the rate at
which particles of volume u appear (first integral) and the
rate at which they are lost (second integral). The Smolu-
chowski equation is rigorous under the mean-field ap-
proximation, where fluctuations in n(u,¢) are neglected.
Only binary collisions are being considered by Eq. (1),
which for volume fractions less than 1% is a good ap-
proximation [22]. Our experimental volume fractions
were quite small, less than 107,

The coagulation kernel K (u,v) is a key parameter in
Smoluchowski’s equation. It describes the reaction rate
between particles of volumes u and v, which ultimately
determines the characteristic particle distribution n (u,t).
Solutions to Smoluchowski’s coagulation equation are
dependent on the mathematical form of K (u,v).
Whereas exact solutions to Eq. (1) exist only for a few
mathematically simple kernels, general scaling solutions
for n(u,t— ) are well known [6,7]. For homogeneous
kernels defined as

K (au,av)=a*K (u,v) , )

where A is the degree of homogeneity, the well-known
scaling solutions to Eq. (1) are
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n(u,g)=n(u,t— o0 )= Ag(t) 2¢(u/g) , (3)

where ¢(x) depends on the dimensionless variable
x =u /g and has a shape independent of time. This dy-
namic scaling relation clearly states that all distributions,
regardless of their initial shape, evolve into the same final
shape. This shape is predicted by the form of K (u,v).
The time dependence of the scaling distribution, which
we designate by n (u,g) is carried solely by the parameter
g (t). The parameter g may be set equal to any ratio of
moments such that g =M, ,/M; [see Eq. (4) below].
This form is consistent with the requirement that the to-
tal particulate volume of a closed system remains con-
stant. Finally, the choice for g fixes the normalization
conditions for the scale function ¢(x) and the constant A.
Beyond this, the selection of g is arbitrary. We choose g
to represent the mean cluster size, i.e., g(¢t)=M,/My(t),
which consequently fixes A =M, and [ “¢(x)dx
=f;°°x¢(x)dx =1.

Light-scattering experiments designed to probe coagu-
lating media measure some combination of the moments
of the particle-size distribution. These moments are
defined by

M,.(z)zfo“’u"n(u,t)du , 4)

where M,(¢) is the ith moment of the particle distribution
at time ¢. Therefore light-scattering experiments involv-
ing particulate media require an understanding of the
temporal behavior of the moments for a correct interpre-
tation of the coagulation dynamics.

The time rate of change of the ith moment is found by
multiplying Eq. (1) by u’ and integrating over all u to
yield

d

M, - o S
?=3f0 fo [(u +v)—u'—v']

XK (u,v)n(u,t)n(v,t)du dv . (5)

In the scaling regime, defined where Eq. (3) holds, the
functional form of the temporal behavior of the moments
is time invariant. We call such moments scaled moments
and we will designate them as J/;. Using the homogenei-
ty of the coagulation kernel, Eq. (2), and the scaling form
of the particle distribution, Eq. (3), in Eq. (5) we obtain

am, .
—‘—1?'—=M%g(t)’+}‘_zl,-(K,¢) , (6)

where

LK,$)= [ * [ " [x+yy—xi=p]
XK (x,y)¢(x)d(y)dx dy , (7)

and is also independent of time. Analogous to the scaled
distribution function [see Eq. (3)], the dynamic behavior
of the scaled moments is solely described by the same pa-
rameter g.

To find the explicit time dependence of g we use
g(t)=M,/My(t) and Eq. (6) with i =0 (recall that M is
a constant) to find
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g(t)y=g(tx)[(t —ty)/t,+177, (8)  significantly affect our experimental results.
_ Using the approximation given by Eq. (14), we proceed
=(1— 1 ’
where z=(1—2)"", and and calculate the characteristic coagulation time ¢,. In-
t,=—2z/[ToM*M(1,)"7] . (9)  tegration of I;(K,¢) with i =0 and K (x,y) given by Eq.

The dynamic exponent z carries information concerning
the kernel homogeneity, while 7, is a measure of the
characteristic coagulation rate. As we will see below, ¢,
is directly related to the absolute coagulation rate con-
stant. The initial time ¢, is any chosen time after the dis-
tribution has achieved a scaling form. Substituting the
time dependence of g(¢) back into Eq. (6), we finally ar-
rive at the expression describing the time evolution of the
scaled moments [23],

M()=M(2)[(t —1o) /2, +1]0 D7 (10

Ultimately, Eq. (10) will allow us to determine the dy-
namic exponent z, hence A, and the characteristic coagu-
lation time ¢, from our quasielastic light-scattering data.
From ¢, we will further determine the real-time coagula-
tion rate of our aerosol system (see below).

In the continuum limit, where the mean free path of
the ambient gas molecules is short relative to the particle,
i.e., Kn—0, the dynamics of the coagulation is accurate-
ly described with the Brownian kernel which is given by
(24]

K (u,v)=KyB(u,v) , (11)

where Blu,v)=(u'+v')u~""3+v"3). The rate
coefficient is K,=2kyzT /37, where kp is Boltzmann’s
constant and T and 7 are the absolute temperature and
shear viscosity of the ambient gas, respectively. The
Brownian kernel has A=0.

For Kn slightly larger than zero, however, the Browni-
an kernel must be modified, and this is done by introduc-
ing the Cunningham correction factor into the diffusional
term of B(u,v). The Cunningham correction is an empiri-
cal modification for the Stokes-Einstein diffusion
coefficient. For coagulation outside of the continuum
limit one has

Blu,v)=w'+oVH[Cr)u V3 +Cr, v 3], (12)

where C(r,) is the Cunningham correction factor given
by [25]

C(r,)=1+1.257TKn+0.4exp(—1.1/Kn) . (13)

The Cunningham-corrected Brownian kernel is not
homogeneous but for Kn=<1, C(r,) varies slowly with r,
(u =4/3wr}) and we can make the additional approxima-
tion C(r,)=C(r,)=C(r,), where r, is the radius of the
average particle volume g. Using this approximation, we
write

K (u,0)=K,C(r,)B(u,v) (14)

to retain homogeneity in the kernel representation. No-
tice that the rate coefficient is not only increased by the
factor C(r,) but also becomes a slow function of time
since r, is a function of time. We will justify, however,

g
that this time dependence is indeed slow and it will not

(14) yields
Iy=—2K,C(r,)1+m, m_,,), (15)
where m; = [ x'¢(x)dx. Now, using Eq. (9), we arrive at
t,=[KoClr)(1+my sm_y ) Mo(1)] 7" . (16)

where A=0. This choice for A is consistent with the
homogeneity of the kernel derived above [see Eq. (14)].

To evaluate the m, ,; and m _, ,; moments we must as-
sume a particle-size distribution. Lee has shown [26]
analytically that a self-preserving (scaling) size distribu-
tion, obtained via Brownian coagulation, can be well ap-
proximated by a log-normal. In addition to Lee’s work,
Sorensen and Taylor have done a numerical study [27]
concerning the light-scattering nature of the self-
preserving distribution during Brownian coagulation.
These authors assumed a ZOLD represented the self-
preserving size distribution and showed that a particular
ratio (not important for our purposes here) of the light-
scattering moments approached a constant as the distri-
bution approached its scaling form. Their use of a
ZOLD, instead of the log-normal discussed by Lee, was
somewhat arbitrary since identical results would have
been obtained had they used the latter distribution. We
also choose a ZOLD for our analysis below and show
that the consequences of our choice do not influence the
final results.

The ZOLD can be written as

(r)= N exp(—1/21n’%g,) pr
T 2y Ing, xp

—In2(r /ry)

2In%0,

(17)

where A’ is determined by normalizing to M, the total
mass of the system. The modal radius (directly propor-
tional to the mean radius) is given by ry and o,
represents the geometric width of the distribution in r
space. Using the ZOLD, we find m,,ym,,;=In’c,, the
same result obtained by Lee who used the log-normal dis-
tribution instead.

Under the assumption that the log-normal distribution
is self-preserving, Lee analytically showed that continu-
um Brownian coagulation leads to o;°=1.32, where o
is the self-preserving value of the geometric width.
Light-scattering experiments, however, weight the large-r
end of a distribution. The work of Sorensen and Taylor
showed that under the assumption that the self-
preserving distribution is a ZOLD, light-scattering mo-
ments yield o,° =1.25. The term (1+m,3m_,,3)=2.05
and 2.08 for o;°=1.25 and 1.32, respectively—a varia-
tion of only 1.5%. In our analysis we use o,° =1.25 since
our results were obtained using light-scattering tech-
niques. We show below, however, that our data analysis
is somewhat insensitive to our choice for o,”.

Finally, since it is our desire to determine the coagula-
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tion rate constant from our measurement of ¢., we use
Eq. (16) and our calculation of m; ,;m _, ,; to obtain

Ko=K,Cl(r,)=[2.05tMyt5)]"" . (18)

III. EXPERIMENT

The aerosol was formed from dioctylphthalate (DOP).
A 2% DOP-in-ethanol solution was nebulized with a con-
stant output atomizer (TSI model no. 3075). The liquid
drops were passed into a partially heated glass tube where
the evaporation of the aerosol and subsequent condensa-
tion of new drops, in the cooler region of the tube, took
place. A small trace of anthracene was added to the
DOP-in-ethanol solution, providing nucleation sites for
the newly condensed droplets. This evapora-
tion/condensation scheme allowed for the creation of a
homogeneous and quasimonodisperse aerosol. The aero-
sol then passed through a charge neutralizer (TSI model
no. 3012) to produce a bipolar charge distribution. The
TSI generator was designed to produce a uniform distri-
bution that was well approximated by a ZOLD having a
geometric width of 0, = 1.2.

The aerosol was fed into a scattering chamber where
the coagulation took place. The chamber was an alumi-
num cylinder 25 cm in diameter and 75 cm tall with opti-
cally flat windows positioned at 0°, 90° and 180°. The in-
side of the aluminum scattering cylinder was painted a
flat black to reduce unwanted wall reflections from possi-
ble scattered laser light. Furthermore, the aluminum
provided an isothermal surface which we found necessary
to suppress unwanted thermally induced convection
currents in the aerosol. The chamber was filled with
DOP aerosol for 4 min before it was sealed. This allowed
ample time for filling since the aerosol flow rate was ap-
proximately 8 1/min. The radii typically ranged from
0.23 to 0.4 um, implying Knudsen numbers ranging any-
where from 0.26 to 0.14 (/ =0.06 um) for a given coagu-
lation run.

The aerosol coagulated via Brownian motion. In addi-
tion to the decreasing number concentration via coagula-
tion we also observed a slow loss of aerosol to the walls of
the container. This behavior was observed visually in the
incident laser beam within a few minutes after the
chamber was sealed, as dark layers, indicating the ab-
sence of aerosol particles, developed near the walls.
These voids extended a distance of 2 to 3 mm from the
wall. Our early time scattering measurements, however,
were not affected since our scattering volume (~1 mm?)
was positioned at the center of the aluminum cylinder,
approximately 12 cm away from any depletion layer. Un-
fortunately, thermal convection eventually transported
some of these voids into our scattering volume thus limit-
ing our maximum experimental run times to 20 min.

An argon-ion laser was used and operated at ~10 mW
with incident wavelengths of either A,=5145 or 4880 A.
The incident beam was vertically polarized and passed
through the 0° and 180° optical windows, 40 cm from the
bottom of the cylinder. The scattered radiation passed
through the 90° window and a Glan-Thomson polarizer,
oriented to pass vertically polarized light, before being
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collimated with an 8-cm focal-length lens. The lens was
chosen such that the image of the scattering volume, with
unit magnification, was focused onto an adjustable slit
with a width set at 1 mm. The collected polarized light
passed through the slit and onto the photocathode of the
photomultiplier tube (PMT), 50 cm behind the slit. This
optical arrangement allowed for the proper degree of spa-
tial coherence on the cathode necessary for a good
signal-to-noise ratio. The photopulses from the PMT
were amplified and discriminated before being fed into a
commercial correlator. The correlator was used to calcu-
late both total scattered intensity and the homodyne in-
tensity autocorrelation function.

Two types of measurements were made during a typi-
cal light-scattering experiment. First, the mean droplet
size was determined from the diffusion coefficient mea-
sured with the intensity autocorrelation function [28].
This correlation function in the homodyne detection
mode is given by [29]

(I,(0),(t)) =B+ A exp(—ut +1/2u,t?) , (19)

where I, denotes vertically polarized scattered light. In
Eq. (19), B is a background determined either with the
photocount statistics or the long time (z— o) behavior
of the autocorrelation function. A4 is the amplitude of the
signal. A fit of our data to Eq. (19) yielded the first and
second cumulants, ¢; and p,. The cumulants are related
to the mean particle size and geometric width of the size
distribution, respectively. In this work, however, no
quantitative effort was made to determine the width of
our particle size distributions. Given the evolution of our
system, accumulation times for (IU(O)I,,(t)) were neces-
sarily short, hence sufficient statistics for an accurate
determination of u, could not be obtained. Therefore we
included p, only as a fitting parameter to increase the ac-
curacy of u;.

The first cumulant contains the desired mean particle-
size information through

u;=2Dg?, (20)

where the scattering wave vector in the quasielastic limit
is ¢ =47\ 'sin(6/2). The experimental scattering angle
was fixed for all coagulation runs at 6=90°. Also in Eq.
(20) is the particle diffusion coefficient

_ C(IksT

p— (21)

where C(r) is the previously defined Cunningham correc-
tion factor modifying the Stokes-Einstein diffusion
coefficient kz T /6mr [see Eq. (13)]. Of course, our sys-
tem cannot be monodisperse and the diffusion coefficient
extracted from the fit to the correlation function is really
an average over the entire size distribution. In fact, yu, is
a ratio of moments of the particle-size distribution. The
actual procedure used to extract the mean radius from
the experimental pu, is described below.

The second quantity determined during a given run
was the vertically polarized scattering intensity 7,. Since
details such as the size of the scattering volume, the PMT
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efficiency, and the solid collection angle d{) are difficult
to measure, a quantitative measurement of the absolute
scattered intensity was obtained by a simple calibration
technique using liquids with known Rayleigh ratios.
Four liquids were used, benzene (C¢Hy), toluene (C,Hy),
carbon tetrachloride (CCl,), and carbon disulfide (CS,).
The Rayleigh ratios are functions of both the incident
wavelength and the incident and scattered polarizations.
We have used the Rayleigh ratios measured by Moreels,
DeCeuninck, and Finsy [30] and Coumou et al. [31-33]
for the case of vertically polarized incident and scattered
radiation at 6=90".

Each calibration liquid was of spectroscopic grade.
The liquids were loaded into glass cylinders 7 cm in di-
ameter and 12 cm in length and sealed under a nitrogen
atmosphere glove box to prevent any contamination from
water and foreign particulates. The liquid cells were sub-
sequently centered in the aerosol scattering chamber to
obtain normal incidence of the laser beam and the exact
90° scattering angle. The scattered intensities were then
measured for each of the calibration liquids. This scat-
tered intensity is given by [34]

I,=®(,,,V,,dQ,e)R,, , (22)

where R,, is Rayleigh ratio (see Table I). The constant
®(1,,,V,,dQ,e€) is the calibration constant dependent on
the vertically polarized incident intensity I,,, the scatter-
ing volume V¥, the collection angle dQ), and the PMT
efficiency €. Refraction of the slightly focused incident
beam in the liquids changes both the scattering volume
and the incident intensity relative to the aerosol chamber,
but in such a manner that their product, which is in @,
remains invariant. ® determined in this manner, there-
fore, may be used for calibrating the absolute scattered
intensity.

Equation (22) shows that ®(1,, V,,dQ,€) is simply the
slope of an I, vs R, plot. Thus a useful average for ® is
obtained using the I, measurements of the calibration
liquids. An example of a typical calibration run is given
by Fig. 1. The best-fit lines, forced to pass through the
origin, had associated uncertainties for ® of =5% for our
five experimental runs. Furthermore, we have tested our
calibrations against polystyrene suspensions (0.232 and
0.091 pum) of known particle concentrations. We found
excellent agreement between these known concentrations
and the calculated particle concentrations using P (see
Fig. 2). The actual determination of the number concen-
tration of the aerosol from ® is discussed in detail below.

A typical run began with the intensity calibration fol-

TABLE 1. The Rayleigh ratios used for calibrating the
scattering geometry and the instrument sensitivities. See Refs.
[30-34].

Liquid R,,(90°), A,=4880 A R,,(90°), A,=5145 A
CH, 29.1X107°% cm™! 23.0X107% cm™!
C,H, 31.0X107° cm™! 24.2X107% cm !
cql, 17.1X107% cm ™! 13.5X107% cm™!
CS, 111.0X107% cm™! 82.2X107¢ cm™!
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FIG. 1. A typical calibration run for calibrating the scatter-
ing geometry and instrument sensitivities against liquids with
known Rayleigh ratios (see Table I).

lowed by the filling of the aerosol chamber (careful not to
perturb the collection optics) with the DOP aerosol. In-
tensity and intensity autocorrelation measurements began
immediately after the fill. Aerosol coagulation during the
duration of the fill could obviously not be avoided. For-
tunately, scaling distributions are insensitive to linear
transformations in time, hence t =0 can be defined at any
time ¢, once scaling has been achieved. To obtain values
of the first cumulant with accuracy sufficient for our pur-
pose, accumulation times of 40 sec were desirable for
measuring {I,(0)I,(z)). These run times, moreover,
were short enough to avoid averaging effects which oc-
curred due to the forever changing nature of our coagu-
lating aerosol. The scattered intensity I, was measured
essentially instantaneously. The runs were limited to
10-20 min durations owing to the convection of the wall
depletion layers into the scattering volume as already de-

1201 polystyrene <r> = 0.091 um

o 0.6F
E |
o
(=]
+ 0.4}
o
< |
§ 20
E0.2-
<
Polystyrene <r> = 0.232 um
o 1 1 1 1 1
0 0.2 0.4 0.6
+9 3
N own(107Cm™)

FIG. 2. Testing the derived calibration constant: Plotted are
the measured number concentrations (calculated using a derived
calibration constant) vs the known number concentrations from
prepared suspensions of polystyrene latex spheres.
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scribed above. Furthermore, this limit was easily deter-
mined with the eye and found to correlate well with fluc-
tuations in the scattered intensities. After the onset of
these fluctuations, quantities dependent on I, were
significantly changed. We point out, however, that al-
though absolute intensity measurements were affected by
propagating voids through the scattering volume, the in-
tensity autocorrelation function was not. In fact, the
shape of (I,(0)I,(t)) was not visually influenced until a
significant number of particles began to gravitationally
settle out from the scattering volume. After the com-
pletion of the aerosol coagulation, a second calibration
run was performed which always agreed with the first to
within 3%.

IV. DATA ANALYSIS AND RESULTS

The general outline of the data analysis was the follow-
ing: (1) to determine the modal radius r,, of an assumed
ZOLD size distribution as a function of time from the
measured homodyne autocorrelation function, and (2) us-
ing ry,, the assumed ZOLD, and the measured scattered
intensity I, calculate the number concentration M, as a
function of the coagulation time. Then, the characteris-
tic coagulation time ¢, hence K, is found from the dy-
namic behavior of both ry,(¢) and M(¢).

A. The model radius r,,

The well-known mathematical expression relating the
first cumulant to the size distribution is

fnwul(r)n (rap,0,31)iy,(r,8)dr
fown(rM,o,;r)iv(r,O)dr

theor —
1

) (23)

where p,(r) is the first cuamulant for a particle of radius r
as given by Eq. (20). Also in the integrand, i, (r,0)
represents the scattered-light intensity of a particle of ra-
dius r at the given experimental scattering angle of
6=90°". For our particle sizes, i,(r,0) must be calculated
with the Mie algorithm [35]. Finally, the assumed ZOLD
n(ry,0,;r) is given by Eq. (17). To determine the dy-
namic behavior of ry(¢), we first fit the measured
(I,(0)I,(t)) to obtain u$® and then minimize the
difference & =p!"*" — u$** by numerically integrating Eq.
(23) while sequentially varying r,, until the minimum is
found. Following this procedure at different times during
a coagulation experiment yields 7,,(2).

As discussed above, the value we choose to represent
the self-preserving width is the one obtained via the light
scattering studies, i.e., o0;°=1.25. We have, however,
studied the effect of a variation of ¢;° in a range between
our estimated starting value of 1.20 and the analytical
value derived by Lee, 0,°=1.32. Choosing a reference
value, o,=1.25, and an arbitrary value for r,, we nu-
merically solve Eq. (23) for u{"*°"(o ;). Then, to estimate
the effect o;° will have on our determination of r,,, we in-
crement it to other values in the range 1.20-1.32 and
minimize the difference 8=pu'P*" (g ;) —u"* (o) again
by varying r,,. The results of the calculations are plotted
in Fig. 3. The variation over the entire o;° range is only
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FIG. 3. Variation of the modal radius r,, with the geometric,
self-preserving width o;°.

13%, which is acceptable for our analysis below.

It is interesting to note that in the Mie-scattering re-
gime where 6=90°,r,, shows the weakest dependence on
o . This weak dependence probably results from the an-
gular dependence of the scattered radiation. Conversely,
in the Rayleigh regime where the scattered intensity is
isotropic, and I, <r%v?), the strongest dependence on
o2 is observed. Because all of our aerosol systems are
scattering in the Mie regime, Fig. 3 confirms that our
analysis for r;; will not be overly sensitive to our choice
ofo..

For Kn—0, Eq. (23) shows that u, is related to the mo-
ments of the particle-size distribution. Using Egs. (10)
and (23) one can show

rM(t)er(to)[(t_to)/tc+1]z/3 (24)

since, by Egs. (20) and (21), uj ' ~r~u!/3. Equation (24)
predicts that a log-log plot of r,, vs t will approach
linearity as ¢>>t,. Alternatively, a log plot of r,, vs
t +t, should be linear for the proper value of ¢.. The dy-
namics of r,,(t), found from minimizing &= —pu§*",
are given in Figs. 4 and 5 where 1, =0 represents the start
of our data collection. By setting ¢, =0 we have some-

DOP Run 5(x2)

&1, = 4880 & Mn
—_ &
S | TS
hE sl . oo 9p
- ] o DOPRun 4
= o™
= P Ly
- .-
an® "
= ]
™ ]
1= . RPN | A e
100 1000 6000
t (sec)

FIG. 4. Log-log plot of time evolution of the experimentally
derived ry, (from an assumed ZOLD with o =1.25) for two
representative coagulation runs.
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FIG. 5. Data from Fig. 4 only the independent variable is
t +1t.. The characteristic coagulation time ¢, was varied until a
best fit to linearity was achieved.

what boldy assumed that our aerosol size distribution has
obtained a self-preserving form. This assumption is not
totally unfounded since at least 4 min of aerosol coagula-
tion takes place while the chamber is being filled and the
initial width o, ~1.2 is itself not far from the actual scal-
ing value.

Figure 4 shows log-log plots of ry, vs t for coagulation
runs 4 and 5. Both clearly show an approach to linearity
as t becomes large. Alternatively, Fig. 5 shows the corre-
sponding log-log plots of ry, vs t +¢.. For the data in
Fig. 5, t, was varied until a best fit to linearity was
achieved. The linearity was our criterion for determining
t. from ry(¢). Figure 5 gives the representative coagula-
tion runs that provide the upper and lower limits for the
experimental scaling exponent z/3. For the five experi-
mental runs, we found {(z/3)=0.3610.2.

For Brownian coagulation, z/3=0.333 since z =1
(A=0). Unfortunately, the Cunningham corrected
Brownian kernel is not homogeneous, but the dynamic
behavior of r,(¢t) shown in Figs. 4 and 5 suggests an
effective homogeneity of A.;=0.07+0.06. This value is
not unreasonable since our experimental conditions are
just outside of the Brownian coagulation limit and since A
is expected to increase to + in the Kn— oo limit. We
point out, however, that one must be cautious in inter-
preting A as a true kernel homogeneity since the Knud-
sen number is continuously changing during any given
run. In fact, Knudsen numbers varied by as much as
40%. As a consequence of the changing Knudsen num-
ber, we predict a time-dependent ¢, [see Eq. (16)].
Despite a changing ., our fitting procedure has forced
linearity upon the data in Fig. 5 when the data should
have appeared curved. The suppressed curvature conse-
quently leads to an increased value for z (hence A). The
increase, however, is within our experimental error for
determining z and we conclude that A =0, and this result
supports our earlier approximation to the Cunningham
corrected Brownian kernel [see Eq. (14)].

As Figs. 4 and 5 illustrate, the behavior of r,,(¢) is well
represented by Eq. (24), and therefore our assumption of
a scaling distribution at the start of data collection is
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justified. The scaling exponents z/3 are easily deter-
mined by linearizing ry(¢) with respect to the charac-
teristic coagulation time .. The best-fit values for the
t.’s in Fig. 5 are 40050 sec. However, because of the
changing nature of Kn, hence ¢,, our calculated values
for ¢, must be further questioned.

Unfortunately, we could not predict ¢, from the dy-
namic behavior of r,,(¢) from aerosol runs 1-3 because of
relatively short run-time durations. Consequently, the
shortened time intervals would not allow for a large
enough dynamical range in r;,(¢) and our plots of r,(¢)
vs t +t. were insensitive to any meaningful variation in
t.. We describe, below, another approach for determin-
ing more reliable ¢.’s for our aerosol systems.

As a test of the analysis given above, the Smolu-
chowski coagulation equation was numerically solved un-
der initial conditions closely resembling our experimental
ones. That is, an initial ZOLD was assumed, with
0=1.2, ry(0)=0.26 um and M,(t)=1.0X10’
particles/cc. The initial ZOLD evolved in real time, ac-
cording to the Smoluchowski equation, to a time
equivalent to our experimental run times. The dynamic
behavior of {#(¢)), resulting from the numerical solution,
is plotted in Fig. 6. Because the ZOLD is not a true solu-
tion to Smoluchowski’s equation, we derive an average
hydrodynamic radius from the first cumulant to test our
experimental results instead of using r,,. The numerical
results show that the temporal behavior of {7(¢)) is accu-
rately described with Eq. (24) and the dynamic scaling ex-
ponent z /3=0.38 is in good agreement with our experi-
mental results.

B. The number density M,(¢)

Our second method of analysis is to use the measured
scattered intensity to determine the aerosol number den-

3 -
Numerical Solution
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£ = 2 |
\"
A
=
1SS
v
1 Tl R | .
100 t (sec)
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)
j- 2
v
~ z/3=0.38 +0.01
A
=
£ S
\"
1 . f L .
100 300 t + t; (sec)

FIG. 6. Log-log plot of the dynamic behavior of the average
hydrodynamic radius according to Smoluchowski’s equation.
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FIG. 7. Time evolution of the number concentration M ( }‘)
for coagulation runs 1, 2, and 3. These runs used A,=5145 A.
The given slopes are equal to 2.05K .

sity M(¢). If the distribution has a scaling form, the
temporal behavior of My(t) [i.e., My(2)] will yield ¢,
hence K,

The total scattered intensity at time ¢ is given by

Iu(t)=M0(t)<1>f0°°n[rM(t),o;r]i,,(r,e)dr . (25)
To determine M(t) from I,(¢) we once again assume a
ZOLD size distribution with o ,=1.25. For ry(t), we
use the values found from minimizing &=ptPeor—y¢*Pt
and i,(r,0) is calculated using the Mie algorithm. @ is
the calibration constant determined from the Rayleigh
ratios before and after each experimental run. Numerical
inversion of Eq. (25) gives us M(t).

If our aerosol distribution is self-preserving, then from
Egs. (10) and (17) we predict for the scaled moments
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M—Z 05K gM(0)t +1 (26)
Mo(r) 700 ’
where A=0. Equation (26) suggests a plot of

M(0) /M) vs My(0)t is linear with a slope equal to
2.05K; and an intercept of 1. The results of our five
coagulation runs are plotted in Figs. 7 and 8. The ob-
served linearity for all five runs suggests a self-preserving
shape for the aerosol distributions. From a least-squares
fitting procedure, we find for our five runs an average
coagulation rate constant of (Kg)=1.95+0.17%10"
cm®s~!. The independent results for individual coagula-
tion runs are summarized in Table II and are discussed in
more detail below.

Using the measured values of K from coagulation
runs 4 and 5 along with Eq. (18), we calculate characteris-
tic coagulation times of 7, =405 and 410 sec, respectively.
These characteristic times are in good agreement with the
values 40050 sec found from linearizing the temporal
behavior of r,,(¢) by varying ¢, in Fig. 5.

TABLE II. Summary of the experimental results.

K K y(theor)
Run (rp) (um) (Kn) (C(ry)) My(0) (cm?) (t,) (sec) (cm3sec™!) (cm3sec™!)
1 0.29 0.23 1.29+0.045 2.9X10° 900 (1.92+0.13) (1.95+0.07)x 10~ 1°
X 10710
2 0.31 0.21 1.27+0.06 2.5%10° 1050 (1.8340.08) (1.92+0.09)x 10~ 10
x1071°
3 0.28 0.24 1.30+0.045 2.7X10° 830 (2.1740.27) (1.98+0.07)Xx 10710
X 10710
4 0.42 0.16 1.20+0.13 7.0X 10° 405 (1.734+0.09) (1.8140.20) X 10710
X 10710
5 0.375 0.18 1.2240.13 5.6X10° 410 (2.1240.20) (1.844+0.20)x 10710
x1071°
Smoluchowski 0.39 0.17 1.2140.13 1.0x 10’ 255 1.85%x1071° (1.83+0.20) X 10710
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We have used average Knudson numbers to estimate
the coagulation rate constants predicted by theory for
our experimental runs. From the initial and final values
derived for r,, we can calculate the averages {r ),
(Kn), and (C(r,)). The average values of these quan-
tities for each coagulation run are given in Table II.
Now, by defining K(th)=(C(ry))Ky=(C(ry))1.51
X 10719 we calculate the expected absolute coagulation
rates for our five experimental runs. The expected values
along with the experimental ones (K;) are found for
comparison in Table II. The uncertainties given for
(C(ry)) and K{(th) resulted from the range in Kn and
are small (4—11 %), usually smaller than the experimental
uncertainties in K. The expected and experimental
values agree within the error.

Figure 9 shows the numerical real-time evolution of
M, as derived from our numerical solution to Eq. (1).
Again, an initial ZOLD was assumed, with o=1.2,
ry(0)=0.26 um, and My(t)=1.0X 107 particles/cc and
allowed to evolve according to the Smoluchowski equa-
tion to a time equivalent to our experimental run times.
The slope of the line in Fig 9 is equal to aK|
=3.925X1071° cm’sec™! where a =(1+m, , ;m_, ).
We had previously assumed a ZOLD to evaluate these
moments. Here, however, we do not know the
mathematical form of the size distribution so we must
evaluate ¢ numerically. We find @ =2.10, therefore,
K,=1.87X10" cm?sec™!. This value is in good agree-
ment with the values of K (k) found in Table II.

We now investigate the changes that would occur in
the experimental coagulation rate K if 0 ,#1.25. Again
we choose o,+=1.25 and a corresponding value for
K4(0,)=1.51X1071° cm®sec ™! (the expected value in
the continuum limit). K (o) allows us to use Egs. (24)
and (26) to find ry(t;0,) and M,y(t;0.) over a
representative coagulation time interval of =~1100 sec.
Then using ry, and M, at a particular time within the
1000-sec duration, we numerically integrate Eq. (25) for
I,(t;0.). Now to determine the dependence of K on
o we increment o, within the range 1.20 to 1.32 and for

Numerical Solution

aK'=3.925x 10"%cm 3s™

a=210

M_(0) /M. (t

VllllllIIIJ_LllllllllllllJ

0 40 80 120
M.t ( 10*3s/cm3)

FIG. 9. Time evolution of the number concentration M(t)
according to numerical integration of Smoluchowski’s equation.
The value of the constant a was found numerically also.
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FIG. 10. Variation of the coagulation rate constant K, with
the geometric, self-preserving width o .

each increment solve for

Iu(t;aref)
fown[rM(t),o;r]iv(r,G)dr ’

My(t;or)= (27)

where ry(¢;0,) is determined using Fig. 3. Finally, we
use the M(¢;0,°) for a given o;° and Eq. (26) to deter-
mine K¢(o ) in the same manner as we did for the real
data. Our results are plotted in Fig. 10. As o varies
through the range 1.20-1.32, K, varies only 9%. Since
this variation is on the order of our experimental and
theoretical uncertainties, we conclude no significant
change would occur by choosing a value other than
o =1.25.

V. CONCLUSION

We have studied the coagulation dynamics of a liquid-
drop aerosol. Our aerosol systems were significantly into
the transition regime between the Brownian and kinetic
limits with mean Knudsen numbers of ~0.2. Our exper-
imental method used a combination of static and dynam-
ic light-scattering to determine the temporal behavior of
the modal radius r,(¢) and the number concentration
M,(t) of an assumed ZOLD. We have found that the
scaling theory predicts the dynamic behavior of the mo-
ments reasonably well.

From the scaling theory, we calculated the kernel
homogeneity A and, most importantly, the absolute
coagulation rate K of our coagulating systems. Both K
and A agreed well with theory and a real-time numerical
solution to Smoluchowski’s coagulation equation.

We have found the assumption of a ZOLD was not
critical to representing the true particle-size distribution
since our analysis was in agreement with the numerical
solution to Smoluchowski’s equation. The assumed
ZOLD was relatively insensitive to the self-preserving
width o/°.

Our experimental methods were the first to measure K
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in a coagulating aerosol using only optical perturbations
hence minimizing external influences which could have
affected the results. It was the time-invariant nature of
our aerosol particle distribution that allowed for the
determination of K,
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