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Localized phase jumps in wave trains
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I. INTRODUCTION

We present an experimental observation of traveling
holes in wave trains, reminiscent of those predicted by
Bekki and Nozaki [1]. Such objects or defects connect
wave trains of different wave numbers, and are character-
ized by strong localized amplitude and phase variations
at their cores. The experiment is Rayleigh-Benard con-
vection, performed with a fluid of low Prandtl number in
an annular cell in which the appearance of concentric rolls
is forced above threshold. Under this condition, convec-
tive axisymmetric rolls may then become unstable versus
an oscillatory instability [2] that leads to the formation of
wave trains which propagate along the rolls axis. Under
some circumstances, presumably related to the presence
of a cell inhomogeneity, a strongly modulated pattern
forms, showing a region of lower amplitude, where the
wave defects have been observed. This phenomenon is
generic since once the depressed area is formed, it travels
along the annular cell in a quasistationary manner, pre-
senting phase jumps whose position is apparently uncor-
related with any special location in the cell. Although the
stability of the above-mentioned traveling holes has not
been studied, they are likely to be unstable [3]. In gen-
eral, they do not appear spontaneously in ordinary pat-
terns which display stable homogeneous traveling wave
trains. We believe that, in our experiment, the strong
wave amplitude modulation drives the wave in a highly
perturbed state that leads to the formation of traveling
holes.

For clarity purposes, we first give a description of the
isolated hole solution, together with corresponding nu-
merical simulations. We point out the noticeable features
of this traveling-hole [1] defect. Such an idealistic isolated
object has not been observed experimentally. Then, we
turn to the experimental situation where we believe to
evidence several coupled traveling holes in a modulated

wave train [4, 5]. They exist for a finite period of time.
Finally, we support this observation by comparing the
experimental results with a numerical simulation where
we initially impose a strong wave modulation that gives
rise to transient holes.

II. THE TRAVELING-HOLE SOLUTION

Traveling holes [1] are analytic solutions to the com-
plex Ginzburg-Landau equation. The latter describes the
evolution of oscillatory patterns [6], and turns out to be
also appropriate for the description of traveling waves.

A. Amplitude equations for a wave pattern

The oscillatory instability of Rayleigh-Benard convec-
tive rolls takes the form of waves that propagate along
the rolls axis. These waves are easily visualized by the
wiggling shape of the cold stream of the roll pattern. As
we have already shown [7], they may be described by
means of two coupled Ginzburg-Landau equations:

rp(Oi —Vs')A = cA + (p(1+ ici)DzA

g(1 + icz)(IAI' + PIBI')A
(2.1)

rp(Bi + Vsa )B = cB+(p(1+ici)B B
—g(1+ icz)(IBI'+ &IAI') B

In this description, the position of the cold stream is given
by

y = A exp[i( —kpz+4/pt)]+ B exp[i(kpz+cupt)]+c. c.+
(2.2)

where ko and wo are the critical wave vector and fre-

quency measured at threshold, and A and B are the
slowly varying amplitudes of the right and left traveling
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waves that appear at threshold. The parameters (0 and
7 0 are respectively the correlation length and the charac-
teristic time of the system, and V& is the group velocity.
The temporal frequency above threshold depends on the
spatial wave number through c1, and on the amplitude
of oseillations through e~. If we introduce dimensionless

quantities A' = gg/eA, B' = gg/~ B, z' = +ez/(0,
t' = st/ro, we get the following equations (after dropping
the primes):

(8, —cB )A = A+ (1+ ici)s9 A
—(1+ ic2)(lAl'+ plBl')A,

(2 3)
(0~ + ca )B= B + (1+ici)D, B

-(1+ ic2)(IBI2+ plAI2)B

where c = Vitro/(+e(0). Then, we have only three rel-

evant parameters, namely c~ and c~ already described
above, and P whose real part rules the competition be-
tween traveling [(A = 0 and B g 0) or (A g 0 and
B = 0)] and standing (A and B both finite) waves.
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B. Traveling holes

In [1], Bekki and Nozaki give analytic solutions to the
complex Ginzburg-Landau equation

BiA = A+ (1+ ici)A —(1+ ic2)lAl A, (2.4)

that they describe as "traveling holes. " They can be
written in the form

bi exp(ag) + b2 exp( —~()
)

exp i Ii'z —Qt

[ exp(a() + exp( —a()

(2 5)

FIG. 1. Plot of the amplitude and the phase of a traveling-
hole solution [1] of Eq. (2.4) with ci = 0.5 and c2 = 2.3. The
asymptotic wave numbers are k&

——0.392 and k2 = —0.477(2).

in Fig. 2). The amplitude of A does not reach zero at the
core of the solution, but a minimal value that depends on
u. The amplitude depression is maximal when o equals

Only for this value, A = 0 at ( = 0. Finally, let us
stress that traveling holes are not stationary in general,
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where f = z —ctht. The complex quantities bi and b2,
as well as t;he real constants x, K, 0, and ao, depend on
the parameters ci and c2 that appear in the Ginzburg-
Landau equation (2.4). A plot of the amplitude and the
phase of A corresponding to one of these traveling-hole
solutions is shown in Fig. l. Each solution connects two
waves with different wave vectors. Namely, when z & 0,
the solution behaves like a homogeneous wave of ampli-
tude lbil and wave vector ki as ( +oo; for ( —oo, it
corresponds to a wave of amplitude lb2l and wave vector
k2. These asymptotic plane waves are solutions to (2.4)
and are given by
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where

01,2 — C2 + (C2 ci )ki 2 ~

At ( = 0, the two waves meet, leading to a local-
ized amplitude depression (or hole) as well as a strong
phase gradient. The latter is related to the phase shift
0 = arg(bi, b2) between the two asymptotic waves [8]. It
has to be emphasized that the phase of A has no discon-
tinuity at that point (see enlargement of the core region
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FIG. 2. Enlargement of Fig. 1 about the core of the trav-

eling hole.
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but travel at a speed cth [see (2.5)], given by

Cth —(Cl C2)(ki + k2).

(ki + k2)2 (ki —k2)2
2 2

Q1 Qg
(2.7)

This velocity is nothing but the mean value of the group
velocities of the two asymptotic waves. It is zero when0:7C.

For given values of the external parameters cq and c2,
there exists a one-parameter family of traveling holes [1]
that can be parametrized by one (say ki) of the two
asymptotic wave numbers k1 and k2. They must satisfy
[1] an equation of the form

where Q1 and ap depend on c1 and c2. Then, an easy way

[1] to find the asymptotic wave numbers of a traveling-
hole solution consists in finding its velocity ct-,h and re-
porting its value on the graph of Fig. 3(a), which has
been obtained from Eq. (2.7). The two values ki and k2
are then read at the intersection of the ellipse with the
straight line c = cth. The value of the phase shift o can
be obtained in the same way by means of Fig. 3(b). This
graph shows that the possible speeds of traveling holes lie
in an interval —c ( ct-, h & c . When ct;h ——+c
k& and k~ are equal, and o. goes to 0 or 2x. In this limit
case, the two asymptotic plane waves are identical, and
the hole disappears. If kq

——k~, we recover the station-
ary hole solution, or "black soliton, " described in [9] and
[10]. The possible values of ki and k2 are also bounded
by +k „[seeFig. 3(a)]. The velocities associated with
+k „arediferent from c

C. Traveling holes in wave patterns
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We can expect that traveling-hole solutions also ex-
ist in the case of two coupled Ginzburg-Landau equa-
tions like (2.3). However, since ~AI decreases at the core
of these defects, ~B~ should grow about this point, and
therefore exhibit a pulse-shaped envelope. We have nu-
merically checked that such solutions are possible for
Eqs. (2.3). However, depending on the value of Re(P),
we can make IBI so small that it can be considered equal
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FIG. 3. (a) Asymptotic wave numbers ks and k2 of the
hole solutions [Ij vs their speed csh. The figure corresponds to
cq ——0.5 and c2 ——2.3. We have shaded the wave numbers that
are phase unstable. We have marked the kq and k2 values that
correspond to Fig. 1, and shown the associated hole velocity
(vertical dashed line). (b) Phase jump o between the two
asymptotic waves vs the hole velocity c&l„for c~ ——0.5 and
C2 = 2.3.
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FIG. 4. Numerical simulation of Eqs. (2.3), with c& = 0.5
and c2 ——2.3. We have plotted the local +rave number, the
amplitude, and the phase of the complex order parameter A,
as functions of space.
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to zero everywhere; in this case, its pulse shape disap-

pears. Under these conditions, Eqs. (2.3) can be re-

duced to a single equation for A, which is nothing but
the complex Ginzburg-Landau equation (2.4) written in

a frame moving at speed c. Then, traveling-hole solu-
tions to (2.3) are exactly the traveling-hole defects de-

scribed above. In periodic boundary conditions, a trav-
eling hole is coupled to a shock [1], which connects the
two asymptotic states of wave numbers ki and k~, and
moves at the same speed ct, h as the hole. Together, these
two objects make a persistent localized pattern [1]. Fig-
ure 4 shows a numerical simulation of Eqs. (2.3) with

periodic boundary conditions. Here, Re(P) = 3 and

~B~ is always less than 10, which is far below the
precision of the simulation; in other words, B = 0 ev-

erywhere. The measured asymptotic wave numbers are

kq
——0.392 6 0.001 and kz ———0.477 + 0.001 (same values

as in Fig. 1), and the numerically measured instantaneous
velocity c„„m= 0.168+ 0.01 falls close to the range given

by cqh ——(cq —cq)(kq + kq) = 0.153 6 0.004. The config-

uration hole shock presented here is not stationary, but
the hole slowly changes its asymptotic wave numbers as
time goes on. As a consequence, the distance between the
hole and the shock slightly decreases in time, while the
speed of both increases. This might explain the differ-

ence between c„„~and c,h. Nevertheless, these changes
are slow enough to allow a good characterization of the
traveling-hole solution.

the development of the instability in this particular case
(another possibility could be the existence of an absolute-
convective instability threshold, as pointed out in [14] for
spiral defects).

III. DESCRIPTION OF THE EXPERIMENT

A. Apparatus

We have studied the evolution of wave trains due to
the oscillatory instability in an annulus, using an appa-
ratus similar to the one described in [15]. The control
parameter of the experiment is the Rayleigh number Ra
which is proportional to the temperature difference AT
applied to the fluid layer. In this experiment we have

used a large-aspect-ratio cell with an outer diameter of
39.7 mm, an inner diameter of 30 mm, and a thickness of
1.18 mm. We had imbedded a resistive wire inside both
circular walls made of molded plastic. We adjust the
electrical current flowing in these resistances so that the
horizontal temperature gradient, produced in this man-

ner, stabilizes a two-concentric-roll pattern in the cell.
The radial width of the cell was chosen so that the first
instability encountered while increasing Ra is the oscil-
latory instability. The pattern is visualized using the
shadowgraphic method [16]; the cold stream between the
two concentric rolls acts as a focusing lens, and produces
a white line on the camera image.

D. Phase stability of the asymptotic waves

Plane-wave solutions to Eq. (2.3),

A = Ql —kz exp[i(km+ At)], B=0, (2.8)

are unstable if

2kz(1+ c&)
1 + c~c2

i.e. ,

or

1+cic2 & 0

k ) kp kh: 1
i

1 + 2 1+ cgcz)

(2 9)

This criterion [11] corresponds to Benjamin-Feir [12]
or Eckhaus [13] instabilities. If cz ~ cq, Eq. (2.9) gives
the usual Eckhaus criterion, where kE,kh

——. In this
limit situation, only plane waves survive and there are
no traveling-hole solutions.

When cy and cg are different and not equal to zero,
the ellipse of Fig. 3 leads to kq g k2, and k „may be-
come greater than kE~kh. This means that pairs (kq, k2)
exist with either kq or k2 falling in the unstable band
defined by Eq. (2.9). In Fig. 3, we have shaded the re-

gion of unstable wave numbers, for the values of cq ——0.5
and cp ——2.3. We find that every hole solution has at
least one wave number which is phase unstable and, in
some cases, both. This last case corresponds to the pat-
tern of Figs. 1 and 2. However, finite-size effects prevent

B. Data acquisition

The spatiotemporal evolution discussed later takes ad-
vantage of the ability of recording the wave evolution at
each point in the cell in real time. We now briefly ex-
plain how we achieve this measure. When Ra is smaller
than the critical value for oscillations Ra, , the roll pat-
tern is stationary and the cold stream separating the two
rolls forms a regular circle. Above Rae~ the oscillatory
instability leads to the development of wavy undulations
of this circle. Using a frame grabber in a personal com-
puter, we record the space-time evolution of this white
line. We have chosen a square pixel camera synchro-
nized with the horizontal clock of the frame grabber so
that the white line appears as a perfect circle. Inside
the 512 x 512 pixel image, we define 256 radial segments
equally spaced on the circle and extending over 16 pix-
els. These 256 x 16 pixels correspond to the data that
we actually record for each time step. Storing this infor-
mation on a disk every three TV images, we sample the
time dynamics with a frequency of 8.33 Hz, large enough
to study the typical 1 Hz frequency of the oscillatory in-
stability. We have been able to record this information
over 2048 time steps. After this raw information has been
saved, we treat the data: first, for each 16-pixel segment,
we estimate the position of the white circle, producing
a two-dimensional array of 256 positions for 2048 time
steps. Then we achieve some filtering, only in time, for
each segment position. By Fourier transform, we ap-
ply a bandpass filter to the time information in order to
keep only the frequency corresponding to the fundamen-
tal frequency of oscillations. Furthermore we reconstruct
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a complex signal by keeping only the positive wave num-
ber components of the Fourier space and transforming
back to the real space. Having a complex signal is very
convenient to determine the amplitude of the oscillations
and the local wave number, which we measure through
the phase shift between the values of the complex signal
at two adjacent points.

IV. EXPERIMENTAL RESULTS

A. Time evolution at high Rayleigh number

Above Ra= 1.2Ra«, the oscillatory instability always
leads to a monotonic evolution with either a clockwise or
anticlockwise wave train. After a transient, during which
wave trains propagating in opposite directions compete
and form sink and source defects, a homogeneous wave
invades the entire cell and leads to a monoperiodic spec-
trum. Different wave numbers have been observed with
a mean value corresponding to 38 wavelengths along the
annulus. In these states, the amplitude of the wave is
fairly homogeneous along the cell, as well as its local wave
number. These states remain stable in a wide range of
Rayleigh number, provided Ra& 1.2Ra,

around the cell. Around Ra= 1.1Ra, , these modulations
take a simple form; a unique and slowly varying depres-
sion of the amplitude of oscillations, and a wave-number
modulation in the region of high amplitude. Inside this
depression which typically extends over 10 wavelengths,
the amplitude is reduced at least by an order of mag-
nitude and the local wave number varies strongly. In
the region of large amplitude, the wave number changes
nearly by a factor of two between both ends.

Lowering even further the Rayleigh number leads to
the formation of several extended amplitude depressions,
which are simultaneously present in the cell and sepa-
rated by wave trains that propagate in opposite direc-
tions. Very close to the threshold of the oscillatory insta-
bility, the pattern appears as an assembly of small wave
trains propagating in both directions and continuously
varying in amplitude. Time spectra measured in this
state are chaotic. The growth of the amplitude of oscil-
lations seems continuous with Ra and there is no clear
region in the cell where the wave trains are smaller in
amplitude. However, the chaotic evolution of the wave
trains complicates the exact determination of the oscilla-
tion threshold.

B. Time evolution at low Rayleigh number C. The traveling amplitude depression

At low Rayleigh number, homogeneous wave trains be-
come unstable and strong slowly varying amplitude as
well as wave-number modulations develop along the pat-
tern. Ke presume that the origin of the building up of
these local modulations is related to a cell inhomogeneity.
However, once they have been produced, these modula-
tions do not reAect the cell inhomogeneity since they are
not fixed at some spot in the cell but actually slowly turn

We have studied the simplest nonstationary pattern
having one amplitude depression turning around the cell,
In Fig. 5, we show the shape of the cold stream boundary
when this depression is present in the pattern. In Fig. 6,
we show the time evolution of the wave train in the entire
cell. The grey scale corresponds to the local displacement
of the cold stream from its reference circle obtained when
no oscillation appears along the rolls. We have recorded
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FIG. 5. Shadowgraphic picture of the wave pattern at
r = 0.1, for which a single amplitude depression is present.
The white line in the annular cell represents the cold stream
separating the two concentric rolls. The traveling wave corre-
sponds to the wiggling part of this white line, and is turning
clockwise.
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FlG. 6. Space-time evolution of the wave train shown in

grey scale. Black (white} pixels correspond to an inward (out-
ward) displacement of the white line with respect to the refer-
ence circle. The large amplitude wave depression corresponds
to the grey oblique strip in this recording.
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this signal over a time long enough so that the amplitude
depression (that appears as the grey, slightly blurred re-
gion) actually makes more than one turn around the cell.
Figure 6 shows only a part of the recorded signal.

The large amplitude wave train presents two very dif-
ferent regions: in a frame moving with the wave train,
the leading edge is quasistationary in shape whereas the
trailing edge is irregular in time and space. To obtain
information on the wave, we have averaged the pattern

60—
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features (wave number, amplitude) in a moving frame
having the same velocity as the amplitude depression.
The results are shown in Fig. 7. In the leading edge
of the wave train, averaging leads to a noise free pattern
having a well-defined amplitude and wave number. In the
trailing edge, which typically extends over one quarter of
the cell, we observe a noisier structure, corresponding to
a region where the pattern is time dependent. In the
stationary part of the pattern, the local amplitude and
wave number present two plateaus [see Fig. 7(b)], corre-
sponding to a pattern evolution from wave number kh;
to wavenumber kI~. This evolution is slow and the wave
amplitude adiabatically adapts to the local wave num-
ber. Since kh; and k~o are quite different, it is possible to
obtain valuable information about the wave-number de-
pendence on the amplitude. By plotting the square of the
local amplitude versus the wave number [see Fig. 7(c)],
we obtain the expected parabolic shape, whose curvature
gives a value of (o —0.42 compatible with the value of
go ——0.57 obtained in a previous experiment [7].

The trailing edge of the wave train appears to be un-
stationary. Here, the main feature is the pseudoperiodic
nucleation of spatiotemporal dislocations. As may be
seen in Fig. 8, the formation of new wavelengths occurs
roughly at the same place in the pattern (in a frame mov-
ing with the amplitude depression); on the other hand,
the disappearance of wavelengths follows a more random
mechanism. The interesting phenomenon that we want
to emphasize here is that each dislocation nucleation pro-
duces a phase jump (seen as a white or dark line) which
propagates in the pattern and in most cases leads to the
occurrence of a dislocation of opposite sign, Although it
is not surprising to see a dislocation producing a phase
jump, usually such a phase gradient diffuses, but does
not propagate. In Fig. 8, where we have displayed the
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Local wave number

(Units of P7r jL)
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FIG. 7. This series of figures represents the wave features
obtained by averaging in the frame moving with the amplitude
depression. (a) Wave amplitude. Note the strength of the
depression. (b) Local wave number. Note that, in the leading
edge of the wave train, the wave number evolves smoothly
from 39 to 25. (c) Square of the amplitude vs local wave
number, obtained from the data corresponding to the leading
edge.
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FIG. 8. Space-time evolution of the local wave number.
The grey scale corresponds to 80 for black lines and 0 for white
ones. These limits extend far beyond the range of linearly
unstable wave numbers (25—50). Thus the black (k = 80) and
white (k = 0) lines visible here correspond to phase jumps in
the pattern.
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local wave number in grey scale, phase jumps correspond
to high values of the local wave number and thus appear
as white or dark lines. We emphasize that the wave num-
bers corresponding to either white or black lines are not
linearly unstable [17] according to the results of Fig. 7(c),
which means that these wave numbers cannot correspond
to a propagating wave, but are the signature of a phase
jump. All the white and black lines clearly propagate
with a relatively similar velocity, which differs from the
velocity of the wave train. At the location of each phase
jump, the wave amplitude drops to a small value over
a short distance (typically one or two wavelengths); we

shall refer to this structure as a "hole." In Fig. 9, we

present the wave shape along the cell, where both the
extended amplitude depression and holes of amplitude
may be seen. The velocity of the holes is typically twice
as big as that of the amplitude depression.

Finally, bursts of wave trains propagating in the direc-
tion opposite to that of the large wave train often appear,
starting from the large amplitude depression; however,
they never reach an amplitude larger than one tenth of
the dominant wave component, and always disappear.
Apparently, this wave component has no significant ef-
fect on the evolution of defects. This is not the case at
lower Rayleigh number, since waves propagating in both
directions have similar amplitudes.

To summarize, we observe the spontaneous creation
of traveling dips in a traveling wave pattern. They ap-

~ F ~

I
~ ~ ~ ~

I
'I ~ ~ ~

I
~ ~ 1 ~

I

r~80
g cu

Q w

a5 Qg~ 40

Direction of
propagation

20 ~ ~ ~

~ I ~ ~

I
~ ~ ~ ~

I
~ ~ ~

~ I a ~ I t I I s a

~

I
I ~ I ~

I
~ ~ I

40

vdV Holes

20

0 .-

—20-

—40-

~ I ~ I I ~ ~ ~ I I ~ ~ ~ ~ I I I I ~ I ~ ~ I ~ I

50 100 150 200 250
Position along the annulus

FIG. 9. Wave profiles sampled at a. given time (indicated
by the arrows on Figs. 6 and 8). Top: local wave number
of the wave profile shown in the bottom graph; notice the
three peaks indicating the holes. Bottom: displacement of the
cold stream and its amplitude versus space. The amplitude
depression extends over ten wavelengths, whereas the holes
typically extend over one wavelength.

pear in a region of low amplitude and propagate through
it. They change their depth and the value of the phase
jump at their core as they move. In the following, we

give a possible mechanism for this phenomenon. More
precisely, we show that traveling holes reminiscent of the
analytic solutions described in Sec. II may spontaneously
be created in an amplitude depression of a wave pattern.

V. COMPARISON WITH THE
TRAVELING HOLES DESCRIBED

BY BEKKI AND NOZAKI

A. Phase instability

As shown in Sec. II, traveling-hole solutions also ex-
ist for Eqs. (2.3). However, apart from the fact that
they travel at constant velocities, they feature no par-
ticular dynamics. In order to make a closer comparison
with the behaviors observed in the experiment, we need
a mechanism to make such objects appear and disappear
in time.

To explain the experiment, we want to show that a
phase unstable pattern may lead to the formation of
holes.

B. Numerical simulation

According to (2.9), we can make unstable a plane wave
of wave number I- by choosing either 1+ c~ c2 negative or
positive but small, or 1+ c2 (or equivalently ~c2~) large.
Here, we know from the experiment that we are far from
the Benjamin-Feir instability, i.e. , 1+c1c2 is neither neg-
ative nor close to zero. Thus, we are interested in the dy-
namics of Eqs. (2.3) when c2 is large (with 1+cic2 ) 0)
and when initial conditions are such that phase insta-
bility will develop. For given values of c1 and c2, there
is a critical amplitude ~A~, below which plane waves of
wave number k and amplitude IA~ = gl —k2 are unsta-
ble [it is given by IAI, = gl —kE2,kh', see formula (2.9)].
We have chosen an initial condition that exhibits a large
amplitude depression and a varying wave number, ac-

cording to the formula k(z) = gl —IA(z)~2. Besides,
the amplitude IAI was smaller than IAI, at the center of
the large depression. This reproduces the experimental
situation for which we have an amplitude depression and
a wave pattern whose amplitude adiabatically adapts to
its phase [at least in the trailing edge of the wave train;
cf. Fig. 7(c)].

The dynamics of Eqs. (2.3) with such an initial condi-
tion is shown in Fig. 10. The main feature is that, simi-
larly to what is observed experimentally, objects strongly
reminiscent of the above-described analytic traveling-
hole solutions appear inside the amplitude depression.
However, since such a large amplitude variation is not
stable, it disappears soon, but traveling holes keep on
appearing and disappearing at random. Each of them
is associated with a high phase gradient at its core and
travels at a speed different from the group velocity c. The
value of this speed is hardly measurable, since the value
of the amplitude at the core of a dip, and therefore the
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FIG. 12. Wave profile and local wave number at t = 22,
for the simulation of Fig.10. Note the low amplitude and the
high phase gradient at the core of the dip.

dip itself, change in time. Nevertheless, these objects are
strongly reminiscent of the analytic traveling-hole solu-

tions described by Bekki and Nozaki. On both sides of
the localized region where these dips are observed, the

C
~9
EO
O0

Time

FIG. 11. Spatiotemporal diagram (from t = 5 to t = 31)
for y given by (2.2). It corresponds to the same simulation
as in Fig. 10. For the "reconstruction" of y we have chosen
ko = s56l170 and uo = 10s.

amplitude is space dependent and, as a consequence, the
local wave number also varies spatially. Hence, we have
the following picture: because of phase instability, am-

plitude modulations are enhanced, and give rise to the
formation of dips that further disappear, while new ones
are created. Each time one of them reaches a zero am-

plitude value at its minimum, A vanishes at this point
and this event appears as a spatiotemporal dislocation
in the (z, t) diagram for y [given by (2.2)]. However, all

dips do not give rise to such dislocations, since most of
them first decrease their minimum amplitude and then
increase it before it has reached zero. Figure 11 shows the
spatiotemporal diagram for the "reconstructed pattern"

y associated with Fig. 10, where few dislocations are vis-
ible. This is to be compared with Fig. 6. In both figures,
note the change of slope of the lines corresponding to
the displacement of wavecrests, on both sides of the grey
strip. It is due to the slow change of wave number in
the region of high amplitude. Till the initial large ampli-
tude depression persists, B exhibits a maximum where
A is minimum, and patterns involving two waves are ob-
served in this region. However, IB~ is always less than a
few percentages of the asymptotic amplitude of A. When
the large amplitude depression on A disappears, B can
be considered equal to zero everywhere, even at the cores
of the traveling holes. The shape of y and the local wave
number at time t = 22 are shown in Fig. 12, and are to be
compared with the experimental pictures of Fig. 9. Even-
tually, since the homogeneous state is stable, the system
restabiiizes one traveling hole coupled with a shock.

C. Discussien

We believe that the propagating phase jumps we have
experimentally observed in the trailing edge of the wave
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train are related to the traveling holes discussed above.
More precisely, we know from the numerics that traveling
dips which have the same characteristics as the analytic
solutions described in [1] can appear spontaneously in
an amplitude depression, because of the phase instabil-
ity of the local wave pattern. The dynamics that en-
sues is quite similar to what is observed experimentally.
We thus have the following interpretation of the exper-
iment. An inhomogeneity of the cell produces a large
amplitude depression of the wave pattern. In the leading
edge, it corresponds to a change in the wave number, and
the latter goes above the Eckhaus instability threshold.
The existence of locally unstable wave numbers leads to
the formation of traveling holes which propagate through
the amplitude depression, and then disappear while new
ones are created. The large amplitude depression, which
is permanent in the experiment, is not described by the
coupled Ginzburg-Landau equations we have considered.
That is why the amplitude depression of the initial con-
dition could not persist in the numerical simulation. The
existence of a large depression in the experiment has re-
ceived no convincing explanation yet, though it might be
due to large scale flows [18]. We have tried to measure
the values of the phase jumps in the experiment, but
we always observe several traveling holes simultaneously,
which make any accurate measurement diScult. In the
same way, the velocity of these defects is relatively well
defined, but we do not know the group velocity nor the
values of c] and c~ accurately enough to make any reli-
able comparison.

VI. CONCLUSION

The conclusion of this paper is twofold. First, we have
given a detailed description of a rather puzzling pattern

observed experimentally, namely a wave train whose lo-

cal wave number varies in space, and whose leading and
trailing edges end in an amplitude depression. We have
shown that this is made possible through the creation
of traveling holes in this dynamically active region. As
shown in the numerical part, their origin is likely to be
due to a local destabilization of the pattern. More pre-
cisely, they can be spontaneously created in an ampli-
tude depression if the local wave number goes above the
Benjamin-Feir-Eckhaus threshold. Second, we have char-
acterized these dips, which are strongly reminiscent of an-
alytic traveling-hole solutions to the complex Ginzburg-
Landau equation. From a theoretical point of view, in

the same way as point defects are spontaneously created
when a two-dimensional pattern becomes phase unstable
[19, 20], the appearance of traveling holes seems to be
a rule in the time evolution of phase unstable solutions
to one-dimensional Ginzburg-Landau equations [21, 22].
It was then of real importance to observe these objects
experimentally, since they appear as the one-dimensional
analogs of dislocations or spirals, though they are likely
to be unstable defects.
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