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A model for randomly stirred or homogeneous turbulent fluids is analyzed using renormalization-

group methods on a path-integral representation of the Navier-Stokes equations containing a spatially
and temporally colored noise source. For moderate Reynolds numbers and certain values of the dynam-
ic exponent governing the noise correlation, an additional scaling regime is found at wave vectors k
beyond those where the Kolmogorov 3

law holds. In this case, the energy spectrum decays as k

where 1 (z (2, the fluid homodyne-scattering function decays as (time) ', and the velocity-
distribution function (as characterized by its skewness) deviates from a Gaussian. The additional scaling
region disappears, and the Kolmogorov constant and Prandtl number become universal in the limit of
infinite Reynolds number. In three spatial dimensions, the latter two equal —'(

3
)' and &0.8, respec-

tively. The recent homodyne scattering experiments of Tong and co-workers [Phys. Rev. Lett. 65, 2780
(1990)]are analyzed, and the connection of the new scaling region with intermittency is discussed.

PACS number(s): 47.25.—c, 05.40.+j, 42.25.Kb

I. INTRODUCTION

and the flatness,

([v„(r)—v„(0)]')
5(r) =

([v„(r)—v„(0)])
(1.2)

Self-similar features of homogeneous turbulence were
first discussed by Richardson [1] and by Kolmogorov [2].
According to Kolmogorov's theory, in the cascade or
scaling region, the turbulent part of the kinetic energy of
the fluid is transferred, without dissipation, from larger
length scales to smaller ones until the dissipative scale is
reached. Hence, the normal kinematic viscosity plays no
role in this scaling range, which is often referred to as the
inertial range. As a consequence, dimensional analysis
implies that the turbulent fluid's kinetic-energy spectrum
E(k) and the effective viscosity v(k) must satisfy
E(k)=CK,&eoi k i and v(k)~eoi k i, respectively,
where k is the wave vector, and co is the energy injection
rate per unit mass of fluid. Moreover, co is assumed to be
absolutely constant in both time and space, and the Kol-
mogorov constant C~„is believed to be universal.

The assumption that co is absolutely constant requires
that spatial and temporal fluctuations in co be ignored,
i.e., the nonuniformities in energy transfer in the inertial
range [3,4). These fluctuations may result in intermitten-
cy that can manifest itself in several ways. For example,
the energy spectrum may decay faster than the —,

' law and
the velocity probability distribution can have large devia-
tions from a Gaussian. The simplest measures of the de-
viation of the velocity distribution from a Gaussian are
given by normalized cumulants such as the skewness,

( [v„(r)—v„(0)]')
s(r)—=

([v„(r)—v„(0)]')'"'

where v„(r)is the radial component of the fluid velocity
field, v(r, t), and the angular brackets denote an average.

The skewness is a constant in the inertial range in the
Kolmogorov theory. However, in an intermittently tur-
bulent fluid, in the small-r limit, the skewness should
diverge for small distances, thereby showing strong devi-
ations from a Gaussian distribution. By postulating an
asymptotic behavior of the variance of the logarithm of
energy dissipation as ol„,—A+981n(L/ld ), where L is
the scale where energy is injected, Id is the scale where
the viscous damping becomes important, and B is a posi-
tive number, Kolmogorov [4] showed that E ( k )
—k i and that s (r) —r i . Since then several
models have been proposed to describe intermittency
[&-9]

In most models, with the notable exception of Ref. [9],
the Reynolds number R, never plays an important role,
in that corrections to the —,'law are independent of R, . In
reality, however, experiments show nontrivial R, depen-
dence [10],although for sufficiently large Reynolds num-

ber, the Kolmogorov behavior of a turbulent fluid is ob-
served at scales smaller than the energy injection scale I.,
while intermittency is observed at even smaller scales.
These two regions are separated by a crossover scale l, .
As the Reynolds number is further increased the cross-
over scale I, is reduced, ultimately approaching the dissi-

pation scale Id. As R,~~, the Kolmogorov —,'law
should be observed at all relevant scales. This scenario is
depicted in Fig. 1.

The preceding discussion implies that the Reynolds
number plays a crucial role in the inertial range, small-
scale intermittency regions and dissipative ranges, and
moreover, that the Kolmogorov region is a universal lim-
it of turbulent fluids as R, ~00. Thus, the energy spec-
trum should also be a function of Reynolds number, hav-

ing the form
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E(k)=g(kl, (R, ))eo k (1.3)

and that

CK,) as x~0
x '~ '"' for 1«x «l, (R, )/l~ .

+(x)- ' (1.3b)

With this type of crossover function, the energy spectrum
in the intermittency region becomes E(k)-k ", where
we expect that g& 3.

The application of renormalization-group methods to
the study of the dynamical properties of systems with an
infinite number of degrees of freedom has resulted in
powerful tools for studying scaling properties and calcu-
lating exponents or crossover functions [11—13]. The
scaling and universal aspects of isotropic turbulent fluids
suggest that renormalization-group methods can be used
to advantage here as well [14—17]. The starting point in
such calculations is the nonlinear Navier-Stokes equa-
tions to which a stochastic force, or noise, with certain
assumed statistical properties, is added.

Recently, Yakhot and co-workers [16] generalized the
work of Forster, Nelson, and Stephen [14] on fluids with
a random stirring force, and applied their results to mod-
el a turbulent fluid. For a given wave vector k and fre-
quency co, the random stirring force correlation functions
Q(k, to) used in Refs. [14] and [16] can be written in the
form

Q(k, co) =2yk (1.4)

with implied upper and lower cutoffs in k, i.e., lz and
L ', respectively (cf. Fig. 1). The exponent y is set to—2 or 0 in models A or B of Ref. [14], respectively. In
Ref. [16], the choice y =d was made in order to obtain
Kolmogorov's —,'law in the small-wave-vector (ir) limit.
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FIG. 1. Characteristic regions in turbulent flows and their
crossover length scales. 1*=1/sc, cf. Eq. (3.47). The arrows
indicate the directions in which the crossover scales move when
the Reynolds number is increased (cf. Sec. III). Note that the
intermittency crossover scale is a strong function of the Rey-
nolds number, cf. Eq. (3.49), and will merge with the dissipative
scale.

where 1,(R, ) is the crossover length. Whether either
f(x) or l, (R, ) is universal is not obvious; nonetheless, we
expect that

(1.3a)

+vV v(r, t)+F(r, t), (1.5)

where incompressibility implies that

V v(r, t)=0. (1.6)

The force F(r, t) results from the interactions with the
boundaries, and as such is not stochastic in nature.
Hence, how does a statistical force arise?

Two possibilities suggest themselves. First, the insta-
bility of the fluid motion may lead to a large amplification
of the random forces associated with thermal fluctuations
[20], as was recently demonstrated for the Lorenz equa-
tions [21].It is not obvious that this is the case here, and
moreover, if it is, then key elements of the Kolrnogorov
picture must be abandoned. A second possibility is that
the random force represents an effective force felt at
smaller length scales that results from the turbulent, but
deterministic, motion at larger scales (i.e., at scales -L)
as transmitted by the nonlinear terms in the Navier-
Stokes equations. Of course, this only happens outside
the dissipative range, where such influences quickly decay
before they can affect the fluid motion. In most works on
turbulent fluids, it is the second possibility that is con-
sidered to be more likely, and we adopt the same
viewpoint here.

The convective terms in the Navier-Stokes equations,
in addition to transferring energy from the injection scale
into the cascade, also transmit other aspects of the long-
wavelength fluid motions which can affect the small scale
motions. For example, a vortex can be deformed by a
larger scale motion, thereby modifying its internal
motion, and the details of the resulting motion will de-
pend on more than just the energy injected into the cas-
cade.

In order to examine the second possibility more care-
fully, we introduce a projection operator P such that

v'(r, t }=Pv(r, t)—(1.7)

contains only short-wavelength information (in compar-

As was noted by Ronis [17] the analysis of Ref. [16] ig-
nores the renormalization of the noise-correlation ampli-
tude, and by including it, Ronis [17] was able to obtain
Kolmogorov's —,'law in either the ir or uv (large-wave-
vector} limits depending on the choice of exponents.

One obvious objection to these approaches is that they
completely ignore the actual generation of the tur-
bulence, e.g., at the boundaries of the system, and the
precise nature of the stirring force is not clear. Indeed,
there is no a priori theory of the exponents used to
characterize the random-force autocorrelation function
in applications to nonequilibrium fluids (this is not the
case near equilibrium, where the Einstein-Nyquist rela-
tions [18]can be used [19]).

In order to shed some light on this last point, consider
the Navier-Stokes equations for an incompressible fluid
with density p, kinematic viscosity v, and hydrostatic
pressure

Qv(r, t) &p(r t}
+v(r, t) Vv(r, t)= —V

Bt
' '

p
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where

f(r, t ) =PF(r, t ) P[v—(r, t ) Vv(r, t ) ]+v'(r, t ) Vv'(r, t ) .

This new force contains information about boundaries as
well as the mode-coupling effects associated with velocity
components on the injection scale. Away from boun-
daries, we expect that PF(r, t)=0, and hence, the ran-
dom stirring force used in renormalization-group studies
in essence results from the mode coupling between the
motion on the L scale with that on the smaller ones.
Since the motion on all scales is expected to be chaotic,
including that on the L scale, we expect that f(r, t) will
have complicated, chaotic time and space dependences,
and it is this quantity which is actually modeled by a sto-
chastic force in random stirring models of turbulence.

In this work, we assume that the transverse parts of
f(r, t ) have Gaussian statistics, and write the autocorrela-
tion function as [22,23]

( f(k, co)f(k', co')) =(2vr) +'5(k+lc')

X5(co+co')( I—kk)Q(k, co). (1.10)

(Henceforth, the prime on the projected velocity field will
be omitted. ) In the theories presented in Refs. [15—17],
only a single exponent for the energy spectrum is ob-
tained in the nontrivial-scaling regions; intermittency or
crossover phenomena are not found. Apparently some-
thing is missing, and within the framework of these ap-
proaches, the only place to look for the answer is in the
assumed form of the noise-correlation function.

A key feature of the earlier renormalization-group
studies on turbulence is the assumption of a zero noise-
correlation time (i.e., white noise), although at the same
time a nontrivial spatial correlation is introduced. The
assumption of white noise is at best a reasonable approxi-
mation to the true correlations of f(r, t), and in fact,
there seems no objective reason, except for technical sim-

plicity, why this has to be so. Indeed, by imaging tur-
bulent fluids near boundaries, e.g., in grid flows [24], it
becomes clear that fluid motion has strong temporal and
spatial correlations. Since f(r, t ) models the effects of the
boundaries and large-scale motions on the smaller ones, it
seems quite unlikely that the random force is uncorrelat-
ed in time while having strong spatially correlations (e.g. ,
the random force correlation remains constant as r ~~
for y =d).

One objection to a nonzero correlation time is that the
resulting theory would not be invariant under Galilean
transformation: k' =k, ~' =co+k-u, where u is the
Galilean velocity shift. However, since the random
forces represent the effects of boundaries, and these are

ison with the energy-injection scales). By applying P to
the Navier-Stokes equations it follows that

c}v'(r, t), , 1+v'(r, t ).Vv'(r, t ) = ——Vp„(r,t )
P

+vV v'(r, t)+f(r, t),
(1.8)

not included in the Galilean transformation, there is no a
priori reason why global Galilean invariance must hold.
Nonetheless, it is commonly believed that the scaling
phenomena of turbulent flows are Galilean invariant.
This imposes constraints on the form of the noise correla-
tions. For example, let r(k) be the characteristic decay
time of the f(k, t) correlations. The theory will be ap-
proximately Galilean invariant if uk'(k) « 1 for kL ) 1.

This paper is organized as follows: In the following sec-
tion, we set up the theory, which is subsequently renor-
malized in Sec. III. By identifying the exponents govern-
ing the Kolmogorov part of the energy spectrum, we
determine some of the parameters appearing in the mod-
el. Different forms for the noise are analyzed and dis-
cussed. Significantly, if the correlation time of the noise
is sufficiently long [i.e., compared to the bare-shear relax-
ation time (vk ) '] and the Reynolds number is not too
high, then a crossover to a new scaling regime can be ob-
served in the kinetic-energy spectrum. In Sec. IV we
study the skewness of the two-point velocity-distribution
function and find large deviations from Kolmogorov scal-
ing in this crossover region, we also discuss the diffusion
of a passive sca1ar and compare with some recent experi-
mental results. Finally, Sec. V contains a summary and
some concluding remarks.

II. DEFINITIONS AND PRELIMINARY REMARKS

As was discussed in the Introduction, we will model
the effects of the turbulent motion on the L scale by an
effective noise-correlation function that reflects both the
temporal and spatial coherences in the forcing of tur-
bulent fluids, even if at the phenomenological level. With
this in mind, we modify the commonly used noise corre-
lation Q(k, co) and assume that

2~p2k
—y + 2z

Q(k, co) =-
M+Pk

(2.1)

:-[g(r, t ), g(r, t ) ]=f2)[v(r, t ) j2)[v(r, t ) ] e' (2.2)

where the Lagrangian

where p )0. The exponent y is as yet undetermined. Ap-
proximate Galilean invariance, as discussed in the Intro-
duction, requires that z ) 1, but imposes no other con-
straint. (As it turns out, below, integrability of the renor-
malized energy spectrum also requires that z ) 1 when
d =3.)

The corresponding random force time correlations de-
cay as exp( pk't), and —the equal-time random force
correlation function decays as r ' as r~ ~. The
model reduces to the white-noise model discussed in Ref.
[17]when ph oo or z~+ oo,

As was done in Ref. [17],we will analyze this problem
by using the field-theoretical-renormalization-group
method. The calculation is based on the Martin-Siggia-
Rose [11] (MSR) path-integral representation of the
moment-generating functional:" obtained from the fluc-
tuating Navier-Stokes equations, cf. Eqs. (1.6) and (1.8).
By averaging over the noise f, and using Eq. (1.10), the
moment generating functional becomes
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dk dco (i co+ vk )V( —k, —co) v(k, co)+ —Q(k, co)V( —k, —co).4„.V(k, co)
1 ~ 2 l

(2m) +'

+g( —k, —co).v(k, co)+g( —k, —co} V(k, co)

i A, 1

(2~}d+)
dk dco v ( —k —co)V '~'rv~(k —k, co —co )vr(k, co )]

++ ++
g'(k, co) and g(k, co) are currents conjugate to v(k, co) and its adjoint field |t(k,co), respectively, 4),=1—kk, and

y~', Ia, r —I P@~,r+ I r@~.P

(2.3)

(2.4)

The greek superscripts denote Cartesian coordinates, and sums over repeated indices are implied hereafter. The param-
eter A. is introduced for the purpose of ordering a naive perturbation expansion and it will ultimately be set to unity.
Remember that the fluid is assumed to be incompressible, and hence, the domains of the path integration are restricted
to those fields where k.v =0.

It is easy to see that all moments of the velocity distribution are obtained by functional differentiation of ln". For ex-
ample, the average fields ( v ) and ( v) are given by

( (k )) 51n=(g, g)
5(( —k, —co)

(2.5a)

and

( (k )) 51n=(g, g)
5(( —k, —co)

(2.5b)

By treating the quadratic terms in X as the freegart of the Lagrangian, we can formally generate a perturbation ex-
pansion in the convective terms contained in V), ' 'r,' i.e., in )(,. For g(r, t)=g(r, t)=0, it follows that corresponding
zeroth-order averages, denoted by ( )0, become

(u (k, co)v~(k', co') )0= ' 4),'~(2m. )"+'5(k+k')5(co+co') —=Q(k, co)

2+ 2I 4 (2.6a)

(u'(k, a))U~(k', ru'))~=, 4~ ('(2w)~+'5(k+k')5(ru+ru')—=~
l co+ vk

(2.6b)

and

(v (k, co)u~(k', co'))()= 4 '~)(2n) +'5(k+k')5(co+co'):
l CO+ Vk

(u (k, co)u~(k', co')) =0 .

(2.6c)

(2.6d)

All zeroth-order correlation functions containing an odd number of fields vanish and the rest can be expressed in
terms of the two-field correlation functions, cf. Eqs. (2.6a)—(2.6d}, by summing over all possible ways of factorization.

As is wel1 known, this kind of perturbation theory fails for turbulent fluids. Furthermore, the difhculties with the
naive perturbation theory are similar to those encountered in the study of field theories for systems with an infinite
number of degrees of freedom. The ultimate goal of the renormalization-group methods is to deal with the divergences
in the naive perturbation theories in the strong-interaction limit. The starting point in the renormalization-group
analysis is the loop expansion [25] of a new generating functional I defined as

I [(v(r, t}),(v(r, t))]=—ln=+, fd dk[cgo( —k, —co) (v(k, co))+g( —k, —co) (V(k, co))] .
1

(2n. } +' (2.7)

5r[( ), (~)]
5(|t(r,t))

& (, , )&

(2.8)

generates an equation of motion for the average velocity.

This new generating functional is the generator of the
equations of motion and one-particle-irreducible (1PI)
vertex functions, from which all the correlation functions
can be computed. For example,

In addition, the new generating functional and the loop
expansion reorders terms such that the terms with same
degree of divergence can be directly treated together [26].

The one-loop corrections to the viscosity, the noise
correlation, and the nonlinear coupling constant can be
easily obtained. Their diagrammatic representations are
shown in Fig. 2. If the uv cutoff is taken to infinity, the
integrals corresponding to the diagrams shown in Fig. 2
diverge for certain values of the parameters. In particu-
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(A)

(ct) (c2) (ca)

FIG. 2. Diagrammatic representation of the one-loop correc-
tions to the primitively divergent vertex functions. The propa-
gator and correlation function lines are defined in the text, cf.
Eq. (2.6).

The first step in developing a renormalization scheme
is to absorb the primitive divergences by introducing re-
normalized parameters and corresponding counterterms
in the Lagrangian. This requires that all divergences be
simultaneously marginal, and hence, the perturbation
theory must be performed around c.=c.'=0. Specifically,
this requires that an the expansion be performed around
y = —2 and the critical dimension

4—z for z&2
d ='

2 for z) 2.
Incidentally, y = —2 is just what the Einstein-Nyquist re-
lations would imply [18,19].

We now turn to the details of the perturbative expan-
sion and of the renormalization.

lar, simple power-counting arguments show that the
correction to the viscosity is marginal in the uv (i.e.,
diverges logarithmically) when

4+y —d for z ~2
6+y —d —z for z &2 (2.9)

vanishes. Similarly, the correction to the noise correla-
tion function becomes marginal when

c':—c+2+y (2.10)

vanishes. These divergences are obviously primitive [26].
The integrals may also diverge in the ir when the exter-

nal wave vectors and frequencies are set to zero. Conver-
gence in the ir, with concomitant super-renormalizability,
is guaranteed for negative c;, and c,', —:c,;,+2+y, where

4+y —d for z &2
E 6+y —d —z for z) 2 . (2.1 1)

It is easy to see that the uv marginal diagrams are always
convergent in the ir for z%2 (they become ir marginal for
z =2 or white noise). Note that it is possible to choose
exponents such that both c and c' are positive with both
c;, and c,', negative, thereby making the diagrams simul-
taneously convergent in both the ir and uv. Moreover, it
is readily shown that the theory is renormalizable in the
sense that only a finite number of counterterms or renor-
malization parameters are needed to eliminate the diver-
gences in the theory [26].

When z )2, the preceding observations about the uv
behavior are identical to those made in Ref. [17]. This
should not be surprising, since the case z )2 corresponds
to noise whose correlation time is shorter (in the uv limit)
than the time scale of normal shear fluctuations, and
hence, it becomes equivalent to white noise. On the other
hand, when z & 2 the reverse is true, and, as we will show
below, this leads to some interesting differences from the
white-noise case.

III. RENORMALIZATION AND DETAILED ANALYSIS

ivk @ '~+A, K '~(k co)=iv k 4 (3.1)

Q(k, co)4~ ~— Kn~(k, co) =Q~(k, co)4k ~,

and

A, V '~'~+3k, K '~'r(k co k co )=A, V '~'r (3.3)

where, to the one-loop order,

The terms in the naive perturbation expansion contain
logarithmic divergences when c. and c' vanish. These sig-
nal the existence of badly converging perturbation expan-
sions. Nonetheless, in a renormalizable theory, the num-
ber of such divergences is finite, and moreover, even

though the associated perturbation expansions cannot be
explicitly summed, are assumed to sum to some finite
answer (e.g. , the renormalized viscosity). Note that the
renormalized parameters are not equal to the correspond-
ing bare parameters; here, all we can say is that they are
proportional. In addition, they are not the same as the
effective wave-vector or frequency-dependent parameters
often introduced in turbulence theories (and often re-
ferred to as renormalized viscosity). Here, the renormal-
ized parameters are independent of frequency and wave
vector.

There is still some freedom in choosing what to formal-
ly resum into the renormalized parameters. For technical
simplicity, we follow the minimal subtraction scheme
[27], and subtract poles in E or s' in the loop corrections
to primitively divergent vertex functions by multiplica-
tively or additively redefining the relevant parameters in
the model. When the singular parts (in e or E') of the dia-
grams shown in Fig. 2 are computed, it turns out that no
additive renormalizations are needed at one-loop order.
The multiplicative renormalization conditions are found
by solving the following equations:

V

rl r&r~ ~l ~+r ~1k —y+2z
2l gp dk)dco((2') (co, +p k f')(co, +v k, )[i(co—co, )+v~k —k, ~ ]

(3.4)
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4 2 4V p gf VPz ]zP]

~p +I —k k

)d+1

lk —y+2z~k k
~

—y+2z
1 I

dk)dm) 2 2 2 2 2 4 2 2 2(~2(+@2k21')(~21+v2k41 ) [(co—~) )2+@2~k—k1~2'][(co—co1)2+v2~k —k) ~4]

(3.5)

and

x &;P,y—
~,&& &2k —y+2z2' Vk k —ki+k2 k2 2

dk2dm2 2 2 2z 2 4(2n )
+' (co2+p k2')(co2+ vk2)[i(a) co,—+a) 2)+v~k —k, +k2 ]

V~'~ r2 2V' '
kl k2 k+k2+

i (a), —a)2)+v~k, —
k2~ i (co+co2)+v~k+k2~

(3.6)

v=v 1—g(z
R (3.7)

where

0'AduR for z%2
g(z)—= 2~duRPR (3~R +2PR vR +PR }

for z=2,
(vR+~R)'

(3.8)

As was mentioned above, some of the integrals given
by the preceding expressions diverge logarithmically
when the uv cutoff is taken to infinity, and c and c' set to
zero. In the minimal-subtraction method, the cutoff is as-
sumed infinite, and integrals are evaluated just below the
critical dimension. The singularities in c and c' are then
eliminated by multiplicatively renormalizing the bare pa-
rameters in the model (e.g. , v, y, etc.). The same ap-
proach is followed here, with the additional assumption
that e/s'=0 (1) [17]. In addition, we shall evaluate the
integrals at the external momentum k =K and zero exter-
nal frequency [28]. We thus find that

f (Z)
X XR (3.13)

where

Ad uR fol Z A2
f (Z)= 2

~duRPR (~R +3PR vR +PR )
for z=2 .

(VR +JR )

(3.14)

Since the frequency corrections to E&'~ are well behaved,
no renormalization of JM is required to one-loop order. Fi-
nally, it is easy to show that the singularities in E&'~'~ all
cancel (a consequence of the local Galilean invariance
satisfied by the present model} and hence, A, =}L.R. Thus,
we henceforth take k= 1 without any loss of generality.

Once the relationships between renormalized and bare
quantities are established, we can easily derive
renormalization-group equations. Since the bare theory
is independent of the renormalization parameter K, any
quantity F in the bare theory must satisfy

with K
=0. (3.15)

gd (d —2)

2d (d +2)(2m')
(3.9) By expressing F in terms of the renormalized parameters,

Eq. (3.15) becomes

2(d —d+2)
for z (2

(d —2)
1 for z&2, (3.10)

K
BF F+p„(u„,vR )

Bu R v&, a'

aF+p„(uR,vR } =0, (3.16)
d/2

I (d/2)
(3.11)

where

is the volume of a d-dimensional unit sphere, and

A,RgR K
for z ~2 and

BQR
p„(uR,v„}—:1r

K v, g
(3.17)

QR = ~

~R+RPR K
for z &2

(3.12) BVR
pv(uR, vR ) —=

v, y
(3.18)

can be viewed as a dimensionless expansion parameter.
Similarly,

are the Wilson functions. By using Eqs. (3.7) and (3.13)
in (3.17) and (3.18) and expanding the results to one-loop
order, we find that
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pu(uR i VR )

Qg—EuR 1 — for z&2
Q

(3.19}
EQg 1 2 23(3VR +2VRI R +I R } (VR +3VRI R +O'R } i

E(VR+VR }' E,

for z=2

and

p.(uR VR }=—
for z =2,

—
Ader uR VR for z%2

AduRVRPR( R+ VRI R+I R }
(3.20)

(VR +JR )

little to do with a turbulent fluid. In contrast, the second
fixed point leads to a vanishing effective viscosity, there-
fore, it is the strong interaction limit and we mill focus
our discussion on it.

When z%2, it is easily shown [17] that the solutions to
the characteristic equations are

where

Ad
(3 21) and

U(x)=
Qg9

uR+K (u uR )

—o y/c

(3.27)

and
Q KW(a. )—:vR

uR +Ic (u uR )
(3.28)

for z +2
3 —c, /s'

for z(2 .
4o —s/s'

(3.22)

With these last two expressions, it follows that the gen-
eral solution to Eq. (3.16) for a quantity F with dimen-
sionality L 'T' has form

F=R '[ W(aR )R ]
The general form of the solutions to the

renormalization-group equations may be determined us-
ing the method of characteristics [29]. The equations
determining the invariants along the characteristics asso-
ciated with Eq. (3.16) are

n

" W(i' );=i' W(aR )
'

(3.29)

and

a = —P„(U,W)
dU
dK

s. = —P„(U,W),
dW
dK

(3.23)

(3.24)

where, without loss of generality, we may assume that
U(1)=uR and W(1)=vR. These equations govern the
flows in the parameter space and are differential forms of
the recursion relations, cf. Eqs. (3.7) and (3.13). More-
over, as will become clear below, the renormalization-
group equation imposes strong constraints on the allowed
functional forms of physical quantities.

The fixed points of the renormalization-group transfor-
mation are found by solving

P„(U,W)=0 (3.25)

P„(U,W}=0 . (3.26}

Two fixed-point solutions are found: (I) U=0 with W ar-
bitrary; and (II) U=u with W=O. The fixed point (I) is
trivial and unimportant. In fact, as long as v& is finite we
must immediately conclude that gz vanishes at this fixed
point; hence, the random force vanishes. Similarly, if yz
is finite, vR must be infinite (and the Reynolds number
vanishes). We therefore conclude that this fixed point has

where n is the number of external wave vectors and fre-
quencies, R is an arbitrary length, and 6 is a dimension-
less function, consistent with isotropic symmetry, but is
otherwise undetermined (insofar as the renormalization-
group equation is concerned}.

The choice of R, the so-called match condition [30], is
arbitrary, and may be used to analyze the scaling proper-
ties of the theory. For example, the simple match condi-
tion Rk = 1 allows a two-point function to be rewritten as

F=k '[W(v/k)k ]

xG
peak'

, U(z/k), (3.30)
W(ir/k)k W «k

cf. Eq. (3.29). The match-condition also allows us to con-
nect the strongly interacting region of parameters with
one where perturbation theory is applicable [30]. For ex-
ample, since U(v/k)~u *—O(E) as k'~0 and
U(a/k)~0 as k'~00 the initial value curve for the
method of characteristics may be chosen where perturba-
tive expansions of the quantities of interest are valid (e.g.,
where U~O). The characteristic equations, via U(a/k)
and W(x/k), map the perturbative expansions into the
strongly interacting region.

In order to carry out this procedure, the renormalized
parameters must be reexpressed in terms of the solutions
to the characteristic equations; specifically, Eqs. (3.27)
and (3.28) imply that
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u~ =U(aR) 1 —E 1—U(~R ) ln(~R )+O(E )
2

Q

(3.31)

and

vz = W(xR ) 1 —o'y In(~R )+O(E )
U(aR ) 2 (3.32)

In addition, since (aR )'= 1+a ln(aR )+0 (e ), we have

R 'U(aR ) W (xR ) sy U(~R ) z

Pz 8 Q

W(aR ) for z (2
X '

pg for z%2, (3.33)

cf. Eq. (3.12). When these expressions are used in the re-
norrnalized loop expansion of a physical quantity, an ex-
pression valid in the strongly interacting limit is obtained
(assuming the validity of the nonperturbative solutions of

I

the renormalization-group equation). Moreover, explicit
terms in In(aR ) are inconsistent with Eq. (3.29) and must
cancel to the appropriate order in the loop expansion,
thereby providing a check on the perturbation theory.

As an example, consider the energy spectrum; in lead-
ing order in perturbation theory,

S (d 1) k 1 —(6+y —z —d)

E(k)= „+O(s),
2(2n. )"v(v+ pk' )

(3.34)

W(a/k) for z &2

p~k' for z &2, (3.35)

to the zero-loop order. By using the same argument, it is
possible to obtain the velocity time correlation function

which, upon carrying out the steps described above, be-
cornes

Sd(d —1)kU(a/k) W (a/k)
E(k)=

2(2n ) [ W(a/k )+px k' ]

k 'I tI

21 kz —2 w(a'/k)k ~t~ W( /k) &R

(v(r, t)v(r, O)) = f dk E(k)
0 px k' —W(x'/k)

(3.36)

Before examining the possible choices of the exponents,
two related points must be considered; namely, where
does the dissipative range appear in our theory and have
relevant variables been omitted from the theory. The
latter is particularly important, since it is well known
that omitting symmetry-allowed, relevant terms from the
theory will result in divergences, even if they accidentally
do not appear at low order in the loop expansion.

The noise model, cf. Eq. (2.1), cannot be valid at all
scales. As was discussed in the Introduction, the noise it-
self is, at least in part, a consequence of projecting out the
long-wavelength scales, L. As such, we do not expect
that the theory will be able to say anything meaningful
about these scales; i.e., about the scales where the details
of the boundaries, etc., become important.

At sufficiently short wavelengths another scale be-
comes important; i.e., the dissipative scale ld. In this
range the viscous forces dominate and the turbulent
motion should decay rapidly. At present, none of the ap-
plications of renormalization-group methods produces
the expected behavior in the dissipative range. Indeed, as
was mentioned in Sec. II, the noise model has an implied
upper as well as lower, wave-vector cutoff. Moreover, the
need for an upper cutoff becomes most clear for cases
with negative y. What is the upper cutoff7 The obvious
choice is Id '.

The renormalization-group method provides a
prescription for resumrning terms in the naive perturba-
tion expansion which depend strongly on the implied
cutoffs (both upper and lower) near the critical dimen-
sion. Thus, while the analysis considers the behavior of
certain subseries in the perturbation expansions in the
limit of an infinite upper cutoff, in reality a finite, albeit
large, uv cutoff still exists. The physical phenomena

I

which occur at or above the cutoff scales will result in ad-
ditional terms being generated in the Lagrangian, i.e., in
Eq. (2.3), and it is necessary to see to what extent these
terms can change the results obtained so far.

For example, consider a term containing m powers of
v, n powers of V, and q gradients, where Galilean invari-
ance and momentum conservation [31] imply that
q m+n for m )2. In addition, causality implies that
n ~1. Simple dimensional analysis shows that c~ „,the
coefficient of this term, has engineering dimension
D~ „—:md„+nd —q+d+dz, where d, —:1 —dz,
d =—d„—d —1, and where we have assumed that

dQco-k ". Moreover, since these terms arise from the be-
havior of the system in the dissipative range, we expect—D
that cv „=ld "c „,where c „=O(1).

If the steps leading to the scaling form for an arbitrary
quantity, cf. Eq. (3.29), are repeated with c~

„

included,
we find that

F=k '[W(a. /k)k ]

z 2

x G „,U(~/k), . . . , (k&, )
W a/k

where we have again ignored the possibility of field renor-
malization and have omitted the wave-vector and fre-
quency arguments.

It is easy to show that D~ „(0for reasonable choices
of q or dz. This implies that the extra terms drop out of
the calculation for kid ~0, and hence they are irrelevant
in the renorrnalization-group sense at the ir fixed point.
This is analogous to the observation made in Ref. [14].
In addition, however, the preceding discussion shows
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that they are unimportant for scales longer than those
characterizing the dissipative range; i.e., for kid «1.
Nonetheless, even though the dissipation scale does not
explicitly appear in the low-order results, it must be
remembered that the omitted terms cannot be ignored in
the dissipative range. We will return to this point when
discussing our results.

We now turn to the analysis of the scaling properties of
the theory and the choice of exponents which results in
Kolmogorov's —,

' law. To this end, we need the asymptot-
ic behaviors of U(x) and W(x), which follow from Eqs.
(3.27) and (3.28):

1.0

10

10

10
65
s 0-5

10

10

10
/ ~

/
/ ~

~ ~ ~

~ ~
~t

0

upu x
as x'~0

U(x) = (u ' —u„)
u* as x'~ao (3.37)

10
10 10 1.0 10 10 io 10 10

and

W(x)= '

u

u ug
as x'~0

+
—o y/c

v&u* x ~ as x'~co .
(3.38)

FIG. 3. Examples of the renormalized zero-loop kinetic ener-

gy spectrum for z & 2. The exponent y was chosen to give the —,'
law in the uv in three spatial dimensions (Ref. [17]),while Y was
set to the value obtained by fitting the experimental data in Ref.
[34] (note, however, that the fit gives z &2). The curves corre-
spond to z = 2.5 ( ), 3.5 (

———), and 4.5 (. . ).

In identifying the exponents, three criteria must be
satisfied: (1) The dynamic exponent corresponding to the
cascade region must equal —'„which is deduced from the
Obukhov-Kolmogorov law for viscosity; (2) the energy
spectrum must satisfy the —,

' law; and (3) the total energy
of the Quid must be extensive, and hence, the kinetic en-

ergy spectrum must be ir integrable.
At this point, we shall present the analysis of the

different ranges of z separately.

A. z~2

k' ' ' as k~O
E(k)~ '

k as kazoo,

or for c. &0

(3.39)

k' as k~O
E(k) ~ '

k' ' as k~ao . (3.40)

Note the k~0 limits of the preceding expressions are

We first examine the behavior for z &2. In this case,
the Wilson functions, and hence, the functions U and 8'
are identical to those obtained in Ref. [17]. Nonetheless,
the energy spectrum and the time correlation are not ex-
actly the same.

We have two different dynamic exponents, one corre-
sponding to decay rate W(~/k)k, the other correspond-
ing to decay rate yak' [see, e.g., Eq. (3.36)]. Clearly,
since z & 2, the latter does not provide Kolmogorov's dy-
namic exponent, and hence, only W(~/k)k may give
the expected dynamical exponent for some choice of c.
For E )0 (or E & 0), we have W(x'/k )k =vz u *a k in

the small- (or large-) k limit. This leads to the same con-
clusion as Ref. [17], namely, y= 4. Consequently, there
are two scaling regions for the energy spectrum; i.e., for
c. (0

different than those obtained for white noise [17]; this is
not surprising since the noise correlations decay very
slowly in the ir limit when z & 2.

Since z & 2, the —,'spectrum can be obtained only in the
uv and only one choice can simultaneously give the
correct exponent; i.e., that corresponding to c. &0. This
in turn leads to y= —1.5851. . . , which is the same as
was found in Ref. [17]. Note that the integrability and
Galilean invariance criteria are automatically satisfied for
this choice. Some examples of the kinetic energy spec-
trum are shown in Fig. 3.

The case z=2 is special. It is easy to see from the
definitions of the Wilson functions that the fixed-point
values for U and Whave the same values as when z &2.
Moreover, the linear-stability analysis of the characteris-
tic equations gives the same stability exponents as when
z )2, and near the nontrivial fixed point W(ir) ~ xr while
U(a)/u* —1 —3y W(~)/[pg(y+e)] o-~

In general, the characteristics may be computed from
Eqs. (3.19), (3.20), (3.23), and (3.24), and some examples
are shown in Figs. 4 and 5. Physically meaningful trajec-
tories must be in the first quadrant of the 8'-U plane.
Note the large swing that occurs when the trajectory
starts at sufficiently large values of v& /pz.

B. z(2
This case is more interesting, since the noise relaxation

is slower than that of bare shear fluctuations in the uv
2 z

limit. In principle, either co,(k) —= W(k)k -k ' or
co2(k):—peak' could be chosen to give the Obukhov-

Kolmogorov —', law. In addition, the energy spectrum
now has four scaling regions with exponents as shown in
Table I. The four regions are ordered by increasing k,
with regions I and IV corresponding to the ir and uv lim-

its, respectively.
To proceed further, note that the renormalized equa-

tion of motion for the average fiow is
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6+z —3
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c—1

c—1
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2oy —1

2oy —1

3o.y —3+z

Region IV

3oy —3+z
2o.y —1

2oy —1

c, &0 z &2—gy
z 2 gy
z &2—gy

ZV

2o.y —1

2oy —1

3o.y —3+z

3o.y —3+z
2(xy 1

2o.y —1

c+z —3
E+Z 3
E, +Z —3

c,—1

c—1

c—1
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FIG. 6. Examples of the energy spectrum for z (2 in d =3.
Curves correspond to cry= —,z=1.21, cf. Eq. (3.42), and Y
ranging from 1.07X10 ", 1.90X10 ', 3.38X10
6.02 X 10 ', 1.07 X 10 (dashed, this value is obtained from the
fitting of experiment data of Ref. [34]), 1.90 X 10 ', 3.38 X 10
6.02X10, and 1.07X10

FIG. 7. The effective-energy spectrum scaling exponent,
defined as g(k) —=dlnE(k)/dink when z &2. The dashed curve
corresponds to o.y= —,z=1.21, and Y=1.07X10 . These

values were obtained by fitting the experimental results of Ref.
[34]. The other curves correspond to the values of Y used in

Fig. 6.

positive exponents for the energy spectrum and describe
the projections of the L-scale motion of the problem;
hence, the form of the noise correlation and its exponents
are probably not universal in regions I and II.

In the high-k regions, we observe a crossover between
region III, the Kolmogorov region, and region IV, where
the crossover wave vector depends on the value of Y. We
tentatively identify region IV as the intermittency region.
In order to examine this possibility further, we now ex-
amine the role of the Reynolds number in determining Y
and the crossover wave vector.

We define the Reynolds number R, by

2f dk E(k)
0

Kvg
(3.44)

1/2
u ug

e
ug

1/2 1/3E
d (3.46)

Note that Eq. (3.44) is sensible only if the proportionality
constant relating v and vz is independent of R, . This
will be the case when uz ~u *; i.e., as is the case for large
enough R„cf.Eq. (3.46) below.

By using the zero-loop equation ef motion, Eq. (3.41),
it is easy to show that the renormalized efFective rate of
energy dissipation is

(E) =2f dk k'W(ir/k)E(k) . (3.45)
0

This expression together with Eq. (3.44) may be used to
reexpress Y in terms (c, ) and R, . For example, when

uz ~u* it follows that
1/3c

R e (3.47)

and
—(6)(3z —2)/cpY=e (3.48)

Kl, =
—(E) /gp

R, e

Qrd

3

(3.49)

where c,0=—rdK v& /3.4 3

As R,~~, the small-scale motions of the fluid
demand an infinite amount of external energy, and the
energy dissipation diverges. If we assume power-law be-
havior for the dissipation rate; i.e., (E ) /Eo-R, (in the
Kolmogorov case, a=3) it follows that Y goes to zero
monotonically as R,~ (x). Thus, Y and K' vanish as the
Reynolds number is increased, and the k energy
spectrum is found at all scales. Conversely, the Kolmo-
gorov cascade (region III) vanishes when Y)Y, and only
the intermittency region (region IV) remains. This last
limit can approached by reducing the Reynolds number,
although whether a fully intermittent spectrum can be
seen before the flow becomes laminar (and hence, the
basic assumption about the form of the noise correlation
breaks down) is unclear.

The Reynolds number dependence of the crossover
scales l, and dissipative scale ld can now be examined.
When Eqs. (3.47) and (3.48) are used in the zero-loop en-

ergy spectrum, cf. Eq. (3.42), it follows that

where rd
—=4d(d +d —2)/[3(d —d +2)]. Since c. (0,

the fixed point U=uz =u* corresponds to the large-
Reynolds-number limit. In the same limit (i.e., R, ~~),
we also have

Hence, for large R„the crossover scale is a strongly de-

creasing function of the Reynolds number. On the other
hand, the dissipative scale has a much weaker R, depen-
dence; i.e. [3],
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Since the theory is valid only for scales longer than the
disspative scale, we conclude that the intermittency re-
gion will rapidly merge with the dissipative region, and
hence disappear, as the Reynolds number is increased.

In the high-k scaling regions, i.e., when k )sc*, the en-

ergy spectrum can be written as

k
—5/3

E ( k )=Cx„e()i (3.50)
1+(kl, )'

where

scaling, it is easy to show [3,4,5,33] that T(r) ~r and
b(r) ~r i . Thus s(r)=const. For an intermittent fluid,
it has been proposed [4] that s (r) diverges as r ~0.

Our theory predicts an extra scaling region (region IV)
beyond the Kolmogorov region (region III}. From the
energy spectrum, we tentatively associated this extra re-
gion with intermittency, since it falls off more rapidly
than in the Kolmogorov cascade. In order to see if the
velocity distribution is nontrivial, it is important to exam-
ine the small-r behavior of some of the additional mo-
ments, e.g., the skewness.

To the zero-loop order, the second-order moment is

' 1/3

CKo1
9o y 4d (d +2)(d —1)

8 9(d —d +2)
(3.51} b (r) = f dk E(k)Z()" (kr),

0
(4.4)

With the Kolmogorov choice 0 y = 4„we find that

Cz, ) =1.778 when d =3. The experimental value for this
universal number is 1.3 —2.3 depending on methods of
determining the constant [5]. Also note that the ex-
ponent in the Kolmogorov theory of intermittency [4]
discussed in the introduction is given by B=z —

—,.

IV. SOME APPLICATIONS

where

Z")(x)—=

+1
2

d+2
2

' d/2
d 2 dX 1 ——— I' —J (x)
2 x d/2 (4.5a)

We have seen that, the z & 2 case is very similar to
what was found in Refs. [17]and [32] and will not be pur-
sued further. On the other hand, a new crossover is
found when z & 2 and its effect on other observable quan-
tities is now examined. (3) 1 sm(x) cos(x)

(4.5b)

and J,(x) is a Bessel function of the first kind. When
d=3

A. Skewness

and

T(r)=—([v„(r,t) —v, (O, t)] )

=6( v, (r, t)v„(0,t) ), (4.1)

A complete description of the turbulent Qow should
produce the distribution function of the velocity fields, or
equivalently, the moments or central moments of the ve-
locity fields of a/I orders [5]. In practice, our calculation
is limited to a few leading-order moments due to the
difficulties in performing the integrals.

As has been mentioned in the Introduction, one of the
important quantities which characterizes the velocity dis-
tribution is the skewness of the two-point probability dis-
tribution as defined in Eq. (1.1). For a homogeneous fluid
it follows that

(4.6)

and thus

r for l, &r &l*
b(r)~ '

r' for r &l, ,

where l *a'—:1.
The third-order moment to the zero-loop order is

T(r)=
d f dk C(k)Z'z '(kr),

48Sd

(2~)d

where

(4.7)

(4.8)

By using Eq. (3.50), it follows that the crossover between
region III and region IV occurs around k, —:I, '. In ad-
dition, Eq. (3.42) or Table I show that

k for k, &k)K
k ' 'for k)k

b(r)=([v, (r, )t—v, (0, t)] )

=2[(v, (O, t}u„(O,t)) —(v, (r, t)u, (O, t) )],
provided that ( v„(r,t ) ) =0. Hence,

T(r)
b(r)

(4.2)

(4.3)

' d/2
(d) v'm 2 d+ 1

Zz (x)—: — I
X 2 Jl+d/2(x }

When d =3,

Z2' '(x ) = [(3—x )sin(x ) —3xcos(x ) ] .1

X4

(4.9)

(4.9a)

cf. Eq. (1.1). For turbulent fluid exhibiting Kolmogorov
I

In addition,

2k'-'
C(k)= f dk, [t,[f(k, k„k}—f(k, k, k, )]+tb[f (k„k,k) f (k~, k, k, )]], —

(d —1}(2m }
(4.10)
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where

kk, [xk+(d —2+2x2)k, ](1—x )

k

[xk
&
+ (d —2+2x )k ](1—x 2)

k

(4.10a)

(4. 10b)

and

f (k„k~,k3)=—
(2~)d U(a/kz) U(v/k3 )[ W(lr/k2)kz W(z/k3 )k3 ] (kqk3 )

Sd [ W(z/k2)k2+p~kq][W(a/k3)k3+p&k3]

X 1

[ W(~/k, )k f + W(a!k2)k2+p~ k3 ][W(elk, )k, +@~k2+ W(~/k3)k3 ]

1

[ W(ir/k, )k f +IJ,tt k2+pz k3 ][W(a/k& )k f + W(tc/k2)k2+ W(tt/k3)k3 ]

X [ W(z/k2)kzpz k2[ W(tt/k& )k f +pak2+ W(ir/k2)k2]

+ W(a/k3)k3pqk3[W(x/k, )kf+pttk3+W(~/k3)k3]

+ [ W(a/k, )k f +@„k2+W(a/k2)k2][ W(~/k, )k, +p„k3+W(tt/k3)k3 ]

X [ W(a/k, )k, +pzk2+ W(~/k2)k2+pak3+ W(~/k3)k3 ]] .

(4.10c)

(4.10d)

(4.11)

After some straightforward, but lengthy algebra, the
asymptotic behavior of C(k) is obtained in the various
scaling regions; thus,

k ' 'for k&a*Y' '

k2 6 for KWY1/(2 z) & k
(4.12)

k for ~'&k &k,

k ' fork (k.

10

10

10

M 10
I

10

I

A naive scaling argument would suggest that
T(r) ~ r'+ ~ as r ~0. However, a more careful analysis
shows that T(r) ~ r for r ((l„andhence,

const for l, & r & l*
s(r)~ '

r' ' for r « lC

(4.13)

(4.14)

The integrals in Eqs. (4.10), (4.8), and (4.4) were per-
formed numerically and the results are shown in Fig. 8.
Note the divergence of s (r) at small enough r

The behavior of the skewness at r « l, supports our in-

terpretation that region IV of the energy spectrum is
indeed a nontrivial region describing intermittency. The
energy spectrum decays faster than predicted by the Kol-
mogorov argument and there are strong deviations from
Gaussian statistics. We recover the Kolmogorov picture
for a fixed value of r~* in the large-Reynolds-number
limit. Note that if r is kept in region IV, it follows that

10

10
—30 —20

log„(r~)

I

—15 —10

and since Y tends to zero exponentially, the coefficient
will go to zero as the Reynolds number diverges. Of
course, the comments concerning region IV and dissipa-
tive scale still apply.

FIG. 8. Normalized skewness of the radial velocity distribu-
tion function. The curves correspond to z=1.21 and Y=
1.07X10 ", 4.97X10 ', 2.31X10 ', 1.07X10 (dashed),
and 4.97X 10 ', reading from left to right, respectively. As in
Fig. 7, the dashed curve corresponds to the experiment in Ref.
[34].

B. Diffusion of a passive scalar

A passive scalar field such as temperature, concentra-
tion, etc. will be denoted as S(r, t) and satisfies the fol-
lowing equation:
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(ia)+Dk )S(k,co} — q, f dk)da))k v(k —k), co —co, )S(k„c())}=0.lA, (4.15)

Thermal noise is ignored, D is the diffusivity, and A, plays the same role as )(, in Eq. (2.3).
The passive scalar introduces two new terms in the Lagrangian; namely,

Xo= q+, fdkdcoi(ico+Dk )S( —k, —co)S(k, co)
(2m. )

+'

and

X,:—,(~, ) fdkdcod kdco, S( —k, —co)k v(k —k„co—co, )S(k„a),),)2(d+1)

(4.16)

(4.17)

where S(k, co) is the adjoint field to S(k, co). We shall include Xo with the other quadratic terms in the analysis. Since
there is no coupling between v and S in the free theory, it is easy to show that

(S(t, (S(k', ')) ((2m(~+'5(k+k')5(ru+ru'(
(4.18)

l N+Dk

(4.19)

where

The only primitively divergent diagram which appears at one-loop order is shown in Fig. 9, and power counting ar-
guments show that it is marginal when a =0. In addition, there is no divergent correction to A, , and as was the case with
A, in Sec. II, we henceforth let k=1. The renormalized diffusivity may be written in a form analogous to Eqs.
(3.1)-(3.6), i.e.,

iD+A, ED —ID~,

k.4~ .kk )
~+ '

(2n) +' (co)+p, k)')(co)+v k, )[ i (co a), )—+D)k——k) I ]

to one-loop order. For z (2, we find that the singular part of the right-hand side of Eq. (4.20) is

igloo. A&
ED=

vDc
where

2(d +2)(d —1)
d2 —2

(4.20)

(4.21)

(4.22}

The relationship between the bare and renormalized diffusivities is obtained when the last result is used in Eq. (4.19};
thus

D=D 1—R

cr Agua vg
2DRE

(4.23)

dD
pD—:lc

and the corresponding Wilson function becomes

O' Agua VR

D
(4.24)

, 2cry/c ' —1/2

(4.26a}

—1/2

Finally, by defining the Prandtl number as P =v/D, we obtain the characteristic equation for a scale-dependent renor-
malized Prandtl number; i.e.,

=o Aq UP(P* P}, —dp
(4.25)

8K
with the initial condition P (a = 1 )=Pa =—vz /Dz. The fixed-point value is P *—= [(d —d + 2) /(d +d —2) ]

' is a

universal number. When d =3 P' =&0.8 =0.894 (experimental values of P' range from 0.7 to 0.9).
In general, the solution to Eq. (4.25} is

2
p Q

QP(lc/k) =P' . 1+ —1P„u~(k/~) '+u u~

PA=P 1+ R,
(4.26b)
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r (Yl

FIG. 9. Primitively divergent one-loop correction to the pas-
sive scalar diffusion constant.

k +
K

e

Qrd

' c/(20y)

where we have used the same match condition as was dis-
cussed in Sec. II as well as the solution to Eq. (3.23), i.e.,
Eq. (3.27). The second equality follows when Eqs. (3.46)
and (3.47) are used to introduce the Reynolds number. In
addition, in order that the diffusivity always be real, it is
necessary that Ptt ~ P' As E. q. (4.26b) shows, a universal
Prandtl number should be observed when

C. Homodyne-scattering spectrum

Xe
—4 (r, t) —[1—d sin (0/2)]4 (r, t)

(4.28)

where L is the length of the detection region,
q =(4n/A, )sin(8/2) is the momentum transfer, 8 is the
scattering angle, and k the wavelength of the incident
light. For short enough times [32], 4& and 42 become

' (d —2)/2
2
kr4,(r, t)= f dk E(k) 1 —I2g t d

0 2

As was shown in Ref. [32], the homodyne-scattering
experiments from turbulent Aows performed by Tong,
Goldburg and co-workers [10,34] can be analyzed in
terms of the normalized homodyne-scattering function,

F(q, t)= f dr (L r—)
2 L

L 2 0

pQ pQ
P(x/k) P' ————1

R,

Qrd

' —8

(4.27)

Hence, even at infinite R, a universal Prandtl number is
observed only in part of the inertial range, namely, for

02k Sir(P' /Ptt —1) / r. This defines the top of the
convective-inertial range [5]. For larger wave vectors,
P(k) —k r —+0, which reflects the effective diffusivity
becoming constant at smaller scales.

The nontrivial fixed point is stable in the ir and in the
large-Reynolds-number limit. In the low-wave-vector
end of the convective-inertial range (i.e, for k -v'), using
the choice of ay which gives the Kolmogorov —', law, we

find that

and

ttz2(r, t) =
2q2t 2I

2

d (d —1)

X J dk E(k)

XJd/2 —1(kr)

(4.29a)

(d —2)/2

Jd/g+ ](kr)

(4.29b)

and hence, the Reynolds-number correction exponent is
universal.

Finally, note that if an additive noise source is included
in Eq. (4.15), it is easy to construct the source correlation
(either for white or colored noise) such that additional
primitive divergences, with concomitant renormalization
conditions, are obtained. Nonetheless, it is easy to see
that these will not change any of the results for the
effective diffusion constant obtained with the noise omit-
ted. (This is obviously not the case for the spectrum of
the passive scalar fluctuations. )

It is easy to show that F(q, t) decays monotonically as
time increases. Moreover, the major contributions to the
integral in Eq. (4.28) comes from the region where
kr + m. Therefore, if

L:—LK* &1, (4.30)

cf. Eq. (3.42), we expect the homodyne-scattering func-
tion to be dominated by the behavior of the energy spec-
trum in the inertial range. Hence, by using Eq. (3.42) for
the energy spectrum, and letting d =3, we find that

5(qv„~t)R, (yL')'
F(q, t)=2 J dy (1—y)exp I "dx

3Y3v/rd'
where we have used Eq. (3.46) and where

x '/3gs(x)

xz —2/3+( L z )z
—2/3/T

(4.31)

Since Y~O when R,~ ao, it follows that

F(q, t) =3[x y( —,',x ) —x y(3, x ) ],
where, y(a, b) is an incomplete gamma function, and

1 1/2
1 —3 sin (8/2)

4
'+

1l
(~L)' qvsx. t .

gs(x)=1 — +
3 [1—3 sin (8/2)][(3—x~)sin(x) —3xcos(x)].

X
(4.32)

(4.33)

(4.34)
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As was shown in Ref. [28], Eq. (4.33) leads to a t tail in F(q, t) On the other hand, when region IV (i.e., intermitten-
cy) dominates, i.e., L ~0 while keeping Y finite, we find that

F(q, t) =—[x ~'y(1/z, x ) —x ~'y(2/z, x2)],—2/z

z
(4.35)

where
4/3E

6I (2+z)sin(nz/2) 2(z+3)

1/2

~—1/2
1 —3z/2

(KL ) qvgKt (4.36)

Now the homodyne-scattering function decays as t
which is slower than the Kolmogorov case (recall that
1&z &2).

As long as the Reynolds number is not too large, the
exponent characterizing the tail of the homodyne-
scattering function is a direct measure of z, cf. Eq. (4.35).
The recent experiments of Tong et al. [34] measured the
homodyne scattering function for small polystyrene
spheres in turbulent flows with and without added poly-
mer. When we extract the exponent z directly from the
tail of the homodyne-scattering functions, we find that
z = 1.19+0.05, for all the experimental scattering
geometries used. A full nonlinear least-squares fit of
ln[F(q, t)], cf. Eq. (4.28), to the polymer-free data given
in Ref. [34] gives z = l.21+0.04. An example is shown in
Fig. 10.

Our analysis shows that the characteristic time for the
decay of the homodyne function will scale like (qL ~)

where the exponent g will take on different values de-
pending on which scaling region dominates the
homodyne-scattering function. In particular, when region
III dominates (e.g. , in the limit of infinite Reynolds num-
ber) g= —,', while in the intermittency region (IV) g=z/2.
Thus the Kolmogorov prediction should be approached
from above as R,~ ao. This behavior was seen qualita-
tively in the experiments of Ref. [10] (although, there
probably is a high degree of uncertainty in the ex-
ponents).

1.0

10
U'

10

10

t (sec)

0 X

I I I I I I I

10

FIG. 10. Comparison of the theory to the experimental data
of Ref. [34]. The dashed line indicates the direct fitting of the
tail.

V. DISCUSSION

In this work, we have extended the renormalization-
group analysis of the fluctuating Navier-Stokes equations
to the case where the noise is colored both in time and
space. As was the case with the earlier works in this
area, it is possible to adjust the exponents characterizing
the noise such that the Kolmogorov —', law is obtained in

part of the kinetic-energy spectrum.
Like Ref. [17] and unlike Ref. [16],we can obtain Kol-

mogorov scaling behavior in something other than the
k~0 limit, thereby obtaining an ir-integrable spectrum.
It must be stressed that on this last point we differ from
the work of Ref. [16]. Here both y and s are negative,
and ~s~ &&1 (e.g. , for the fits to the data of Ref. [34],
s= —0. 11); the reverse is true in Ref. [16]. Since y &0,
the noise vanishes at long wave vectors, and in this sense
our calculation is similar to model A of Forster, Nelson,
and Stephen [14], as is our discussion of the qualitative
behavior near the fixed points, relevant variables, etc.
Nonetheless, including the noise renormalization, and
carrying out the double expansion in c and c.

' allows us to
construct an inertial range in part of the energy spectrum
other than at k =0.

As we have shown, when the correlation time of the
noise is shorter than that corresponding to the bare
viscous relaxation time, results equivalent to those ob-
tained with a white-noise source are found. On the other
hand, if the correlation time of the noise becomes longer
than the bare viscous relaxation time, we find that the en-

ergy spectrum decays more quickly than in the inertial
range. Moreover, while a scaling law is still obtained
(i.e., in region IV), it is impossible to adjust the exponent
to give the —', law if d (3—,

' or for any d if the approximate
Galilean invariance discussed in the Introduction is im-
posed. Finally, the skewness of the velocity distribution
function shows marked deviations from the scaling pre-
dictions for nonintermittent flows. Based on these re-
sults, we have associated this new scaling regime with in-
termittency.

There is a crossover between the new scaling regime
and that where the Kolmogorov —', law can be obtained.
The crossover wave vector rapidly increases as the Rey-
nolds number is increased, leaving behind the Kolmo-
gorov energy spectrum at all scales where the theory is
expected to be valid.

We have also examined the diffusion of a passive sca-
lar. Here we find a universal Prandtl number in the lower
part of the inertial range. Our value (v'0. 8) differs from
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that obtained by Yakhot and Orszag [16] (0.7179), and
this difference can be traced to the inclusion of the noise
renormalization. In addition, we find that the
convective-inertial range does not extend through the en-
tire inertial range, and normal diffusion is found at small-
er length scales, even in the limit of infinite Reynolds
number.

There remain at least two main points for future con-
sideration. The first concerns the applicability of the
additive-noise model to turbulence. The problem we
have considered is well posed and interesting in its own
right, and gives results that seem to be applicable to tur-
bulent Aows. Nonetheless, a complete theory of tur-
bulence should be able to demonstrate that the projected
random force defined by Eq. (1.9) does indeed have some
of the stochastic properties assumed in this work. Al-
though it is easy to imagine applying a Wilson-Kadanoff
decimation scheme to the longer scales, an analytic ap-
proach will require a model that can be approximately
solved in closed form.

The second remaining point concerns the treatment of
the dissipative range. As was discussed in Sec. III,
renormalization-group methods will develop problems as-
sociated with relevant variables for sufficiently high wave
vectors, and hence, there are restrictions on the wave vec-

tors which can be considered. This is especially impor-
tant in models which have random force spectra which
grow with increasing wave vectors or do not give the —,

'

law as the k ~0 limit, e.g. , as was the case here. Indeed,
if the problem of determining the random force in an a
priori fashion can be solved, it is likely that the resulting
random-force spectrum will have a strong cutoff in the
dissipative range, no matter what it looks like at smaller
scales. How this cutoff, or other relevant quantities, can
be incorporated into our results, thereby obtaining ex-
pressions which uniformly extrapolate into the dissipative
regime, is at present an open question. Moreover, from
our discussion of relevant and irrelevant variables, it is
not clear that renormalization-group methods will be use-
ful in the dissipative range.

In the future, we will present results for the spectrum
of velocity fluctuations in the presence of nonzero aver-
age velocity gradients.
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