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Renormalization-group theory for the propagation of a turbulent burst
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We consider the propagation of a plane front separating a turbulent region of fluid from a quiescent
region. Initially, the turbulent-energy distribution as a function of z, the displacement normal to the
front, is assumed to be localized, and after a time t, general renormalization-group arguments show that
there is a similarity solution of the form q(z, t) t -"~'+' 'f(zt I'~'+e', e), where a and p are e-
dependent anomalous dimensions, satisfying the scaling law a+P=O and e is a measure of the dissipa-
tion. Using perturbation theory, we calculate values of a and P to O(e), which are in good agreement
with numerical calculations, and we explicitly verify the above scaling law and find the form of the scal-
ing function f.
PACS number(s): 47.25.Cg, 64.60.Ak, 47.25.Jn

I. INTRODUCTION

H) H„
11II1 = 11nl IIc f IIO,

Hp 0 Hp Hp 0 H" H"
0 0

(1.2)

with an appropriate set of real exponents a, a&, . . . , a„
which cannot be determined by dimensional analysis
alone, but which may be determined only by solving the
full problem itself. Interesting physical examples without
any statistical aspect occur in shock-wave propagation
[1], in fluid flow in porous media [1], and possibly in ve-
locity selection in dendritic growth [2]. Other well-
known examples [3] which do have a statistical aspect are
critical phenomena [4] and spinodal decomposition [5].

Recently, it was shown [6—8] that the exponents
a, a&, . . . , o.'„are just the anomalous dimensions of the
renormalization group (RG) in field theory, and can be
computed even in those cases without statistical phenom-
ena or noise, by using the scheme of perturbative Gell-
Mann —Low RG [6,7,9] or the fixed-point formulation of
Wilson [3,8, 10]. This RG approach has been successfully
applied to several diverse problems, such as the Baren-
blatt equation, describing the pressure of a fluid during

Dimensional analysis is a powerful way to study those
physical problems in which one is interested in the long-
time or large-scale asymptotic behavior as one of the di-
mensionless quantities in the problem IIO tends to zero or
infinity. If the quantity of interest H is expressed in the
dimensionless form II=f(IID, II„.. . , II„), as a function
f of the dimensionless quantities in the problem
Hp H& ~,H„, then it is often assumed that the limit as
HO~0 is well defined:

lim II =f ( 0, II1, II2, . . . , II„) .
Hp~0

However, there are a number of situations, as B@renblatt
has pointed out [1], where simple dimensional analysis
often fails: the function f is not well behaved in the limit
Hp —+0. In the case of intermediate asymptotics of the
second kind, the correct behavior is given by

B,q=8, (» t),q) F, ,
— (1.3)

where the z axis is taken along the normal to the middle
plane of the layer and the turbulent-energy distribution is
assumed symmetric with respect to this plane, q(z, t) is
the mean turbulent energy per unit mass, a is the
turbulent-energy eddy diffusion coefficient, which in prin-
ciple can depend on q, and E, is the mean rate of
turbulent-energy dissipation per unit mass.

its filtration through an elastoplastic porous medium
[1,6 —8], the modified porous-medium equation governing
a number of situations, such as the height of a groundwa-
ter mound during gravity-driven flow in porous media
and the propagation of strong thermal waves following
an intensive explosion [11], convection-diffusion trans-
port with irreversible sorption [12], and two linear prob-
letns in continuum mechanics [13].

The purpose of this present paper is to extend the per-
turbative RG approach to the problem of the propaga-
tion of turbulence from an instantaneous plane source
with a finite initial layer depth [14]. We emphasize that
our application of the RG is different from that which
has been proposed to model fully developed turbulence
[15—17]. There, a random force term is added to the
Navier-Stokes equation, and with a judiciously chosen
noise correlation, Kolmogorov scaling is recovered. In
contrast, our formulation does not require any ad hoc
noise terms; whether or not our approach will be useful
in studying fully developed turbulence is still an open
question.

Following Barenblatt [14], we consider an infinite
space filled with an incompressible and initially homo-
geneous fluid at rest. At the initial time t =0, we suppose
that a plane turbulent layer of thickness 2a is formed in-
stantaneously. Subsequently, the turbulent layer expands
and propagates into the surrounding fluid. Since the flow
is presumed to be shearless, the turbulent energy can only
be dissipated into heat and decays gradually in the pro-
cess of expansion.

The governing equation for the flow is the turbulent-
energy-balance equation, which can be written as [18]
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3/2
~ =l&q, E, = (1.4)

According to the Kolmogorov similarity hypothesis
[18,19], the local values of 1r and E, depend only on the
mean eddy size and energy. Simple dimensional analysis
then yields [14]

where

t 2/3

2/3 ' i 1/3 2/3 ' 2 1/3 2/3Q. Q. t Q.

(2.2)

(2.3)

where e is a constant and I is an unknown length scale
characteristic of the turbulent eddy size. Due to the non-
linearity of Eq. (1.3) when combined with Eq. (1.4), for a
bounded compact support initial distribution of the tur-
bulent energy and an arbitrary bounded l, the turbulent
energy propagates with a finite speed and remains bound-
ed everywhere at later times. It is natural to assume that
l is related to the actual turbulent layer half depth h (t}
by i=ah(t), where a(1 is a constant, which cannot be
determined by phenomenological considerations alone
[14]. In summary, Eq. (1.3) is reduced to the following
closed form:

3/2

B,q=B, [ah(t)&q B,q]—
ah(t)

(1.5)

II. GENERAL RENORMALIZATION-GROUP ANALYSIS

In this section, we consider the initial-value Cauchy
problem, under the initial distribution of the turbulent
energy

q(z, O) = u —
, Q, =f q(z, O)dz,

a —a

with q different from zero only for —h(t)~z ~h (t).
Note that h (t) is a priori unknown and must be deter-
rnined in the course of solving the equation.

In Sec. II, we use general RG arguments to predict the
actual form of the long-time behavior of the turbulent en-

ergy equation with dissipation, where @%0, and to derive
a scaling law satisfied by the exponents appearing in the
long-time behavior. Although the problem as posed does
not have a similarity solution, at long times the solution
is arbitrarily close to a certain similarity solution. In Sec.
III, we perform perturbative RG calculations to deter-
mine the actual values of these exponents and the form of
the scaling functions.

The analysis in the present article parallels that which
we have given for other initial-value problems with
anomalous dimensions, and the reader unfamiliar with
the technique is encouraged to peruse Refs. [7,8,11,13],
which are more pedagogical than the present article.

Q=Z Q (2.4)

where Z is a so-called renormalization constant [20]
which depends on a and e and Q= f 'h'1, 1q(z, t)dz. The

meaning of these statements is as follows. For a time
t )0, the quantity q(z) may be inferred. However, the
origin of time cannot be inferred from measuring q (z), so
there is no unique initial condition which can give rise to
the observed q (z). In fact, there is a family of initial con-
ditions, parametrized by a, which can give rise to the ob-
served q (z) for different t )0. The observed Q is propor-
tional to the initial Q, (they have the same units) and Z
expresses how they are related. In particular, Eq. (2.4) is
valid in the limit a ~0. In this limit, we will see that Q,
diverges, but Q remains fixed of course, being indepen-
dent of a. We will show that the divergence of Q, can be
compensated by Z. Since Z is a dimensionless quantity,
by dimensional analysis another additional arbitrary
length scale p must be introduced in the problem, and Z
has the functional form Z=Z(a/p, E) Substituting . Eq.
(2.4) in Eq. (2.2}, therefore, we have

(Zg)2/3
q(z, t ) = f(g, rt, F., a, o ),t'"

where

(2.5)

H3 =—u, II4 =—e .

In contrast to the problems in Refs. [7] and [11],here the
turbulent energy per unit mass is not a quantity indepen-
dent of z and t. The long-time aymptotic behavior of the
initia1-value problem may be obtained by taking the limit
II2~0. In the case a=0, it can be shown that this result
is regular as a ~0, and a similarity solution is obtained
by simply setting I12=0 in Eq. (2.2) [14]. However, in the
case of nonzero dissipation (eAO), there is no such simi-
larity solution of the form II=f(II„O,II3, II4) corre-
sponding to a =0 and Q, AO, as shown by Barenblatt
[14]. Due to energy dissipation, the total turbulent ener-

gy f "'~1 1q(z, t)dz is not conserved so that Q, is not ob-

servable at later times. The observed quantity Q is relat-
ed to the unobservable quantity Q, by

f u(x)dx =1
(2. 1) p

(Zg) / t / '
(Zg)1/ t2/3 '

p
(2.6)

with —a ~z ~a, where 2a is the initial depth of the tur-
bulent layer and Q, is the finite bulk intensity of the in-
stantaneous turbulence source. The solution of this prob-
lem can only depend on the governing parameters
Q„t,z, a, e, a as q =q(g„t,z, aa, E) The tu.rbulent-
energy density per unit mass q has dimensions LT
Choosing z and t as the two independent dimensional
quantities, we obtain from dimensional analysis

a =0
Qp Q, a, z, t, e, a, o

(2.7)

In the limit a ~0, assuming that Bf /Ocr =0 as cr ~0 and

The actual solution q cannot depend on the arbitrary
length scale p because p is not present in the original
problem. Thus we obtain the renormalization-group
equation
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that the limit h (t)-t' '+~, P=P=— 2
9+3y

(2.17)

d 1nZy=
d lnp, 0

exists, we find that

These results are the starting assumptions used by Baren-
blatt [14].

&g'f+ 1+& „'f ',f—=—o.
3 Bg 3 Bri 3

(2.8)
III. PERTURBATIVE RENORMALIZATION-GROUP

THEORY

q(z t) t' -+ 'F 'a e2/3+P ' (2.9)

with F a scaling function to be determined, and anoma-
lous dimensions

-= 2y
9+3y '

2y
9+3y (2.10)

The anomalous dimensions a and p satisfy the scaling
law

a+P=O. (2.11)

The assumptions above are nontrivial, and in statistical
field theory amount to the assumption of renormahzabili-
ty [20]. Here, we cannot justify them without further
analysis; we believe that they are equivalent to assuming
existence and uniqueness of the Cauchy problem. In pre-
vious work on the Barenblatt equation [21,22] these prop-
erties had been rigorously demonstrated. In the present
case, the failure of these assumptions would be visible, be-
cause our renormalization procedure would not be con-
sistent; however, nothing in our analysis leads us to doubt
that the present problem is indeed renormalizable.

Using the method of characteristics, we obtain the gen-
eral solution q(z, t) of the form

In this section, we construct a naive perturbation
theory in e to investigate the actual form of the solution
of the turbulent-energy-balance equation

~q
3/2

B,q=B, [ah(t)&q B,q]—
ah(t)

We take the initial distribution

(3.1)

q(z, O) = 1 — e(a —zl ),ko z'
a 36m a

(3.2)

which satisfies the bounded normalization condition (2.1),
where e is the Heaviside step function and
$0=(135a /4)' . This is in fact obtained from the simi-
larity solution for the case a=0: we start from a 5 func-
tion, evolved forward in time until the front position was
at z =a, and take this distribution as the initial condition.
In previous work on the porous medium equation, we
have verified that none of our conclusions depend on the
form of q(z, O), as expected on general grounds. The
form we have taken is, however, very convenient for ana-
lytic calculations. In order to perform the perturbation
calculation, it is convenient to make the transformation
of Eq. (3.1) to the "Hamilton-Jacobi" form, by setting
v =q ' . The resultant equation for v is

2

Using the same sort of analysis, we are able to investigate
the long-time behavior of the turbulent layer half depth
h(t):

Bv =ah (t) v +2BV BV

az' az

6'V

2ah (t)

We make the naive e expansions of v (z, t) and h ( t ):

(3.3)

a
h (t)=Qa t Fg 1/3 2/3 pa, e

Q,
(2.12)

and

U( &t)Z=U0+EU1+6 U2+ (3.4)

where FI, is another scaling function. After renormaliza-
tion we have

h (t)=h()+eh, +e h2+

The zeroth-order equation has the form

(3.5)

h (t)=(ZQ)' t Ft, ', cr, a, e
(ZQ)1/3t2/3 '

From the RG equation

(2.13)

B,U0 =ah0(t) v0 +2
QZ Z

with the solution

2

(3.6)

Bh
p

()p Q, a, z, t, e, a, cr

we have

=0 (2.14) Q
1/2g3/2

v0(z, t) = 1—
6ah (t)'/ , e(h, (t)—lzl),

h0(t)
(3.7)

BFI,
Fh+ 1++

2) =0,3" 3 an
(2.15)

where h0(t)=((0/ Q,
'/ t+a /

)
/ . At large times

t))a /$0 Q,', this solution tends toward the self-
similar solution

which yields

(2.16)
lim v0(z, t)—

t —+ oo

1 Z

1/3 2/3
(e=O) (3.8)

and so with lim, „h0(t)-t /, allowing us to read off the scal-
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BV1 a'v, av, av, a'v,
=aho(t) vo 2

+4 +
2 u1at az' az az az'

uo h, (t) Bvo+
2ah, (t) h, (t) Bt

(3.9)

with the initial condition v1(z, 0)=0. For ~z~ &ho(t) we
have the trivial solution v1(z, t)=0, and for ~z~ &ho(t),
Eq. (3.9) for v1 can be greatly simplified by the following
variable transformations:

ing function f from Eq. (3.7). In the following calcula-
tions, we achieve the limit t )&a /go g,'/ by keeping
t fixed and letting a —+0. This is merely a convenient
technical choice, and is by no means mandatory. The
first-order equation is

vl =(vl »+(vl )2

where

(3.20)

where p(x) is the weight function p(x) =x ' (1—x);
a =

—,', y = —,'; the eigenvalues are A,„=n (n + —,
' )+—,',

n =0, 1,2, .
; J„(a,y, x ) is the Jacobi polynomial of de-

gree n; and N„ is the normalization constant satisfying

f dx p(x}J„(a,y, x)J (a, y, x)=N„5 „, (3.19)
0

with J0=1, N0= —', and J, =1—5x, N1= —,", , etc. From
the property of complete orthogonality of the eigenfunc-
tions and the fact that f2(x', w') ~ J, (x'), then for
1 ))lna only the two combinations, i.e., Jo and f„J,and

f2, contribute to the leading logarithmic divergence term
to O(e). We find that the singular part of the solution v,
has the form

s —
h 2

( t )
—

( g3/2g 1/2t +a 3/2 )4/3 a 2 & s & + ~

or

r= —,'lns, 5=1na &r &+ 0o,

(3.10)

(3.11)

ln
140a s' a

(3.21)

and

zx=, 0~x~1 . (3.12)

g 1/2(3/2

(u1)2= — (1—5x)f,ds'
24(z s / 2 si1/4

Since the zeroth-order solution is

(3.22)

where

+f, (x,~)+f2(x, r), 0&x &1

Equation (3.9) then reduces to the form

Bv, 8 v, BV1
x(1—x) + —,'(1 —5x) —

—,'u1
a~ a2 ax

(3.13)

g 1/2g3/2

(1—x)8(1—x),
6as '

3
ln

70a

the bare-perturbation result to O(e) is

g 1/2(3/2
u(s z)= 1 e

6as'
s

a

(3.23)

and

1/2 3/2

f (x r)= —
3

e ' (1—x),/2 2

48a
(3.14)

+O(e},

h, (s')—e 1 — ds'
4S 5/4 s 1/4

(3.24)
1/2 3/2

f (x,r)=— —3/2~
2 12 1

e 'h (w)(1 —Sx) . (3.15)

where G is the bounded Green's function satisfying

With the initial condition v, (r=lna, x)=0, the formal
solution to Eq. (3.13) is given by

(v,17)=xf dr f dx G(r, x;v, x )[f1(x,r )
1na 0

+f2(x', r')],
(3.16)

where O(e) refers to finite terms regular in the limit
a ~0 which are unimportant for determining the anoma-
lous dimensions, and only lead to finite corrections to the
scaling functions. It is these terms to which we refer
when we write O(e) corrections in the following analysis.
Using the fact that v(z, s) =0 for values of z )h (s), where
the position is z =h (s) =ho(s)+eh, (s)+, we substi-
tute the above expression in Eq. (3.24) and equate two
sides of the equation order by order in e, to obtain
ho(s)=s'/, with the singular part of h, (s) satisfying the
integral equation

BG x(1—x) +—,'(1 —5x) —
—,'G

BG BG
a7. Bx BX

00

G(r, x;r', x')= g p(x') J„(a,y, x)J„(a,y, x')
0 N

~n(~ ~)
X e " 8(r—~'), (3.18)

=5(r—~')5(x —x') . (3.17)

The solution can be written as

s 1 s h1(s')

140a a 2$ ~ s'

h'(s}= As' ln
s

a

We solve by seeking a solution of the form

(3.25)

(3.26)
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giving 3 = —1/28& . Thus,

h'(s) = — s' ln
1

28a2
(3.27)

h (t) (g3/2Q1/2t + 3/2)2/3

g3 /2g 1/2t

ln
21O 2 a 3/2 +0(E) (3.28)

Last, we rewrite h (t) and u (t,z) in the form and

g 1/2(3/2
u(z, t) = 1—

(g3/2Q1/2t+ 3/2)1/3

g3/2 g 1/2
0 a

a

g ) /2g3/2 2 g3/2Q 1/2
a 0 1+ ln

6a($3/2Q 1/2t +a 3/2)5/3 21a2 a 3/2
0 a

+O(e) . (3.29)

InZ =In[1+a) e+O(e )]=a)E+O(e ),
we have

(3.30)

As expected, both h (t) and v (z, t) exhibit a leading singu-
larity ln(go Q,

' t /a ) in the limit t /g Q
' a~ 00.

This divergence can be treated by regarding a as a reg-
ularization parameter. The singularity can be removed
by introducing a renormalization constant Z=Z(a/
p, E), w, hich absorbs the divergence in the limit a ~0, or-
der by order in e. Hence, the renormalized quantities
h(t) and v(z, t), which we shall denote by h (t) and
u (z, t), respectively, remain finite even in the limit a ~0.
We replace Q, by Z(a/p, , e)Q and Taylor expand Z as
Z =X„" oa„(a /p)e" with ao = 1. The coefficients
a„(n ~ 1) are determined order by order in e in such a
way that all the divergences in h (t) and v(z, t) are can-
celed out. Since

1/3

v (z t)=R(1) Q kO e
1 — ln

6cxt ' 21'
C g3/2Q1/2t

3/2

+O(e),
and the second term in Eq. (3.29) becomes

(3.33)

Z2R (2)( t)
g g1/3t5/3

x 1+ ln
21o.

g3/2Q 1/2t

3/2 +O(e) .

(3.34)

Now we combine the renormalized perturbation series
with the RG theory, as explained in Refs. [6] and [8], to
obtain the final results for the long-time asymptotic be-
havior to O(e):

h "(t)=( g' t 1+ p+O(p )0 3

g3/2Q 1/2

X 1 — ln, 2
+O(e ) +O(e),

a

and

h(t)- At +~+0(e)

2

(3.35)

(3.31)
v(z, t)—

6nt ' g t 2/3+ [.P

By choosing a)(a/p) = —3/14a ln(C)/ p/a), the diver-
gence in the limit a ~0 is removed. Here C& is an arbi-
trary constant which will in fact not appear in the final
expression for the anomalous dimensions to O(E). We as-
sume that all such arbitrary constants, introduced if the
renormalization process is pursued to higher order in e,
do not appear in the final results —an assumption known
as perturbative renormalizability. We emphasize that
this is very natural here, for the reasons outlined in Sec.
II. Then we have

Xe 1—
gt 2/3+[~ —~~/2

2

+O(e), (3.36)

and

P=P= — +O(e )
21m

(3.37)

where we have introduced the anomalous dimensions

hR(t)=jog' t
a= —)(3= +O(e ),

21m
(3.38)

X 1 — ln
21'

g3/2Q 1/2t

3/2 +O(e), (3.32)

which is independent of a and remains finite in the limit
a~0. In the same way, the first term in Eq. (3.29) of u

becomes

in agreement with the scaling law from our previous RG
analysis. The phenomenological parameter A is a con-
stant of integration of the original problem and has the
formal value A =lim, go /

Q,
'/ a . Finally,

we give the actual asymptotic form of the solution of tur-
bulent energy with dissipation:
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'0 0.2 0.4 0.6
e/a2

0.8 I.O

FIG. 1. The anomalous dimension a plotted as a function of
e/a . The full curve is the RG calculation to O(e), whilst the
points are calculated from numerical solution of the nonlinear
eigenvalue problem, as explained in Ref. [14].

linear eigenvalue equation by using a shooting method.
The two results are in good agreement for 0 ~ e/a & 0.5.
The relative error is less than 4.5% even for e/a =0.5.

In conclusion, we have used general renormalization-
group arguments to show that the long-time behavior of
the propagation of a turbulent layer in the presence of
dissipation e is governed by a similarity solution with
anomalous exponents that cannot be determined by di-
mensional analysis. We have used renormalization-group
methods, originally developed in quantum field theory, in
conjunction with perturbation theory to calculate these
exponents to 0 (e). Although we are unable to make any
definite statements about the convergence of the expan-
sion that we have assumed here, it should be noted that
in the problem of nonlinear diffusion in an elastoplastic
porous medium, our renormalization-group expansion for
the anomalous dimension has been proven rigorously to
be analytic [23].

Note added in proof. The existence and uniqueness of
solutions to Eq. (1.5) have been rigorously proved, and
the convergence to a self-similar solution with anomalous
dimensions established by S. Kamin and J. L. Vazquez
(unpublished).
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